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A NOTE ON THE EXCHANGEABILITY CONDITION IN
STEIN'S METHOD

ADRIAN RÖLLIN

Abstract. We show by a surprisingly simple argument that the ex-

changeability condition, which is key to the exchangeable pair approach

in Stein's method for distributional approximation, can be omitted in

many standard settings. This is achieved by replacing the usual antisym-

metric function by a simpler one, for which only equality in distribution

is required. In the case of normal approximation we also slightly improve

the constants appearing in previous results. For Poisson approximation,

a di�erent antisymmetric function is used, and additional error terms are

needed if the bound is to be extended beyond the exchangeable setting.

1. Introduction

In the context of normal approximation, a variant of Stein's method that

is often used is the exchangeable pair coupling introduced in Diaconis (1977)

and Stein (1986). There are many applications based on this coupling, see

e.g. Rinott and Rotar (1997), Fulman (2004b), Meckes (2006) and others,

but also in the context of non-normal approximation such as Chatterjee et al.

(2005), Chatterjee and Fulman (2006) and Röllin (2007).

Assume that W is a random variable which we want to approximate. The

key concept introduced by Stein (1986) is that of auxiliary randomization.

In the context of exchangeable pairs, this means that we construct a random

variable W ′ on the same probability space such that (W,W ′) is exchange-

able, that is L (W,W ′) = L (W ′,W ) and, in general, the pair should be

constructed such that |W ′ −W | is small. One can then prove for instance

a bound as in Theorem 2.1 below (often under additional conditions on the
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exchangeable pair such as Equation (2.1)). If W and W ′ are two consec-

utive steps of a reversible Markov chain in equilibrium, Rinott and Rotar

(1997) note that exchangeability automatically follows. However, the pairs

constructed in some of the examples of Rinott and Rotar (1997) and Fulman

(2004a) are based on non-reversible Markov chains and therefore some ef-

fort has to be put into showing that the pairs satisfy the exchangeability

condition.

The key fact to prove a bound as in Theorem 2.1 is that, for any antisym-

metric function F , exchangeability of (W,W ′) implies the identity

(1.1) EF (W,W ′) = 0

(see (Stein, 1986, p. 10)). In fact, this is often the only place where ex-

changeability is used. For example, in the case of the normal distribution,

the standard choice for F is

(1.2) F (w,w′) = (w′ − w)
(
f(w′) + f(w)

)
,

where f is the solution to the Stein equation

(1.3) f ′(x)− xf(x) = h(x)−Eh(Z)

and Z has the standard normal distribution. We show in this paper that

instead of the choice (1.2) we can take the simpler function

(1.4) F (w,w′) =
∫ w′

0
f(x)dx−

∫ w

0
f(x)dx,

which is, in particular, antisymmetric, but for which (1.1) of course holds

without exchangeability as long as L (W ′) = L (W ). If exchangeable pairs

are used in a discrete setting, the integrals in (1.4) of course have to be

replaced by corresponding sums.

In the following section we restate and prove results obtained by the ex-

changeable pairs approach for normal and Poisson approximation. The main

purpose is to demonstrate in detail how the exchangeability condition can be
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omitted in some standard settings, sometimes also yielding better constants.

With the approach in this paper, however, it is possible to remove the ex-

changeability condition in many other situations, such as in Stein (1995) and

Meckes (2006), Chatterjee and Fulman (2006), and Röllin (2007).

Most ingredients in the following proofs are taken directly from the proofs

of the corresponding papers; hence many details have been omitted.

2. Main results

2.1. Normal approximation. For normal approximation we need some

more assumptions. Assume that W is a random variable with EW = 0 and

VarW = 1. Construct an exchangeable pair such that

(2.1) EWW ′ = (1− λ)W +R

for some constant 0 < λ < 1 and some random variable R, whereEW denotes

the conditional expectation with respect to W .

The following calculations are essential for the proof of Theorem 1.2 of

Rinott and Rotar (1997), but we now assume for the sake of clarity that R =

0. Let f be the solution to (1.3) for a Lipschitz-continuous test function h.

Now, with the standard choice of F as in (1.2) and exchangeability, we have

0 = EF (W,W ′)

= E
{

(W ′ −W )
(
f(W ′) + f(W )

)}

= E
{

(W ′ −W )
(
2f(W ) + f(W ′)− f(W )

)}

= −2λE
{
Wf(W )

}
+E

{
(W ′ −W )

(
f(W ′)− f(W )

)}
,

(2.2)

where for the last equality we used (2.1). Let now τ be a random variable

uniformly distributed on [0, 1], independent of all other random variables,

and put V = W ′ −W . Noting that the second derivative f ′′ exists almost

everywhere because h is Lipschitz continuous, Taylor's expansion yields

f(W ′) = f(W ) + V f ′(W ) + V 2EW,W
′{

(1− τ)f ′′(W + τV )
}
.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 ADRIAN RÖLLIN

Thus, from (2.2),

(2.3) E
{
Wf(W )

}
=

1
2λ
E

{
V 2f ′(W )

}
+

1
2λ
E

{
V 3(1− τ)f ′′(W + τV )

}
.

In the proof of Theorem 2.1 we show that an equation similar to (2.3) can

be deduced without exchangeability. To state the theorem, we need some

notation. De�ne for a given function h and ε > 0,

h+
ε (x) = sup{h(x+ y) : |y| 6 ε}, h−ε (x) = inf{h(x+ y) : |y| 6 ε}.

Let H be a class of measurable functions on the real line such that for all

h ∈ H, we have ‖h‖ 6 1, where ‖·‖ denotes the supremum norm; for any real

numbers c and d, h ∈ H implies h(c ·+d) ∈ H; for any ε > 0, h ∈ H implies

h+
ε , h

−
ε ∈ H and there is a constant a (depending only on the class H) such

that E
{
h+
ε (Z) − h−ε (Z)

}
6 aε where Z has standard normal distribution.

As in Rinott and Rotar (1997) we assume without loss of generality that

a >
√

2/π.

Theorem 2.1 (cf. Theorem 1.2 of Rinott and Rotar (1997)). Assume that

W and W ′ are random variables on the same probability space such that

L (W ′) = L (W ), EW = 0, VarW = 1. Assume that (2.1) holds for some

λ and R. Then, for δ := suph∈H
∣∣Eh(W )−Eh(Z)

∣∣,

(2.4) δ 6 6
λ

√
VarEW (W ′ −W )2 +

19
√
ER2

λ
+ 4

√
aE|W ′ −W |3

λ
.

If, in addition, there is a constant A such that |W ′ −W | 6 A almost surely,

we have

(2.5) .δ 6 12
λ

√
VarEW (W ′ −W )2 +

37
√
ER2

λ
+ 32

A3

λ
+ 6

A2

√
λ

Proof. From Lemma 4.1 of Rinott and Rotar (1997) we have that, for any

0 < t < 1,

(2.6) δ 6 2.8 sup
h∈H

∣∣Eht(W )−Eht(Z)
∣∣ + 4.7at,
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where ht(x) = Eh(x+ tZ). Let f be the solution to the Stein equation

(2.7) f ′(x)− xf(x) = ht(x)−Eht(Z).

Then, f satis�es

(2.8) ‖f‖ 6 2.6, ‖f ′‖ 6 4, ‖f ′′‖ 6 2‖h′t‖ 6 1.6t−1;

recalling that ‖h‖ 6 1, the �rst two bounds and the �rst part of the third

one follow from Lemma 3 of Stein (1986) and, as noted by Rinott and Rotar

(1997), the second inequality of the third bound can be deduced using the

equality h′t(x) = −t−1
∫
h(x + ty)ϕ′(y)dy, where ϕ is the standard normal

density, so that ‖h′t‖ 6 t−1
∫ |ϕ′(x)|dx = t−1

√
2/π.

De�ne the function

(2.9) G(w) =
∫ w

0
f(x) dx

and note that |G(w)| 6 |w|‖f‖, so that EG(W ) exists. By Taylor's expan-

sion, we have

G(W ′) = G(W ) + V f(W ) + 1
2V

2f ′(W )

+ 1
2V

3EW,W
′{

(1− τ)2f ′′(W + τV )
}
,

(2.10)

where, again, V = W ′ −W . Thus, together with (2.1), we obtain

0 = EG(W ′)−EG(W )

= −λE{
Wf(W )

}
+E

{
Rf(W )

}

+ 1
2E

{
V 2f ′(W )

}
+ 1

2E
{
V 3(1− τ)2f ′′(W + τV )

}
,

which can be rearranged to obtain the following analogue of (2.3)

λE
{
Wf(W )

}
= 1

2E
{
V 2f ′(W )

}
+ 1

2E
{
V 3(1− τ)2f ′′(W + τV )

}

+E
{
Rf(W )

}
.

(2.11)
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With α := E{RW} and noting that EV 2 = 2(λ − α) from (2.1), we thus

have from (2.7) and (2.11)

λ
(
Eht(W )−Eht(Z)

)
= E

{(
(λ− α)− 1

2V
2
)
f ′(W )

}

+E
{
αf ′(W )−Rf(W )

}

− 1
2E

{
V 3(1− τ)2f ′′(W + τV )

}

=: J1 + J2 − 1
2J3.

Using (2.8), we obtain the estimates

|J1| 6 2
√

VarEWV 2, |J2| 6 6.6
√
ER2, |J3| 6 1.6

3t
E|V |3;

for details see Rinott and Rotar (1997). Choosing t = 0.4
(
E|V |3/(aλ)

)1/2

and with (2.6), this proves (2.1).

Assume now that |V | 6 A. Note that because of (2.7), f ′′(x) = f(x) +

xf ′(x)+h′t(x). Following the proof of Rinott and Rotar (1997), but recalling

that in our remainder J3 the term (1− τ) is squared, we have

|J3| = E
{
V 3(1− τ)2

(
f(W + τV ) + (W + τV )f ′(W + τV ) + h′t(W + τV )

)}

6 0.9A3 + 1.4E
{
V 3(|W |+ |W ′|)} +E

{
V 3(1− τ)2h′t(W + τV )

}

6 3.7A3 +E
{
V 3(1− τ)2h′t(W + τV )

}
,

where the latter expectation can be bounded by

∣∣E{
V 3(1− τ)2h′t(W + τV )

}∣∣ 6 aA3

3
+
A3

3t
(2δ + aA);

see again Rinott and Rotar (1997). Collecting all the bounds on the Ji we

obtain
∣∣Eht(W )−Eht(Z)

∣∣ 6 2
λ

√
VarEWV 2 +

6.6
λ

√
ER2

+
3.7A3

2λ
+
aA3

6λ
+
A3(2δ + aA)

6λt
.

(2.12)
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Recalling that a >
√

2/π, putting (2.12) into (2.6) and with the choice

t = 0.32A
(A(2δ+aA)

aλ

)1/2, we �nally have

δ 6 5.6
√

VarEWV 2 + 18.5
√
ER2 + 7

aA3

λ
+ 3

aA2

√
λ

+ 4.2

√
aδA3

λ
.

This inequality is of the form δ 6 a + b
√
δ, for which we can show that

δ 6 2a+ b2 and which hence proves (2.5). ¤

Note that if R = 0 almost surely, equation (2.11) is the same as (2.3),

except that the factor (1 − τ) is squared; this is the only reason for the

improved constants. If (W,W ′) is exchangeable, both equalities (2.3) and

(2.11) hold. At �rst glance this may seem to be a contradiction, but the

remainders with the second derivatives are in fact equal. To see this, write

E
{
V 3(1− τ)2f ′′(W + τV )

}

= E
{
V 3(1− τ)f ′′(W + τV )

}−E{
V 3τ(1− τ)f ′′(W + τV )

}
.

We need only show that the second term on the right hand side is equal

to zero. Note to this end the simple fact that L (τ) = L (1 − τ), thus,

using this in the following calculations to obtain the �rst equality and the

exchangeability of (W,W ′) for the third equality,

E
{

(W ′ −W )3τ(1− τ)f ′′
(
W + τ(W ′ −W )

)}

= E
{

(W ′ −W )3τ(1− τ)f ′′
(
W + (1− τ)(W ′ −W )

)}

= E
{

(W ′ −W )3τ(1− τ)f ′′
(
W ′ + τ(W −W ′))}

= E
{

(W −W ′)3τ(1− τ)f ′′
(
W + τ(W ′ −W )

)}

= −E{
(W ′ −W )3τ(1− τ)f ′′

(
W + τ(W ′ −W )

)}
,

which proves the claim.

2.2. Poisson approximation. The situation in the discrete setting, in which

W takes values only in Z, is more delicate. Assume that f is the solution
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to a Stein equation of a discrete distribution. Instead of (2.9), de�ne the

function G as

(2.13) G(w) =
w∑

k=1

f(k)−
−w−1∑

k=0

f(−k),

where here and in what follows
∑b

k=a is de�ned to be zero if b < a. For

many standard distributions, f will be bounded, thus |G(w)| 6 |w|‖f‖, so
that EG(W ) exists if E|W | <∞.

With such G, one veri�es that G(w) − G(w − 1) = f(w) for all w ∈ Z.
De�ne Ii = I[W ′ −W = i] and ∆iG(w) := G(w + i) − G(w) for all i ∈ Z;
then,

G(W ′)−G(W ) =
∑

i∈Z
Ii∆iG(W )(2.14)

and thus, if L (W ′) = L (W ),

0 = EG(W ′)−EG(W ) =
∑

i∈Z
E

{
Ii∆iG(W )

}
=

∑

i∈Z
E

{
Pi(W )∆iG(W )

}
(2.15)

where Pi(W ) := PW [W ′ −W = i].

As mentioned in the introduction, Rinott and Rotar (1997) suggest con-

structing W and W ′ via an underlying stationary Markov process, which

implies L (W ) = L (W ′); if the chain is reversible, exchangeability follows

immediately. However, the Markov chain that they use for the anti-voter

model is not reversible, and so exchangeability has to be proved separately.

One way of doing this is to assume that

(2.16) W ′ −W ∈ {−1, 0, 1},

almost surely, which is the main assumption in Röllin (2007).

Chatterjee et al. (2005) applied the method of exchangeable pairs to the

Poisson distribution. Assume that (W ′,W ) is an exchangeable pair taking
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values only on the non-negative integers. De�ne the antisymmetric function

(2.17) F (w,w′) = f(W ′)I[W ′ −W = 1]− f(W )I[W ′ −W = −1].

This yields

0 = EF (W,W ′)

= E
{
f(W ′)I[W ′ −W = 1]− f(W )I[W ′ −W = −1]

}

= E
{
EW {f(W ′)I[W ′ −W = 1]} −EW {f(W )I[W ′ −W = −1]}}

= E
{
f(W + 1)P[W ′ −W = 1|W ]− f(W )P[W ′ −W = −1|W ]

}

= E
{
f(W + 1)P1(W )− f(W )P−1(W )

}
.

(2.18)

We can use now the standard argument for Poisson approximation by Stein's

method (see (Barbour et al., 1992, p. 6)). Denoting by Po(λ) the Poisson

distribution with mean λ, it follows that

dTV

(
L (W ),Po(λ)

)
6 sup

f

∣∣E{
λf(W + 1)−Wf(W )

}∣∣

6 sup
f

∣∣E{
(cP1(W )− λ)f(W + 1)− (cP−1(W )−W )f(W )

}∣∣ =: κc
(2.19)

for any c > 0 and where the supremum ranges over all solutions f = fA to

the Stein-equation

(2.20) λf(j + 1)− jf(j) = I[j ∈ A]− Po(λ){A},

for subsets A of the non-negative integers. For many applications investi-

gated by Chatterjee et al. (2005), the following further bound on κc is used:

κc 6 λ−1/2
(
E|cP1(W )− λ|+E|cP−1(W )−W |),

which results from the well known bound ‖f‖ 6 λ−1/2 (see (Barbour et al.,

1992, Lemma 1.1.1)). However, it is at times bene�cial to work directly with

the expression in (2.19) in the hope of re-arranging things so that the better

bound ‖∆1f‖ 6 (1− e−λ)λ−1 may be applied.
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It may seem surprising that, although in the bound (2.19) only the jump

probabilities of size 1 appear, no assumptions concerning the sizes of other

jumps were made in the above calculations; we did not, for instance, assume

condition (2.16). However, with the choice f(w) = I[w = k] for k ∈ Z,

we obtain from (2.17) the detailed balance equation for reversible Markov

chains. Even if the chain makes jumps of size larger than 1, the stationary

distribution is determined by the jump probabilities of size 1, so that in (2.19)

the full information about the distribution under consideration is actually

used, just by starting from (2.17). If exchangeability is not assumed, the

e�ects of jumps of size larger that 1 have also to enter, and this is re�ected

in the bounds of the next theorem. The choice of F in (2.17) is fundamen-

tally di�erent from the standard choice in the continuous setting, where we

obtained the same bounds as before, but under weaker assumptions.

Theorem 2.2 (cf. Proposition 3 of Chatterjee et al. (2005)). Let W and W ′

be non-negative random variables such that L (W ′) = L (W ). Then, for any

constant c > 0,

(2.21) dTV

(
L (W ),Po(λ)

)
6 κc + cρ

where ρ satis�es the bounds

(2.22) ρ 6 λ−1/2
∑

i>2

i
∑

k∈Z

∣∣pk,k+i − pk+i,k

∣∣ 6 λ−1/2
∑

|i|>2

|i|EPi(W ),

for pk,j = P[W = k,W ′ = j] and the Pi are as before.

Proof. Taking expectation over (2.20) with respect to W , using (2.15) and

noting that ∆1G(W ) = f(W + 1) and ∆−1G(W ) = −f(W ), we obtain

E
{
λf(W + 1)−Wf(W )

}

= E
{(
λ− cP1(W )

)
f(W + 1)− (

W − cP−1(W )
)
f(W )

}

+ c
∑

i>2

E
{
Ii∆iG(W ) + I−i∆−iG(W )

}
,
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where, as before, Ii = I[W ′ −W = i]. Now, it is easy to see that

(2.23) E
{
Ii∆iG(W ) + I−i∆−iG(W )

}
=

∑

k∈Z
(pk,k+i − pk+i,k)∆iG(k)

Recalling the bound ‖f‖ 6 λ−1/2 for all solutions f of (2.20), and hence

|∆iG(W )| 6 |i|λ−1/2 for all i ∈ Z, (2.23) yields the �rst bound of (2.22).

Now, as pk,k+i = P[W = k]Pi(k), the second bound follows from the �rst.

¤

Under condition (2.16), Theorem 2.2 and estimate (2.19) clearly yield the

same bound. If (2.16) does not hold, exchangeability is not automatically im-

plied. Then the �rst bound of (2.22) is a measure of the non-exchangeability

of (W,W ′); if the pair is in fact exchangeable, this term vanishes and we

regain (2.16). The second bound in (2.22) is particularly useful if the jump

probabilities of larger jumps are small.

3. Discussion

The key to understand the present approach is the generator interpretation

introduced in Barbour (1988). Recall that

(AG)(x) = G′′(x)− xG′(x) = f ′(x)− xf(x)

is the generator of the Ornstein-Uhlenbeck di�usion, applied to the func-

tion G. Now assume that a Markov chain {X(n);n ∈ Z+} with station-

ary distribution L (W ) is given and let (W,W ′) = (X(0), X(1)), assuming

that the chain starts in its equilibrium. Construct a Markov jump process

Z = {Z(t); t > 0} by randomising the �xed steps of size 1 of the Markov

chain X and wait instead an exponentially distributed amount of time with

rate 1/λ. It is easy to see that, under the assumption of (2.1), the in�nites-

imal operator of Z is

(BG)(x) = lim
h→0

E
[
G(Z(h))

∣∣ Z(0) = x
]−G(x)

h
=
ExG(W ′)−G(x)

λ
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= −xG′(x) +
ExV 2

2λ
G′′(x)

+
∫ Ex

{
(V − t)2I[V > t > 0 or V < t < 0]

}

2λ
G(3)(x+ t)dt

where Ex denotes E
{· |W = x

}
and V = W ′−W . Thus, we in fact compare

the in�nitesimal operator of this jump process with the generator of the

Ornstein-Uhlenbeck di�usion.

The antisymmetric function F (w,w′) = (w′ − w)(f(w′) + f(w)) in fact

also (almost) calculates this in�nitesimal operator, but with the �rst step of

the Taylor's expansion already carried out.

In the case of Stein (1995) and Meckes (2006), we have a family of Markov

jump processes {Zm;m ∈ N} with in�nitesimal operators

(BmG)(x) =
ExG(Wm)−G(x)

εmϑ

where ε−1
m λ−1 are the jump rates and by letting ε → 0 we show that the

processes Zm converge to a di�usion process with in�nitesimal operator

(BG)(x) = (1 + 1
2λ
−1ExE)G′′(x)− xG′(x)

for some speci�c random variable E. This di�usion has the same linear

drift as the Ornstein-Uhlenbeck di�usion, but a non-constant di�usion rate.

Stein's method now allows us to state through the approaches in Stein (1995)

and Meckes (2006) that the less ExE �uctuates around zero, the nearer the

stationary distribution of the process is to the stationary distribution of

Ornstein-Uhlenbeck di�usion, that is, to the standard normal distribution.
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