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Abstract

A new AR(p) model for time series of counts is investigated, the possible marginal
distributions of which are those of the DSD family. We determine the autocorrelation
structure of the whole model family and analyze two important special cases. A real-
data example demonstrates the practical relevance of the new model family.

Key words: INAR(p) model; EAR(p) model; DSD distributions.

1 Introduction

The first integer-valued ARMA (INARMA) model has been proposed by
McKenzie (1985): the INAR(1) model as a counterpart to the usual AR(1)
model. It is based on a probabilistic operation called binomial thinning, which
proved to be an adequate alternative to scalar multiplication for integer-valued
time series. If X is a discrete random variable with range {0, . . . , n} or N0,
then the random variable α ◦ X :=

∑N
i=1 Yi, where Yi (counting series) are

independent Bernoulli trials according to B(1, α), independent of X, is said
to arise from X by binomial thinning. ‘◦’ is called the binomial thinning oper-
ator. Especially, one obtains E[α ◦ X] = α · E[X], which justifies to ‘replace’
the scalar multiplication in the usual ARMA recursion by the probabilistic
operation of binomial thinning.

Binomial thinning was originally introduced by Steutel & van Harn (1979) to
adapt the terms of self-decomposability and stability for integer-valued time
series. A random variable X with range N0 is discrete self-decomposable (DSD)

Email address: christian.weiss@mathematik.uni-wuerzburg.de (Christian
H. Weiß).
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if for any α ∈ (0; 1), there exists a random variable ǫα with range N0, indepen-
dent of α ◦ X, such that X and α ◦ X + ǫα have the same distribution. Since
the INAR(1) model is defined by the recursion Xt = α ◦ Xt−1 + ǫt, the DSD
distributions are the possible marginal distributions of a stationary INAR(1)
process. Many important distributions, including negative binomial, Poisson
and generalized Poisson distribution, belong to this class of DSD distributions,
see Zhu & Joe (2003).

While the INAR(1) recursion involves one thinning operation only, the coun-
terpart of the general AR(p) model needs p thinning operations:

Xt = α1 ◦t Xt−1 + . . . + αp ◦t Xt−p + ǫt.

The time index t below the thinning operation indicates that the corresponding
thinning is involved in defining Xt. Since the thinning operations are proba-
bilistic, the joint distribution of (α1◦t+1Xt, . . . , αp◦t+pXt) has to be considered,
leading to different types of INAR(p) models: Alzaid & Al-Osh (1990) assume
a conditional multinomial distribution, Du & Li (1991) require conditional
independence. The INAR(p) models are quite complex and difficult to inter-
prete for p ≥ 2. In addition, the choice of appropriate marginal distributions
for (Xt)Z and (ǫt)Z is problematic. These difficulties did not arise in the case
of the INAR(1) model, where any DSD distribution is a possible marginal
process distribution. To overcome these difficulties, Zhu & Joe (2006) recently
proposed an alternative definition of a pth order autoregressive model. They
combined the EAR(p) model of Lawrance & Lewis (1980) and the INAR(1)
model discussed before. Hence, the resulting model will be called combined
INAR(p) (CINAR(p)) model in this text.

Definition 1 (CINAR(p) Model) Let (ǫt)Z be an i.i.d. process with range
N0, and α ∈ (0; 1). Let (Dt)Z be an i.i.d. process of ‘decision’ random variables
Dt = (Dt,1, . . . , Dt,p) ∼ MULT (1; φ1, . . . , φp), independent of (ǫt)Z. A process
(Xt)Z, which follows the recursion

Xt = Dt,1 · (α ◦t Xt−1) + . . . + Dt,p · (α ◦t Xt−p) + ǫt,

is called an CINAR(p) process if

• the thinnings at time t are performed independently of each other, of (ǫt)Z

and (Dt)Z, and the thinnings of Xt independent of (Xs)s<t,
• ǫt and Dt are independent of all Xs and α ◦s+j Xs with s < t, j = 1, . . . , p,
• the conditional probability P (α ◦t+1 Xt, . . . , α ◦t+p Xt | Xt = xt,Ht−1) equals

P (α ◦t+1 Xt, . . . , α ◦t+p Xt | Xt = xt), where Ht−1 abbreviates the process
history of all Xs and α ◦s+j Xs for s ≤ t − 1 and j = 1, . . . , p.

Zhu & Joe (2006) only analyzed the special CINAR(2) model of Example 4.
In the following Section 2, we shall investigate the whole model family. In
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particular, we derive a set of Yule-Walker equations for the autocovariance
function. These equations simplify in two important special cases, including
the results of Zhu & Joe (2006) for p = 2. The real-data example of Section 3
demonstrates the practical relevance of the new model family. Finally, we
conclude in Section 4.

2 Properties of CINAR(p) Models

The CINAR(p) recursion of Definition 1 states that Xt is either equal to α ◦t

Xt−1+ǫt with probability φ1, . . . , or to α◦tXt−p+ǫt with probability φp. Here,
the time index t below the thinning operation indicates that the corresponding
thinning is involved in defining Xt, but it does not necessarily exclude that
all thinnings of a process variable Xs are identical, see Section 2.1 below.
The main advantage of the CINAR(p) model against the INAR(p) model gets
clear considering the marginal process distribution: If (Xt)Z is a stationary
CINAR(p) process, then its probability generating function (pgf) has to fulfill

pX(z) = E[E[zXt | Dt]] =
∑p

i=1 φi · E[zα◦tXt−i+ǫt ]

=
∑p

i=1 φi · pX(1 − α + αz) · pǫ(z) = pX(1 − α + αz) · pǫ(z).

(1)

Hence, the possible marginal distributions of a stationary CINAR(p) process
are indeed those of the DSD family, including the negative binomial and (gen-
eralized) Poisson distribution, see Zhu & Joe (2003). Formula (1) furthermore
implies that expectation and variance are given by µX = µǫ/(1 − α) and
σ2

X = (αµǫ +σ2
ǫ )/(1−α2), like in the INAR(1) case. Properties concerning the

serial dependence structure of stationary CINAR(p) processes are, however,
more difficult to derive. Like in the case of the INAR(p) model, Definition 1
does not specify the CINAR(p) process completely. Therefore, we shall present
in the sequel a new and quite general result on the autocorrelation structure
first, which simplifies in the two special cases discussed afterwards. Zhu & Joe
(2006) presented a similar result for one of these special cases only, and there
only for p = 2.

Theorem 2 (Autocorrelation Structure of CINAR(p) Models) Let (Xt)Z

be a stationary CINAR(p) process according to Definition 1. Let γ(k) :=
Cov[Xt, Xt−k] denote the autocovariance function, define

µ(i, k) := E[(α ◦t Xt−i) · Xt−k] − α · E[Xt−i · Xt−k], k ≥ 1.

Then the autocovariances can be determined recursively from the equations

γ(k) = α ·
∑p

i=1 φi · γ(|k − i|) +
∑p

i=k+1 φi · µ(i, k),

3
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where µ(i, k) = 0 for i ≤ k, and otherwise

µ(i, k) = φi−k ·(Cov[α◦tXt−i, α◦t−k Xt−i]−α2σ2
X) + α ·

∑i−1
r=k+1 φr−k ·µ(i, r).

Especially, µ(i, i − 1) = φ1 · (Cov[α ◦t Xt−i, α ◦t−i+1 Xt−i] − α2σ2
X).

The proof of Theorem 2 is provided by Appendix A. The result shows that the
autocorrelation structure is determined only if the joint distribution of (α1◦t+1

Xt, . . . , αp ◦t+p Xt) has been specified. Two such possibilities are presented in
the subsequent sections.

2.1 CINAR(p) – Identical Thinnings Model

Assume that all thinnigs performed to Xt are identical, i. e.,

α ◦t+1 Xt = . . . = α ◦t+p Xt = α ◦ Xt.

So the time index t below the thinning operation can be suppressed. Since

Cov[α ◦t Xt−i, α ◦t−k Xt−i] = V [α ◦ Xt−i] = α2σ2
X + α(1 − α) · µX ,

the recursion for µ(i, k), i > k, simplifies to

µ(i, k) = φi−k · α(1 − α) · µX + α ·
∑i−1

r=k+1 φr−k · µ(i, r). (2)

Hence, this type of CINAR(p) model has an autocorrelation structure similar
to that of an ARMA(p, p− 1) model, i. e., it is closely related to the INAR(p)
model of Alzaid & Al-Osh (1990).

Example 3 (CINAR(2) – Identical Thinnings Model) Consider the case
p = 2. Then one obtains µ(2, 1) = φ1 · α(1 − α) · µX, and consequently

γ(1) = α · φ1 · (σ
2
X + φ2(1 − α)µX)/(1 − αφ2),

γ(k) = α · (φ1 · γ(k − 1) + φ2 · γ(k − 2)), k ≥ 2.

2.2 CINAR(p) – Independent Thinnings Model

Assume that conditioned on Xt, all thinnings α ◦t+1 Xt, . . . , α ◦t+p Xt are
independent. So each time t+j, j = 1, . . . , p, Xt is newly involved in a thinning
operation, disregarding the result of previous thinnings. For this model, simply
Cov[α ◦t Xt−i, α ◦t−k Xt−i] = α2σ2

X . So µ(i, i − 1) = 0, and the recursion
for µ(i, k), i > k, results in µ(i, k) = 0 for all i > k. Hence, this type of

4
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CINAR(p) model has an AR(p)-like autocorrelation structure, comparable to
the INAR(p) model of Du & Li (1991):

ρ(k) = α · (φ1 · ρ(|k − 1|) + . . . + φp · ρ(|k − p|)). (3)

Example 4 (CINAR(2) – Independent Thinnings) If p = 2, then

ρ(1) = α ·φ1/(1−αφ2), ρ(k) = α · (φ1 ·ρ(k−1)+φ2 ·ρ(k−2)), k ≥ 2.

This result was also provided by Zhu & Joe (2006).

For both types of CINAR(p) models, model estimation can be done by solving
the respective Yule-Walker equations, inserting the empirical instead of the
theoretical autocorrelations. In case of the Independent Thinnings model, one
can also compute conditional least squares and maximum likelihood estimates,
since conditional expectation and distribution can be derived explicitly as

E[Xt | Xt−1, Xt−2, . . .] = µX · (1 − α) + α ·
∑p

i=1 φi · Xt−i,

P (Xt = x | Xt−1 = xt−1, Xt−2 = xt−2, . . .)

=
∑x

y=0 P (ǫt = y) ·
∑p

i=1 φi ·
(

xt−i

x−y

)

· αx−y · (1 − α)xt−i−x+y.

(4)

3 A Real-Data Example

The server of the Department of Statistics of the University of Würzburg
collects log data concerning accesses to pages on the server. The data was
arranged in such a way that the number of different IP addresses (≈ different
users) registered within periods of one minute length can be read. We analyzed
the data collected in November and December 2005. We restricted ourselves
to accesses, which occurred between 10 o’clock in the morning and 6 o’clock
in the evening, resulting in daily time series of length 481 each. As an illus-
trative example, we shall analyze in the following the time series collected on
December 2nd, 2005.

Figure 1 (a) shows a run chart of the data. It gets clear that the data exhibits
serial dependencies, but does not contradict a stationarity assumption. The
histogram in Figure 1 (b) is plotted together with the Poisson distribution
Po(0.711), where 0.711 equals the arithmetic mean of the data. Empirical and
theoretical distribution are very close to each other, indicating that a pro-
cess model with Poisson marginals is reasonable. Estimated autocorrelations
and partial autocorrelations are plotted in Figures 1 (c) and (d), respectively.
The partial autocorrelation function abruptly decreases towards 0 after lag 5,
making an autoregressive model of order p ≤ 5 a reasonable choice. Such

5
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Fig. 1. Run chart, histogram, empirical autocorrelation and partial autocorrelation
function of the IP data of Section 3.

a long-term dependence is plausible for the IP data, since users often click
through a homepage for more than a minute.

Taking together these observations, we decide to model the data by a Poisson
CINAR(p) – Independent Thinnings model, p ≤ 5, which has an autoregressive
dependence structure, see formula (3). Because of the Poisson assumption,
the model is determined by the p + 1 parameters µǫ, α, φ1, . . . , φp−1 (φp =
1 − φ1 − . . . − φp−1) and has Poisson marginals with µX = σ2

X = µǫ

1−α
. We

consider all models with 0 ≤ p ≤ 5, i. e., including an i.i.d. model. Since
ρ̂p(2) and ρ̂p(3) do not deviate significantly from 0, we also consider a reduced
CINAR(5) model with φ2 = φ3 = 0.

All CINAR(p) candidate models have been fitted to the data in two steps:
Initial estimates for the parameters are obtained from the Yule-Walker equa-
tions (3), the final estimates are obtained by numerically maximizing the con-
ditioned likelihood function (with the help of Mathematica 5), which can be
computed easily from formula (4). Remember that φ̂p = 1 − φ̂1 − . . . − φ̂p−1.
The results are presented in Table 1, together with the respective values of
the information criteria AIC and BIC. Obviously, the i.i.d. model performs
worst, so serial dependence has to be considered. Among the models with
serial dependence, the reduced fifth order model is the best choice.
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Table 1
Maximum-likelihood estimation of candidate models.

Model µ̂ǫ α̂ φ̂1 φ̂2 φ̂3 φ̂4 AIC BIC

p = 0 0.706 1059 1063

p = 1 0.566 0.197 1044 1052

p = 2 0.524 0.255 0.696 1042 1055

p = 3 0.484 0.312 0.554 0.180 1041 1058

p = 4 0.442 0.373 0.452 0.120 0.167 1038 1059

p = 5 0.412 0.411 0.377 0.075 0.130 0.185 1036 1061

p = 5, φ2, φ3 = 0 0.443 0.369 0.452 0.252 1034 1050

4 Conclusion

In this article, we investigated an autoregressive model for time series of counts
based on binomial thinning. In contrast to the standard INAR(p) models, pos-
sible marginal distributions of this new model class are easily obtained since
they coincide with those of the INAR(1) model: The DSD family, including
negative binomial and generalized Poisson distribution. We derived a set of
Yule-Walker equations to describe the autocorrelation structure of the whole
model family, and showed that these equations simplify in two special cases.
We also briefly discussed aspects of model estimation and illustrated such esti-
mation procedures with a real-data example. This example also demonstrated
the practical relevance of the new model family.
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A Proof of Theorem 2

The given Yule-Walker type equations for γ(k) follow immediately from

E[Xt · Xt−k] =
∑p

i=1 φi · E[(α ◦t Xt−i + ǫt) · Xt−k]

k≥1 = µǫ · µX +
∑p

i=1 φi · E[(α ◦t Xt−i) · Xt−k]

= (1 − α) · µ2
X +

∑p
i=1 αφi · E[Xt−i · Xt−k] +

∑p
i=1 φi · µ(i, k)

and µ(i, k) = 0 for i ≤ k. The latter results from

E[(α ◦t Xt−i) · Xt−k] = E[E[(α ◦t Xt−i) · Xt−k | Xt−i]]

i≤k = E[E[α ◦t Xt−i | Xt−i] · E[Xt−k | Xt−i]] = α · E[Xt−i · Xt−k].

So it remains to prove the expression for µ(i, k) for i > k. Then

E[(α ◦t Xt−i) · Xt−k] =
∑p

j=1 φj · E[(α ◦t Xt−i) · (α ◦t−k Xt−k−j + ǫt−k)]

k<i = α(1 − α) · µ2
X +

∑p
j=1 φj · E[(α ◦t Xt−i) · (α ◦t−k Xt−k−j)]

= α(1 − α) · µ2
X + φi−k · E[(α ◦t Xt−i) · (α ◦t−k Xt−i)]

+
∑i−k−1

j=1 φj · E[E[(α ◦t Xt−i) · (α ◦t−k Xt−k−j) | Xt−k−j ]]

+
∑p

j=i−k+1 φj · E[E[(α ◦t Xt−i) · (α ◦t−k Xt−k−j) | Xt−i]]

= α(1 − α) · µ2
X + α ·

∑i−k−1
j=1 φj · µ(i, k + j)

+ φi−k · (E[(α ◦t Xt−i)(α ◦t−k Xt−i)] − α2E[X2
t−i])

+ α ·
∑i−k

j=1 φj · (α · E[Xt−k−j · Xt−i])

+ α ·
∑p

j=i−k+1
φj · E[(α ◦t−k Xt−k−j) · Xt−i].

Inserting

Cov[α ◦t Xt−i, α ◦t−k Xt−i] − α2σ2
X = E[(α ◦t Xt−i)(α ◦t−k Xt−i)] − α2E[X2

t−i],

α ·
∑p

j=1 φj · E[ǫt−k · Xt−i] = α(1 − α) · µ2
X , and

E[(α ◦t−k Xt−k−j) · Xt−i] = α · E[Xt−k−j · Xt−i] for j ≤ i − k

8
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into this equation, we obtain

E[(α ◦t Xt−i) · Xt−k] =

= α ·
∑i−k−1

j=1 φj · µ(i, k + j) + φi−k · (Cov[α ◦t Xt−i, α ◦t−k Xt−i] − α2σ2
X)

+ α ·
∑p

j=1 φj · E[ǫt−k · Xt−i] + α ·
∑p

j=1 φj · E[(α ◦t−k Xt−k−j) · Xt−i]

= α ·
∑i−k−1

j=1 φj · µ(i, k + j) + φi−k · (Cov[α ◦t Xt−i, α ◦t−k Xt−i] − α2σ2
X)

+ α · E[Xt−k · Xt−i].

This completes the proof.
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