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Abstract

Our goal in this paper is to establish inequalities for the moments of decreasing
variance residual life (DVRL) distributions. As a consequence we derive a new char-
acterization of exponentiality. Then we use two of these inequalities to construct
new tests for exponentiality versus DVRL. Pitman’s asymptotic relative efficiency
is employed to assess the performance of the tests. For some classes of life distribu-
tions our tests are better than, or well comparable with, other available tests. We
carried out numerical simulations and produced a table for the critical values of one
of the proposed test.

Key words: Life distributions, Decreasing variance residual life, Moment
inequalities, Characterization of exponentiality, Testing for exponentiality,
Asymptotic efficiency.

1 Introduction

Suppose X is a nonnegative random variable which is interpretted as the
lifetime of a device and has a distribution function F = {F (x), x ≥ 0}, so
its survival function is F̄ = 1 − F . We assume that all moments E[Xk], k =
1, 2, . . . are finite and use the standard notations µ = E[X] for the mean
value and σ2 = Var[X] for the variance of X. We need two characteristics,
the conditional mean µ(x) = E[X − x|X ≥ x] and the conditional variance
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σ2(x) = Var[X − x|X ≥ x], usually called the mean residual life and the
variance residual life.

We are interested in life distributions for which σ2(x), x ≥ 0 is decreasing and
use the notation DVRL. Our goal is to derive inequalities for combined mo-
ments of random variables similar to X and use them in constructing tests for
exponentiality versus the class DVRL. Among previous works in this direc-
tion we mention the papers by Hollander and Proschan (1975), Dallas (1981),
Launer (1984), Gupta (1987), Ahmad (2001), Abu-Youssef (2002), Ahmad and
Mugdadi (2004) and Chin and Min (2006).

In Section 2 we establish inequalities for the moments of lifetimes whose distri-
butions are in the class DVRL. As a corollary we derive a new characterization
of the exponential distribution. In Section 3 we use some of the inequalites to
construct new tests for exponentiality versus the class DVRL. In Section 4,
Pitman’s asymptotic relative efficiency is used to assess the performance of the
tests. The conclusion is that our tests are well comparable and in some cases
even better than other tests widely used in statistical practice. In Section 5
we describe how to apply the test. We use real data set as an illustartion of
our results.

2 Moment inequalities and characterization of exponentiality

The main assumption is that the random variable X ∼ F , with F ∈ DVRL,
has finite moments. We express this as follows:

mk := E[Xk] =

∞∫
0

xk dF (x) <∞ for k = 1, 2, . . . .

We are going to show that there are relations/inequalities involving the mo-
ments of X and combined moments of the random variables X1, X2 and Y ,
where X1 and X2 are independent copies of X and

Y = min{X1, X2}.

We can easily interpret Y as being the lifetime of a parallel system formed by
two elements each with lifetime X.

Theorem 2.1 Under the above assumptions and notations, the following in-
equalities hold:
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m1m2≤ 4E

[
X2Y

2
]
− 8

3
E

[
Y 3

]
, (2.1)

m2
2≤

16

3
E

[
X2Y

3
]
− 4E

[
Y 4

]
. (2.2)

More generally, for any integer k ≥ 2, we have:

k

4
E

[
X2

1X
2
2Y

k−1
]
≤ (k − 1)E

[
X1X

2
2Y

k
]
− k(k − 1)

2(k + 1)
E

[
X2

2Y
k+1

]
−k(k − 1)

(k + 1)
E

[
X1X2Y

k+1
]
+

4k(k − 1)(k + 1) + 8

(k + 1)(k + 2)
E

[
X2Y

k+2
]

−8 + k(k − 1)(k + 1)

(k + 1)(k + 3)
E

[
Y k+3

]
. (2.3)

Proof. We prove the general inequality (2.3), assuming k ≥ 2. Recall first that
the functions µ(x) and σ2(x) can be expressed in terms of F , for all x > 0
such that F (x) < 1, as follows:

µ(x) =
1

F̄ (x)

∞∫
x

F̄ (u) du, σ2(x) =
2

F̄ (x)

∞∫
x

∞∫
y

F̄ (u) du dy − µ2(x).

Clearly, µ(0) = µ and σ2(0) = σ2.

Let us introduce two functions, v(x) and V (x), x ≥ 0, where

v(x) =

∞∫
x

F̄ (z) dz and V (x) =

∞∫
x

v(u) du, x ≥ 0.

We need now the well-known fact that F ∈ DVRL if and only if the relation
σ2(x) ≤ µ2(x) holds for x ≥ 0. It can be shown that this is equivalent to the
following:

F ∈ DVRL if and only if F̄ (x)V (x) ≤ v2(x), for x ≥ 0. (2.4)

We multiply both sides of the inequality in (2.4) by xk, integrate with respect
to x over the interval (0,∞) and introduce the notations I1 and I2 thus getting

I1 :=

∞∫
0

xkF̄ (x)V (x) dx ≤
∞∫
0

xkv2(x) dx := I2. (2.5)

3



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Integrating I1 by parts and using the fact that V ′(x) = −v(x) gives this:

I1 =

∞∫
0

xkF̄ (x)V (x) dx=−xk v(x)V (x)
∣∣∣∣∞
0
− 1

2
k xk−1 V 2(x)

∣∣∣∣∞
0
− I2

+
1

2
k(k − 1)

∞∫
0

xk−2V 2(x) dx. (2.6)

Now, the first two terms in the right-hand-side of (2.6) are equal to zero. What
remains is combined with (2.5) thus getting

I1 = −I2 +
1

2
k(k − 1)

∞∫
0

xk−2V 2(x) dx ≤ I2.

This implies that

∞∫
0

xk−2 V 2(x) dx ≤ 4 I2
k(k − 1)

. (2.7)

The next is to work out the integral in the left-hand-side of (2.7). We find

∞∫
0

xk−2V 2(x) dx=
1

4
E

 min{X1,X2}∫
0

xk−2(X1 − x)2(X2 − x)2 dx


=

1

4(k − 1)
E

[
X2

1X
2
2Y

k−1
]
− 1

k
E

[
X1X

2
2Y

k
]

+
1

2(k + 1)
E

[
X2

2Y
k+1

]
+

1

k + 1
E

[
X1X2Y

k+1
]

− 4

k + 2
E

[
X2Y

k+2
]
+

1

k + 3
E

[
Y k+3

]
. (2.8)

Similarly, integrating I2 by parts, one gets

I2 =

∞∫
0

xkv2(x) dx=
2

k + 1

∞∫
0

xk+1v(x)F̄ (x) dx

=
2

k + 1
E

min{X1,X2}∫
0

xk+1(X2 − x) dx

=
2

(k + 1)(k + 2)
E

[
X2Y

k+2
]
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− 2

(k + 1)(k + 3)
E

[
Y k+3

]
. (2.9)

hence the required inequality (2.3) follows from relations (2.7) – (2.9).

Let us work a little more with the integrals I1 and I2, see (2.5). Since v(∞) =
0, V (∞) = 0 and since all moments of X and of F are finite, we have that
limx→∞ xk v(x)V (x) = 0 for k = 0, 1, 2, . . . We also have that v(0) = µ =
m1, V (0) = 1

2
m2. Notice that inequality (2.5) is true for any nonnegative k.

We take k = 0 and then k = 1 and work either directly with (2.5), or use
(2.6) whose right-hand-side becomes simple. This together with (2.9) can be
summarized as follows:

If k = 0, then I1 = 1
2
m1m2 − I2, I2 = E[X2 Y

2]− 2
3
E[Y 3], hence we arrive at

(2.1). If k = 1, then I1 = 1
2
V 2(0)−I2 = 1

2
· 1

4
m2

2−I2, I2 = 1
3
E[X2 Y

3]− 1
4
E[Y 4]

and we arrive at (2.2).

This completes the proof of Theorem 2.1.

As a consequence, we derive a new characterization property of the exponential
distribution.

Theorem 2.2 Suppose F is the distribution function of a nonnegative random
variable X with finite moments mk, k = 1, 2, . . . and such that the conditional
variance σ2(x) = Var[X − x|X ≥ x], x ≥ 0 is a decreasing fucntion. Let X1

and X2 be independent copies of X and Y = min{X1, X2}. Then:

(a) F is exponential if and only if m1m2 = 4E [X2Y
2]− 8

3
E[Y 3].

(b) F is exponential if and only if m2
2 = 16

3
E [X2Y

3]− 4E[Y 4].

Hint. For the ‘if’ part, let us assume that X ∼ Exp(λ). Then Y ∼ Exp(2λ),
however we keep in mind that Y is not independent of X1 and X2. We easily
find m1, m2, E[Y 3], E[Y 4] and use conditioning arguments, or another way,
to calculate E[X2Y

2] and E[X2Y
3]. A substitution shows that the equalities

in (a) and (b) hold true. For the ‘only if’ part, we start with the two equalities
in (a) and (b) and follow the proof of the inequalities (2.1) and (2.2) thus
arriving at relation (2.4). It remains only to mention that equality in (2.4)
holds only if F is exponential, see e.g. Dallas (1981).

5
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3 Application to hypothesis testing

3.1 Construction of tests versus DVRL

Suppose the lifetime X of a device has a distribution function F which is
unknown. We have in our disposal a random sample X1, X2, . . . , Xn of inde-
pendent observations from F . We want to test the null hypothesis H0 against
its alternative H1, where

H0 : F is exponential, versus
H1 : F belongs to the class DVRL and F is not exponential.

We suggest to use the first two inequalities, (2.1) and (2.2), established in
Theorem 2.1. For this purpose we introduce the following two quantities:

M (1) = 4E
[
X2Y

2
]
− 8

3
E

[
Y 3

]
−m1m2, (3.1)

M (2) =
16

3
E

[
X2Y

3
]
− 4E

[
Y 4

]
−m2

2. (3.2)

According to Theorem 2.2, if F is exponential, this is hypothesis H0, we have
M (1) = 0 and M (2) = 0. Hence, under hypothesis H1, in view of (2.1) and
(2.2), we have M (1) > 0 and M (2) > 0. This motivates us to use the above
quantities M (1) and M (2) as measures of departure of F from the exponential
distribution.

We use the sampleX1, . . . , Xn and define Yij = min{Xi, Xj}, i, j = 1, 2, . . . , n.
Since we do not know F , and hence M (1) and M (2), we have to replace them by
appropriate estimators, say M̂ (1)

n and M̂ (2)
n , based on the sample X1, . . . , Xn.

We take

M̂ (1)
n =

1

n(n− 1)

∑ ∑
i6=j

{
4XjY

2
ij −

8

3
Y 3

ij −XiX
2
j

}
, (3.3)

M̂ (2)
n =

1

n(n− 1)

∑ ∑
i6=j

{
16

3
XjY

3
ij − 4Y 4

ij −X2
i X

2
j

}
. (3.4)

It is interesting to note the difference between the pair M (1), M̂ (1)
n and the

pair M (2), M̂ (2)
n . Clearly, M (1) involves combined moments of total order equal

to 3, while the total order of combined moments in M (2) is equal to 4. The
estimators M̂ (1)

n and M̂ (2)
n involve empirical moments of total order equal to 3

6
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and 4, respectively. It can be shown that M̂ (1)

n
P→ M (1) and M̂ (2)

n
P→ M (2) as

n→∞, where
P→ stands for convergence in probability.

Let us propose now the test statistics. If the mean value µ of F is known to us,
we use M̂ (1)

n /µ3 and M̂ (2)
n /µ4 as scale-invariant test statistics. If µ is unknown,

we replace it by the sample mean X̄ and in this case the scale-invariant test
statistics are denoted by T̂ (1)

n and T̂ (2)
n and defined by

T (1)
n = M̂ (1)

n /X̄3 and T (2)
n = M̂ (2)

n /X̄4. (3.5)

3.2 Asymptotic properties

We follow the general approach of using U -statistics. For any two variables,
Xi and Xj, from the sample X1, X2, . . . , Xn of independent observations, we
define the functions

φ(1)(X1, X2) = 4X2Y
2 − 8

3
Y 3 −X1X

2
2 , (3.6)

φ(2)(X1, X2) =
16

3
X2Y

3 − 4Y 4 −X2
1X

2
2 . (3.7)

The functions φ(1)(X1, X2) and φ(2)(X1, X2) are not symmetric and we we need
their symmetrization. We take

φ̄(1)(X1, X2) =
1

2

{
φ(1)(X1, X2) + φ(1)(X2, X1)

}

and similarly we define φ̄(2)(X1, X2) in terms of φ(2)(X1, X2). Then the test
statistics M̂ (1)

n and M̂ (2)
n are equivalent to U -statistics U (1)

n and U (2)
n of order

2, where

U (1)
n =

1(
n
2

) n∑
i<j

φ̄(1)(Xi, Xj), U (2)
n =

1(
n
2

) n∑
i<j

φ̄(2)(Xi, Xj). (3.8)

Based on classical results of Hoeffding’s type, see Serfling (1980), Randles
(1982) or Severini (2005), the following two theorems summarize the asymp-
totic properties of T (1)

n and T (2)
n as defined by (3.5). We use also the notations

T (1) = M (1)/µ3 and T (2) = M (2)/µ4.

Theorem 3.1 If n→∞, then
√
n(T (1)

n −T (1)) is asymptotically normal with
mean 0 and variance B2

1 , where

7
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B2
1 =

1

µ6
Var

{
4

X1∫
0

∞∫
y

yu dF (u) dy − 2

3
X3

1 F̄ (X1) + 4X1

X1∫
0

u2 dF (u)

−16

3

X1∫
0

u3 dF (u)−X2
1 m1 −X1m2

}
. (3.9)

Theorem 3.2 If n→∞, then
√
n(T (2)

n −T (2)) is asymptotically normal with
mean 0 and variance B2

2 , where

B2
2 =

1

µ8
Var

{
8

X1∫
0

∞∫
y

y2u dF (u) dy − 4

3
X4

1 F̄ (X1) +
8

3
X1

X1∫
0

u3 dF (u)

−4

X1∫
0

u4 dF (u)−X2
1 m2

}
. (3.10)

Proof. The proof of Theorem 3.1 and Theorem 3.2 is based on the same

idea. First, as n → ∞, we have X̄
P→ µ, M̂ (1)

n
P→ M (1), M̂ (2)

n
P→ M (2) and we

derive that also T (1)
n

P→ T (1), T (2)
n

P→ T (2). We use now results from Serfling
(1980) and Randles (1982) to conclude that, as n → ∞, T (1)

n and M̂ (1)
n /µ3,

have asymptotically the same normal distribution N(0, B2
1), and similarly T (2)

n

and M̂ (2)
n /µ4, have asymptotically the same normal distribution N(0, B2

2). The
variance B2

i , i = 1, 2, has the following explicit form: B2
i = m2 Var[ψ(i)(X1)],

where m = 2, is the order of the U -statistics, see (3.8), and

ψ(i)(X1) =
1

2

{
E[φ(i)(X1, X2)|X1] + E[φ(i)(X2, X1)|X1]

}
, i = 1, 2. (3.11)

The next step is to use (3.11) and the functions φ(i)(X1, X2) defined by (3.6)
and (3.7). After some transformations we find that

ψ(1)(X1) =
1

2

{
8

X1∫
0

∞∫
y

yu dF (u) dy − 4

3
X3

1 F̄ (X1) + 4X1

X1∫
0

u2 dF (u)

−16

3

X1∫
0

u3 dF (u)−X2m1 −X1m2

}
, (3.12)

ψ(2)(X1) =
1

2

{
16

X1∫
0

∞∫
y

y2u dF (u) dy − 8

3
X4

1 F̄ (X1) +
16

3
X1

X1∫
0

u3 dF (u)

−8

X1∫
0

u4 dF (u)− 2X2
1 m2

}
. (3.13)

8
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Finally, taking the variance of (3.12), we arrive at the value B2

1 as given in
(3.9). Similarly, B2

2 , given in (3.10) is obtained by taking the variance of (3.13).

Corollary If the null hypothesis H0 is true, e.g., the life distribution F is
exponential with parameter 1, then, as n → ∞, the limiting distribution of√
n(T (i)

n − T (i)), i = 1, 2, is normal, N(0, σ2
i ), with null-variances σ2

1 = 4/3
and σ2

2 = 56/27.

Hint. Using the explicit expressions for the exponential distribution function
and its density, and after a series of calculations (we do not include here the
technical details), we find that σ2

1 = 4/3 and σ2
2 = 56/27.

4 Pitman’s asymptotic efficiency

To compare the goodness of the test statistics T (i)
n , i = 1, 2, we use the concept

of Pitman’s asymptotic efficiency (PAE); see e.g. Nikitin (1995). Here are some
details. Let F (x; θn) be a sequence of alternative distribution functions, where
x > 0, θn = θ0 + c/

√
n and c is a fixed nonnegative number. If c = 0, then

θ0 will correspond to the exponential distribution. We assume that F has a
density function, f , and further, that f is smooth.

If T is a test statistic, its PAE is given by

PAE(T, F (θ0)) =
1

σ0

lim
n→∞

{
d

dθ
E[Tn]

}
, (4.1)

where σ2
0 is the asymptotic variance corresponding to the null hypothesis.

Hence for our tests M̂ (1)
n and M̂ (2)

n , see (3.3) and (3.4), we take n → ∞, in
which case θ → θ0, thus finding the following expressions:

lim
θ→θ0

d{M̂ (1)
n (θ)}
dθ

= 8

∞∫
0

∞∫
x

xu
{
F̄ ′(x, θ0)f(u, θ0) + F̄ (x, θ0)f

′(u, θ0)
}

du dx

−16

∞∫
0

x2F̄ (x, θ0)F̄
′(x, θ0) dx− 2

∞∫
0

F̄ ′(x, θ0) dx

−2

∞∫
0

xF̄ ′(x, θ0) dx, (4.2)

9
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lim
θ→θ0

d{M̂ (2)
n (θ)}
dθ

= 16

∞∫
0

∞∫
x

x2u
{
F̄ ′(x, θ0)f(u, θ0) + F̄ (x, θ0)f

′(u, θ0)
}

du dx

−32

∞∫
0

x3F̄ (x, θ0)F̄
′(x, θ0) dx− 8

∞∫
0

xF̄ ′(x, θ0) dx. (4.3)

Pitman’s asymptotic relative efficiency is usually calculated for certain spe-
cific tests and specific families of life distributions. As an illustration we have
chosen three distributions widely used in reliability analysis and calculated
their PAE’s. The distributions of interest are:

(a) Linear failure rate distribution F1: F̄1(x; θ) = e−x−(θ/2)x2
, x > 0, θ > 0.

(b) Weibull distribution F2: F̄2(x; θ) = e−xθ
, x > 0, θ > 1.

(c) Makeham distribution F3: F̄3(x; θ) = e−x−θ(x+e−x), x > 0, θ > 0.

It is worth mentioning that the Weibull distribution with parameter θ > 1 has
a decreasing VRL, and this property holds also for the two others.

The quality of the tests T (1)
n , T (2)

n is best seen when comparing them with other
available tests. A well-known and widely used test has been described by Hol-
lander and Proschan (1975). These authors proposed a test, V ∗, for exponen-
tiality versus DMRL (decreasing mean residual life). Recently, Abu-Youssef
(2002) proposed a test ∆̂n for DMRL based on a moment inequality. The
results of our calculations of the Pitman asymptotic efficiency, together with
the calculations of Hollander and Proschan (1975) and Abu-Youssef (2002)
are summarized in Table 1.

These calculations clearly indicate that the tests proposed in this paper are
well comparable with other tests widely used in statistical practice. In some
cases, e.g. for life distributions with linear failure rate, the test T (2)

n is better
than other tests.

Table 1
Pitman’s asymptotic efficiency (PAE) of V ∗, ∆̂n, T

(1)
n and T

(2)
n

Distribution V ∗ ∆̂n T
(1)
n T

(2)
n

Linear failure rate, F1 0.906 0.919 0.866 1.389

Weibull, F2 0.846 0.710 0.532 0.638

Makeham, F3 0.242 0.201 0.143 0.153

Remark. Comparing the two tests T (1)
n and T (2)

n we see that T (2)
n is better.

This can be explained by the fact that they both involve combined moments of
X1, X2 and Y , however for T (2)

n the total order of moments is 4, while for T (1)
n

the order is 3. This observations suggests to look for tests based on combined

10
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moments of a higher total order with the expectation to get a better efficiency.
We conjecture that this can be achieved by using the inequality (2.3) for
k = 2, 3 or more. The test statistics T (k)

n will be of the form T (k)
n = M̂ (k)

n /X̄k+2,
where

M̂ (k)
n =

1

n(n− 1)

∑ ∑
i6=j

[
XiX

2
j Y

k
ij −

k

2(k + 1)
X2

j Y
k+1
ij − k

k + 1
XiXjY

k+1
ij

+
4k(k + 1) + 8

(k + 1)(k + 2)
XjY

k+2
ij − 8 + k(k + 1)

(k + 1)(k + 3)
Y k+3

ij −
kX2

1X
2
2Y

k−1
ij

4(k − 1)

]
.

5 Applying the test

To carry out the test, we use the available sample X1, . . . , Xn and calculate,
for i = 1 and i = 2, the value tn =

√
nT (i)

n /σi, where σ2
i is the variance of the

distribution corresponding to the null hypothesis. Now given α, a significance
level, we compare tn and the normal variate value z1−α. If tn exceeds z1−α,
then we reject the hypothesis H0. Otherwise, we accept the null hypothesis
H0.

Comparing T (1)
n and T (2)

n , we may suggest that the test T (2)
n is better. To nu-

merically illustrate the test T (2)
n , we have simulated the lower and the upper

percentile points for the significance level α = 0.01, 0.05 and 0.10. The calcu-
lation of the test T (2)

n is based on 5, 000 simulated samples from the standard
exponential distribution. Table 2 shows the critical values for the test statistic
T (2)

n .

As an illustration, we have estimated the power of T (2)
n when alternatives

are the Linear failure rate and the Weibull distributions. Our findings are
summarized in Table 3.

Finally, as an illustration, we consider a real data set representing 40 patients
suffering from blood cancer. We use the data as given in Hindi and Abouam-
moh (2001). The ordered life times (in days) are provided in Table 4. Based
on this data set, the value of the test statistic T (2)

n is equal to 0.3168. This
value is greater than the critical value in Table (2) at 90% upper percentile,
hence, we reject the null hypothesis H0 in favor of the alternative H1. This
means that the data set comes from DVRL distribution. This is agreeing with
the conclusion of Hendi and Abouammoh (2001).
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Table 2
Critical values for the test statistic T

(2)
n

n 0.01 0.05 .0.10 0.90 0.95 0.99

10 -1.4908 -0.8347 -0.5621 0.3653 0.4471 0.6366

15 -1.4868 -0.8082 -0.5085 0.3578 0.4236 0.5758

25 -1.4791 -0.7950 -0.4761 0.3382 0.3957 0.5188

30 -1.4241 -0.6750 -0.4190 0.3331 0.3878 0.5106

35 -1.3629 -0.6738 -0.4271 0.3224 0.3701 0.4739

40 -1.3617 -0.6627 -0.4102 0.3122 0.3670 0.4594

45 -1.3020 -0.6392 -0.3929 0.3032 0.3523 0.4467

50 -1.2127 -0.6026 -0.3692 0.2924 0.3412 0.4223

60 -1.1737 -0.5789 -0.3737 0.2854 0.3266 0.4088

70 -1.1349 -0.5645 -0.3481 0.2697 0.3206 0.4040

80 -1.1220 -0.5271 -0.3275 0.2596 0.3018 0.3786

90 -0.9280 -0.5000 -0.3130 0.2511 0.2934 0.3709

100 -0.8508 -0.4552 -0.2989 0.2389 0.2704 0.3527

Table 3
Power estimates for the test statistic T

(2)
n

Distribution Parameter Sample size n

θ 20 30 40

F1 1 0.973 0.977 0.975

Linear failure rate 2 0.994 0.998 1.000

3 1.000 1.000 1.000

F2 1 0.944 0.945 0.950

Weibull 2 0.999 1.000 1.000

3 1.000 1.000 1.000
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Table 4
Life times for 40 patients suffering blood cancer

115 181 255 418 441 461 516 739 743 789 807 865

924 983 1024 1062 1063 1165 1191 1222 1222 1251 1277 1290

1357 1369 1408 1455 1478 1549 1578 1578 1599 1603 1605 1696

1735 1799 1815 1852
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