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Abstract

A transformation kernel density estimator that is suitable for heavy-tailed distri-
butions is presented. Using a double transformation, the choice of the bandwidth
parameter becomes straightforward. An illustration and simulation results are pre-
sented.

Key words: Heavy-tailed distribution, bandwith choice

1 Introduction

Kernel density estimation of heavy-tailed distributions has been studied by
several authors (Buch-Larsen et al., 2005, Clements et al., 2003 and Bolancé
et al., 2003). They have all proposed estimators based on a transformation of
the original variable. The transformation method proposed initially by Wand
et al. (1991) is very suitable for asymmetrical variables, it was based on the
shifted power transformation family. Some alternative transformations such as
the one based on a generalization of the Champernowne distribution have been
analyzed and simulation studies have shown that it is preferable to other trans-
formation density estimation approaches for distributions that are Pareto-like
in the tail. In the existing contributions, the choice of the bandwidth parameter
in transformation kernel density estimation is still a problem, so we now aim
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at finding a new estimator for which the bandwidth choice is straightforward.
One way of undergoing bandwidth choice is to implement the transforma-
tion approach so that transformation leads to a beta distribution, then use
existing theory to optimize bandwidth parameter choice on beta distributed
data and backtransform to the original scale. The main drawback is that the
beta distribution may be very steep in the domain boundary, which causes
numerical instability when the derivative of the inverse distribution function
is needed for the backward transformation. In this work we propose to trun-
cate the beta distribution and use the truncated version at transformation
kernel density estimation. Thus, the derivative is smaller and can be inverted
without causing numerical instability. The results on the optimal choice of
the bandwidth for kernel density estimation of beta density are used in the
truncated version directly. In the simulation study we see that our approach
produces very good results for heavy-tailed data. Our results are particularly
relevant for applications in insurance, where the claims amounts are analyzed
and usually small claims (low cost) coexist with only a few large claims (high
cost).

An alternative way to obtain a kernel density estimator for heavy-tailed dis-
tributions is using the variable kernel estimator, which consists in selecting
a different bandwidth parameter depending on the point where the density
is being estimated. Several authors have studied the variable kernel estima-
tor. For instance, Jones (1990) made an extensive revision of this method and
more recently Wu et al. (2007) proposed a multivariate version. In our work we
study transformation kernel estimation, which is equivalent to variable kernel
estimation where we guarantee that the resulting density integrates to one.

Let f be a density function, Terrell (1990) and previously Terrell and Scott
(1985) analyzed several density families that minimize functionals such as
∫ {

f (p) (x)
}2

dx, where superscript (p) refers to the p-th derivative of the den-
sity function. We will use these families in the context of transformed kernel
density estimation. The results on those density families are very useful to
improve the properties of the transformation kernel density estimator.

Given a sample X1, ..., Xn of independent and identically distributed (iid)
observations with density function f , the classical kernel density estimator is:

f̂ (x) =
1

n

n∑

i=1

Kb (x − Xi) , (1)

where b is the bandwidth or smoothing parameter and Kb (t) = K (t/b) /b is
the kernel. In Silverman (1986) or Wand and Jones (1995) one can find an
extensive revision of classical kernel density estimation.

An error distance between the estimated density f̂ and the theoretical density
f that has widely been used in the analysis of the optimal bandwidth b is the
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mean integrated squared error (MISE):

E
{∫ (

f (x) − f̂ (x)
)2

dx
}

.

It has been shown (see, for example, Silverman, 1986, chapter 3) that the
MISE is asymptotically equivalent to A − MISE:

1

4
b4 (k2)

2
∫

{f ′′ (x)}
2
dx +

1

nb

∫
K (t)2 dt,

where k2 =
∫

t2K (t) dt. If the second derivative of f exists (and we denote it
by f ′′), then

∫
{f ′′ (x)}2 dx is a measure of the degree of smoothness because

the smoother the density, the smaller this integral is. From the expression for
A−MISE it follows that the smoother f , the smaller the value of A−MISE.

We organize our presentation as follows. In section 2 we propose the Cham-
pernowne-inverse beta transformation in kernel density estimation. In section
3 we describe the estimation procedure. Finally, simulation results and a data
study are shown.

2 Champernowne-inverse beta transformation in kernel density es-

timator

Let us consider the beta density function Beta (α, β) defined on [θ, θ + D],
parametrized as follows (Johnson et al., 1995):

(x − θ)α−1 (θ + D − x)β−1

B (α, β)Dα+β−1
, θ ≤ x ≤ θ + D,

where θ is a location parameter, D is a scale parameter, α and β are shape
parameters, B (α, β) = Γ (α) Γ (β) /Γ (α + β) and Γ (·) is the Euler Gamma
function.

Terrell (1990) showed that the beta distribution with parameters θ = −1,
D = 2, α = β = 4 minimizes

∫
{f ′′ (x)}2 dx within the set of all densities with

a given known variance. The Beta (4, 4) distribution will be used throughout
our work. Its pdf and cdf are:

g (x) =
35

32

(
1 − x2

)3
,−1 ≤ x ≤ 1,

G (x) =
1

32

(
16 − 29x + 20x2 − 5x3

)
(x + 1)4 . (2)

3
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Terrell and Scott (1985, Lemma 1) showed that Beta (3, 3) defined on the
domain (−1/2, 1/2) minimizes the functional

∫
{f ′′ (x)}2 dx within the set of

beta densities with same support.

We assume that a transformation exists so that T (Xi) = Zi i = 1, ..., n can be
assumed to have been produced by a random variable z with a Uniform(0, 1)
distribution. We can again transform the data so that G−1 (Zi) = Yi i = 1, ..., n
is a random sample from a random variable y with a Beta(4, 4) distribution,
whose pdf and cdf are defined in (2).

In this work, we use a parametric transformation T (·), namely the modified
Champernowne cdf as proposed by Buch-Larsen et al. (2005):

Tα,M,c(x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
x ≥ 0 (3)

with parameters α > 0, M > 0 and c ≥ 0.

Let us define the kernel estimator of the density function for the transformed
variable:

ĝ (y) =
1

n

n∑

i=1

Kb (y − Yi) , (4)

which should be as close as possible to a Beta(4, 4). We can obtain an ex-
act value for the bandwidth parameter that minimizes A − MISE of ĝ. If
K (t) = (3/4) (1 − t2) 1 (|t| ≤ 1) is the Epanechnikov kernel, where 1 (·) equals
one when the condition is true and zero otherwise, then we show that the
optimal smoothing parameter for ĝ if y follows a Beta(4, 4) is:

b = k
− 2

5
2

(∫ 1

−1
K (t)2 dt

) 1
5

(∫ 1

−1
{g′′ (y)}

2
dy

)− 1
5

n− 1
5 =

(
1

5

)− 2
5

(
3

5

) 1
5

(35)−
1
5 n− 1

5 ,

Finally, in order to estimate the density function of the original variable, since
y = G−1 (z) = G−1 {T (x)}, the transformation kernel density estimator is:

f̂ (x) = ĝ (y)
[
G−1 {T (x)}

]′
T ′ (x) = (5)

=
1

n

n∑

i=1

Kb

(
G−1 {T (x)} − G−1 {T (Xi)}

) [
G−1 {T (x)}

]′
T ′ (x) .

The estimator in (5) asymptotically minimizes MISE.

The properties of the transformation kernel density estimation (5) follow di-
rectly from the properties in finite sample of the kernel density estimation for
the pdf of the Beta(4, 4). The expectation and variance are:

E

[
f̂(x)

]
=

[
G−1 {T (x)}

]′
T ′ (x) E

[
ĝ(G−1 {T (x)})

]
(6)

4
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V

[
f̂(x)

]
=

([
G−1 {T (x)}

]′
T ′ (x)

)2

V

[
ĝ(G−1 {T (x)})

]
. (7)

Besides, since g is known (we impose a beta distribution), it follows that (see,
for example, Wand and Jones, 1992, p.20) E [ĝ (y)] =

∫
K (t) g (y − bt) dt.

When the transformation in kernel estimation is based on a Beta (4, 4) distri-
bution and K (·) is the Epanechnikov kernel the expectation is:

E [ĝ (y)] = B [ĝ (y)] + g (y)

=
1

96
b2

(
5b4 − 27b2 + 135b2y2 + 315y4 − 378y2 + 63

)
+

35

32

(
1 − y2

)3
,

where B [·] is the bias. If n → ∞ and consequently b → 0, we see that
B [ĝ (y)] → 0 that is of order b2.

Terrell (1990) showed that since the Beta(4, 4) distribution is estimated by
ĝ (y) and this estimator has some optimality properties, then it follows that
the properties of the transformation kernel estimation defined in (5) inherit
the optimality. Nevertheless, some difficulties arise when implementing the
transformation kernel estimator defined in (5), because it depends on the
estimator of the kernel density estimator of the transformed variable ĝ (y).
When the density to be estimated is symmetric, defined on a bounded interval
and its values decrease rapidly to zero in the boundaries, then the kernel
estimation overestimates the density in the upper and lower bounds of the
domain of the random variable. If we use a bounded the Epanechnikov kernel
that is defined on the [−1, 1] interval, the expectation in the boundaries is
negative and since the theoretical density in the extremes is zero, we deduce
that the estimated density is above the true one:

E [ĝ (1)] = E [ĝ (−1)] =
∫ 1/b

−1
K (t) g (1 − bt) dt

=−
(

5

192
b6 +

105

512
b5 +

9

16
b4 +

35

64
b3

)

Besides, the derivative [G−1 {T (x)}]
′
is very large for the extreme values of

the domain of the beta distribution and therefore, the bias of the transformed
kernel density estimator defined in (6) increases enormously.

Since we want to avoid the difficulties of the estimator defined in (5), we
will construct the transformation so that we avoid the extreme values of the
beta distribution domain. An easy way to accomplish this is that the random
variable z, which results form the initial transformation z = T (x), is corrected
in such a way that its distribution is uniform on an interval that it strictly
included in the (0, 1) interval.

5
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3 Estimation procedure

Let z = T (x) be a Uniform(0, 1), we define a new random variable in the
interval [1 − l, l], where 1/2 < l < 1. The values for l should be close to 1. The
new random variable is:

z∗ = T ∗ (x) = (1 − l) + (2l − 1)T (x) . (8)

We will discuss later the value of l.

The pdf of the new variable y∗ = G−1 (z∗) is proportional to the Beta(4, 4)
pdf, but it is in [−a, a] interval, where a = G−1 (l). Finally, our proposed
transformation kernel density estimation is:

f̂ (x) =
ĝ (y∗) [G−1 {T ∗ (x)}]

′
T ∗′ (x)

(2l − 1)
= ĝ (y∗)

[
G−1 {T ∗ (x)}

]′
T ′ (x) (9)

=
1

n

n∑

i=1

Kb

(
G−1 {T ∗ (x)} − G−1 {T (Xi)}

) [
G−1 {T ∗ (x)}

]′
T ′ (x)

The value of A−MISE associated to the kernel estimation ĝ (y∗), where the
random variable y∗ is defined on an interval that is smaller than Beta(4, 4)
domain is:

A − MISEa =
1

4
b4 (k2)

2
∫ a

−a
{g′′ (y)}

2
dy +

1

nb

∫ a

−a
g (y) dy

∫
K (t)2 dt. (10)

And finally, the optimal bandwidth parameter based on the asymptotic mean
integrated squared error measure for ĝ (y∗) is:

bopt
g = k

− 2
5

2

(∫ 1

−1
K (t)2 dt

∫ a

−a
g (y)2 dy

)1
5

(∫ a

−a
{g′′ (y)}

2
dy

)− 1
5

n− 1
5 (11)

=
(

1

5

)− 2
5

(
3

5

(
−

5

16
a7 +

21

16
a5 −

35

16
a3 +

35

16
a
)) 1

5

×
(

35

128
a

(
−1260a2 + 2898a4 − 2700a6 + 875a8 + 315

))− 1
5

n− 1
5 .

The difficulty that arises when implementing the transformation kernel esti-
mation expressed in (9) is the selection of the value of l. This value can be
chosen subjectively and in the simulation study below we give results for some
possible values of l.

Let Xi, i = 1, ..., n, be iid observations from a random variable with an un-
known density f . The following describes in detail the transformation kernel

6
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density estimator of f . The resulting transformation kernel density estimator
of f is called KIBMCE (kernel inverse beta modified Champernowne estima-
tor).

(1) Calculate the parameters
(
α̂, M̂ , ĉ

)
of the modified Champernowne dis-

tribution defined in (3). We use the same method as proposed by Buch-
Larsen et al. (2005) which is based on maximum likelihood estimation.

(2) Transform the data set Xi, i = 1, ..., n, with the transformation function,
T :

Zi = T
α̂,M̂,̂c

(Xi), i = 1, ..., n.

The transformation function transforms data into the interval (0, 1), and
the parameter estimation is designed to make the transformed data as
close to a uniform distribution as possible.

(3) We fix l equal to 99% and 98%.
(4) Rescale the transformed variable in step 2, so that instead of being defined

on the (0, 1) interval, it is defined on the (1 − l, l) interval:

T ∗
α̂,M̂,̂c

(Xi) = Z∗
i = (1 − l) + (2l − 1)Zi, i = 1, ..., n.

(5) Transform de data Z∗
i with transformation function, Yi = G−1 (Z∗

i ), where
G is the Beta(4, 4) distribution cdf. The density of the transformed vari-
able is not defined on the same domain as Beta(4, 4) distribution, its
domain depends on the value of l. In other words, the domain Beta (4, 4)
distribution defined in (2) is [−1, 1] and the density of the transformed
variable is defined on the interval [−a, a], where a = G−1 (l) < 1.

(6) Calculate the classical kernel density estimator on the transformed data,
Yi, i = 1, ..., n :

ĝ (y) =
1

n

n∑

i=1

Kb (y − Yi) , (12)

where Kb(·) = 1
b
K(·) and K(·) is the kernel function, we use the Epanech-

nikov kernel.
(7) The classical kernel density estimator of the transformed data set results

in the KIBMCE estimator on the transformed scale. Therefore the esti-
mator of the density of the original data set, Xi, i = 1, ..., n is calculated
by transforming the smoothed distribution of the transformed data with

G
(
T ∗−1

α̂,M̂,̂c
(z)

)
= x, the expression of the resulting KIBMCE estimator of

f therefore is:

f̂(x) =
1

n

n∑

i=1

Kb(T
∗
α̂,M̂ ,̂c

(x) − T ∗
α̂,M̂ ,̂c

(Xi))
(
G−1

)′
(z∗) T ′

α̂,M̂ ,̂c
(x). (13)

7
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4 Simulation study

This section presents a comparison of our inverse beta transformation method
with the results presented by Buch-Larsen, et al. (2005) based only on the
modified Champernowne distribution. Our objective is to show that the second
transformation, that is based on the inverse of a Beta distribution, improves
density estimation.

In this work we analyze the same simulated samples as in Buch-Larsen, et
al. (2005), which were drawn from four distributions with different tails and
different shapes near 0: lognormal, lognormal-Pareto, Weibull and truncated

logistic. The distributions and the chosen parameters are listed in Table 1.

Table 1: Distributions in simulation study.

Distribution Density Parameters

Mixture of
pLognormal(µ, σ) and
(1 − p)Pareto(λ, ρ, c)

f(x) = p 1√
2πσ2x

e−
(log x−µ)2

2σ2 +

(1 − p)(x − c)−(ρ+1)ρλρ

(p, µ, σ, λ, ρ, c)

= (0.7, 0, 1, 1, 1,−1)

= (0.3, 0, 1, 1, 1,−1)

= (0.1, 0, 1, 1, 1,−1)

= (0.9, 2.5, 0.5, 1, 1,−1)

Lognormal(µ, σ) f(x) = 1√
2πσ2x

e−
(log x−µ)2

2σ2 (µ, σ) = (0, 0.5)

Weibull(γ) f(x) = γx(γ−1)e−xγ

γ = 1.5

Normal(µ, σ) f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 (µ, σ) = (5, 1)

Buch-Larsen, et al. (2005) evaluate the performance of the KMCE estimators
compared to the estimator described by Clements, et al. (2003) the estimator
described by Wand, et al. (1991) and the estimator described by Bolancé,
et al. (2003). The Champernowne transformation substantially improve the
results from previous authors. Here we see that if the second transformation
based on the inverse beta transformation improves the results presented in
Buch-Larsen, et al. (2005), this means that the double-transformation method
presented here is a substantial gain with respect to existing methods.

We measure the performance of the estimators by the error measures based
in L1 norm, L2 norm and WISE. This last weighs the distance between the
estimated and the true distribution with the squared value of x. This results
in an error measure that emphasizes the tail of the distribution, which is very

8
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relevant in practice when dealing with income or cost data:




∞∫

0

(
f̂(x) − f(x)

)2
x2 dx




1/2

.

The simulation results can be found in Table 2. For every simulated density
and for sample sizes N = 100 and N = 1000, the results presented here
correspond to the following error measures L1, L2 and WISE for different
values of the trimming parameter l = 0.99, 0.98. The benchmark results are
labelled KMCE and they correspond to those presented in Buch-Larsen, et al.
(2005).

In general, we can conclude that after a second transformation based on the
inverse of a certain Beta distribution cdf the error measures diminish with
respect to the KMCE method. In some situations the errors diminish quite
substantially with respect to the existing approaches. Table 3 presents the
ratio between the error measure of each method and the error measure of the
KMCE method. When the ratio is below(above) 1, it means that the KIBMCE
estimator has less(more) error than the KMCE estimator.

We can see that the error measure that shows improvements when using the
KIBMCE estimator is the WISE, which means that this new approach is
fitting the tail of positive distributions better than existing alternatives. The
WISE error measure is always smaller for the KIBMCE than for the KMCE,
at least for one of the two possible value of l that have been used in this sim-
ulation study. This would make the KIBMCE estimator specially suitable for
positive heavy-tailed distributions. When looking more closely at the results
for the mixture of a lognormal distribution and a Pareto tail, we see that larger
values of l are needed to improve the error measures that were encountered
with the KMCE method.

We can see that for the Truncated logistic distribution, the lognormal dis-
tribution and the Weibull distribution, the method presented here is clearly
better than the existing KMCE. We can see in Table 3 that for N = 1000,
the KIBMCE WISE is about 20% lower than the KMCE WISE for these
distributions. A similar behavior is shown by the other error measures. L1 and
L2,for N = 1000, are about 15% lower for the KIBMCE.

Note that the KMCE method was studied in Buch-Larsen, et al. (2005) and
the simulation study showed that it improved on the error measures for the
existing methodological approaches (Clements, et al., 2003 and Wand, et al.,
1991).

9
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Table 2: The estimated error measures for KMCE and KIBMCE

with l = 0.99 and l = 0.98 for sample size 100 and 1000 based on 2000 repetitions

Log-Normal Log-Pareto Weibull Tr. Logist.

p =.7 p =.3

N=100 L1 KMCE 0.1363 0.1287 0.1236 0.1393 0.1294

l=0.99 0.1335 0.1266 0.1240 0.1374 0.1241

l=0.98 0.1289 0.1215 0.1191 0.1326 0.1202

L2 KMCE 0.1047 0.0837 0.0837 0.1084 0.0786

l=0.99 0.0981 0.0875 0.0902 0.1085 0.0746

l=0.98 0.0956 0.0828 0.0844 0.1033 0.0712

WISE KMCE 0.1047 0.0859 0.0958 0.0886 0.0977

l=0.99 0.0972 0.0843 0.0929 0.0853 0.0955

l=0.98 0.0948 0.0811 0.0909 0.0832 0.0923

N =1000 L1 KMCE 0.0659 0.0530 0.0507 0.0700 0.0598

l=0.99 0.0544 0.0509 0.0491 0.0568 0.0497

l=0.98 0.0550 0.0509 0.0522 0.0574 0.0524

L2 KMCE 0.0481 0.0389 0.0393 0.0582 0.0339

l=0.99 0.0394 0.0382 0.0393 0.0466 0.0298

l=0.98 0.0408 0.0385 0.0432 0.0463 0.0335

WISE KMCE 0.0481 0.0384 0.0417 0.0450 0.0501

l=0.99 0.0393 0.0380 0.0407 0.0358 0.0393

l=0.98 0.0407 0.0384 0.0459 0.0369 0.0394

10
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Table 3: Ratio between the error measures of KIBMCE and KMCE

for sample size 100 and 1000 based on 2000 repetitions

Log-Normal Log-Pareto Weibull Tr. Logist.

p =.7 p =.3

N =100 L1 l=0.99 0.9795 0.9837 1.0032 0.9864 0.9590

l=0.98 0.9457 0.9441 0.9636 0.9519 0.9289

L2 l=0.99 0.9370 1.0454 1.0777 1.0009 0.9491

l=0.98 0.9131 0.9892 1.0084 0.9530 0.9059

WISE l=0.99 0.9284 0.9814 0.9697 0.9628 0.9775

l=0.98 0.9054 0.9441 0.9489 0.9391 0.9447

N =1000 L1 l=0.99 0.8255 0.9604 0.9684 0.8114 0.8311

l=0.98 0.8346 0.9604 1.0296 0.8200 0.8763

L2 l=0.99 0.8191 0.9820 1.0000 0.8007 0.8791

l=0.98 0.8482 0.9897 1.0992 0.7955 0.9882

WISE l=0.99 0.8170 0.9896 0.9760 0.7956 0.7844

l=0.98 0.8462 1.0000 1.1007 0.8200 0.7864

5 Data study

In this section, we apply our semiparametric estimation method to a data set
that contains automobile claim costs from a Spanish insurance company for
accidents occurred in 1997. This data set was analyzed in detail by Bolancé et
al. (2003). It is a typical insurance claims amount data set, i.e. a large sample
that looks heavy-tailed. The data are divided into two age groups: claims from
policyholders who are less than 30 years old, and claims from policyholders
who are 30 years old or older. The first group consists of 1,061 observations
in the interval [1;126,000] with mean value 402.70. The second group contains
4,061 observations in the interval [1;17,000] with mean value 243.09. Estima-
tion of the parameters in the modified Champernowne distribution function
for the two samples of is, for young drivers α̂1 = 1.116, M̂1 = 66, ĉ1 = 0.000
and for older drivers α̂2 = 1.145, M̂2 = 68, ĉ2 = 0.000, respectively. We notice
that α1 < α2, which indicates that the data set for young drivers has a heavier
tail than the data set for older drivers.
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Fig. 1. KIBMCE with l = 0.99 and l = 0.98 (solid line) and KMCE (dashed line)
estimators of automobile claims from an insurance company. In a) and b) younger
policyholders and in c) and d) older policyholders.

To produce the graphics, the claims have been split into three categories:
Small claims in the interval (0; 2,000), moderately sized claims in the interval
[2,000; 14,000), and extreme claims in the interval [14,000; ∞). Figure 1 only
presents extreme claims. It shows the KMCE and the KIBMCE estimator
for the young and older individuals. The figure illustrates that the tail in
the estimated density of young policyholders is heavier than the tail of the
estimated density of older policyholders. This can be taken as evidence that
young drivers are more likely to claim a large amount than older drivers.
The KIBMCE method produces a heavier tail for the young drivers, i.e. high
risk groups, and the tail for the older drivers group is lower than the one
estimated with the KMCE method. Based on the results in the simulation
study presented above, we believe that the KIBMCE method improves the
estimation of the density in the extreme claims class.
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