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Abstract

This paper considers the problem of estimating the spectral density of a linear process whose
innovations are uncorrelated and strong mixing. We prove that the Periodogram ordinates In(λi)
at any set of frequencies λ1, ..., λm, 0 < λ1 < ... < λm < π, are asymptotically independent
exponential random variables with means 2πf(λi). Consequently the periodogram In is not
consistent estimator of 2πf . Consistent estimators can however be constructed by applying
linear smoothing filters to the periodogram.

AMS Subject Classification: 62G05, 62G20, 62M15.

Keywords: spectral density estimation, periodogram, mixing.

1 Introduction

For a sequence (Xt, t ∈ ZZ) of random variables we consider its periodogram, defined at the Fourrier
frequencies ωj = 2πj/n, ωj ∈ [−π, π], by

In,X(ωj) =
1
n


n∑

t=1

Xte
−itωj


2
, (1)

then, if (Xt, t ∈ ZZ) is a stationary time series with mean m and autocovariance γ(.), In(ωj)/2π
appears to be the natural estimator of fX(ωj), the spectral density of (Xt, t ∈ ZZ), defined by

fX(ω) = 1/(2π)
+∞∑

k=−∞
γ(k) exp−ikω, ω ∈ [−π, π]. (2)

If γ(.) is a absolutely summable autocovariance function of the process (Xt, t ∈ ZZ), then fX is
continuous and the definition (1) is equivalent to

{
In,X(0) = n|X|2
In,X(ωj) =

∑
|k|<n γ̂(k)e−itωj if ωj 6= 0,
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where

γ̂(k) = 1/n
n−|k|∑

t=1

(Xt −X)(Xt+|k| −X) and X = 1/n
n∑

t=1

Xt.

It is well known that the extensive studies of the periodogram and of closely related expressions
produce several solutions to the problem of estimating the spectral density function of stationary
random processes. It would be hard to compile a complete list. Here we only mention some
representatives: Tukey (1949), Bartlett (1950), Parzen (1957), Grenander and Rosenblatt (1957),
Hannan (1970), Anderson (1971), Brillinger (1981), Priestley (1981) and Brockwell and Davis
(1991). The purpose of this paper is to investigate the asymptotic properties of spectral density
estimates of linear process whose innovations are uncorrelated and strong mixing. Under more
general conditions we obtain results quite analogous to the i.i.d case. More precisely, we are
interested in the limit behaviour of the periodogram and the smooth-periodogram of {Xt, ..., Xn},
where (Xt, t ∈ ZZ) is the linear process

Xt =
+∞∑

j=−∞
ψjZt−j , t ∈ ZZ (3)

and (Zt, t ∈ ZZ) is a strictly stationary sequence of uncorrelated random variables, with mean 0,
variance σ2 > 0, and spectral density fZ , satisfying the strong mixing condition defined below.

Definition 1.1 Denote the σ-fields generated by Xt, t ≤ 0 and Xt, t ≥ k, respectively, by F0−∞
and F+∞

k . Then Xt is strong mixing or α-mixing if :

α(k) = sup{|P (A ∩B)− P (A)P (B)|, A ∈ F0
−∞, B ∈ F+∞

k } −→ 0 as k −→ +∞.
The case when the random variables Zt are independently and identically distributed with mean
0 and variance σ2 has been studied in Brockwell and Davis (1991). The paper is organized as
follows. The essential results are contained in theorem 2.2 in section 2 where we prove that the
periodogram ordinates at any set of different frequencies λ1, ..., λm ∈ [−π, π] are asymptotically
independent exponential r.v.s with means 2πf(λi). Consequently, the periodogram is not consistent
estimator of 2πf . Consistent estimators can however be constructed, in section 3, by applying linear
smoothing filters to the periodogram. The asymptotic behaviour of the resulting discrete spectral
average estimators can be derived from the asymptotic behaviour of the periodogram.

2 Convergences of the periodogram

In order to estimate fX(ω) for arbitrary non-zero frequencies in the interval [−π, π], we need to
extend the domain of In,X to the whole interval [−π, π].
For any ω ∈ [−π, π] the periodogram is defined as follows :

In,X(ω) =
{
In,X(ωk) if ωk − π/n < ω < ωk + π/n and 0 ≤ ω ≤ π
In,X(−ω) if ω ∈ [−π, 0).

Let g(n, ω) be the multiple of 2π/n closest to ω (the smaller one if there are two) and for ω ∈ [−π, 0]
let g(n, ω) = g(n,−ω). Then (1) can be rewritten as In,X(ω) = In,X(g(n, ω)). Let for ωj ∈ [−π, π]:

{
A(ωj) = (2/n)

1
2
∑n

t=1Xt cos(ωjt)
B(ωj) = (2/n)

1
2
∑n

t=1Xt sin(ωjt)
(4)
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so that :

In,X(ωj) =
A2(ωj) +B2(ωj)

2
.

Theorem 2.1 Let (Zt, t ∈ ZZ) be a strictly stationary and strong mixing sequence of uncorrelated
random variables, with mean 0 and variance σ2 > 0. Suppose that for some γ > 2 and mγ ∈ IR+

E|Zt|2γ = mγ , t ∈ ZZ,

(i) if the strong mixing coefficients are such that α(k) = O(k−β) for some β > γ, then for 0 < λ1 <
... < λm < π the random vector (In,Z(λ1), ..., In,Z(λm))

′
converges in distribution as n → ∞ to a

vector of independent and exponentially distributed random variables, each with mean σ2.
(ii) if the strong mixing coefficient verify

∑
k α(k)

γ−2
γ <∞, and EZ4

1 = ησ4, then

Cov(In,Z(ωj), In,Z(ωk)) =





n−1(η − 3)σ4 + 2σ4 +O(n−1) if ωj = ωk = 0 or π,
n−1(η − 3)σ4 + σ4 +O(n−1) if 0 < ωj = ωk < π,
n−1(η − 3)σ4 +O(n−1) if ωj 6= ωk.

Proof : For arbitrary frequency λ ∈ (0, π) define A(λ) := A(g(n, λ)) and B(λ) := B(g(n, λ)),
where A(ωj) and B(ωj) are given by (4) with Zt replacing Xt. Since

In,Z(λj) = (A2(λj) +B2(λj))/2,

it suffices to show that
(A(λ1), B(λ1), ..., A(λm), B(λm))

′
(5)

converges in distribution as n→∞ to a centered Gaussian random vector with covariance matrix
σ2I2m where I2m is the 2m x 2m identity matrix.
Let µ1, · · · , µm, µ′1, · · · , µ

′
m ∈ IR be fixed and define for each n ∈ IN, t = 1, · · · , n, the random

variables

Yt,n =
m∑

i=1

√
2(µi cosλit+ µi

′
sinλit)Zt and Sn =

n∑

t=1

Yt,n.

The linear combination of the coordinates of (2) needed to use the Cramer-Wold theorem. The
method of proof consists on defining large and small blocks, of sizes pn and qn, respectively, of
variables and coupling them using the Bradley’s lemma (1983). On what follows we will drop the
subscript n on pn and qn to avoid heavy notation. Let r ∈ IN be such that r(p+q) ≤ n < r(p+q+1)
(again we should denote by rn, what we do not for the same reason as before) and define

V1,n = Y1,n + · · ·+ Yp,n, V
′

1,n = Yp+1,n + · · ·+ Yp+q,n

V2,n = Yp+q+1,n + · · ·+ Y2p+q,n, V
′

2,n = Y2p+q+1,n + · · ·+ Y2(p+q),n

...
...

Vr,n = Y(r−1)(p+q)+1,n + · · ·+ Yrp+(r−1)q,n, V
′
r,n = Yrp+(r−1)q+1,n + · · ·+ Yr(p+q),n.

Suppose that r = O(nc), p = O(n1−c), q = O(nd), with c, d ∈ (0, 1) suitably chosen, as it will
be explained in course of proof.

3
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Using recursively the Bradley’s Lemma (1983) with p = 2γ, γ > 2, we may conclude that there
exist independent variables W1,n, · · · ,Wr,n, with distributions PWj,n = PVj,n and such that

P (|Vj,n −Wj,n| > ξn) ≤ 11

(
‖Vj,n + Cn‖2γ

ξn

) 2γ
4γ+1

α(q)
4γ

4γ+1 , (6)

where ξn ∈ (0, ‖Vj,n + Cn‖2γ ] and ‖Vj,n + Cn‖2γ > 0. Now

‖Yt,n‖2γ2γ = E
( m∑

t=1

√
2(µi cosλit+ µi

′
sinλit)Zt

)2γ
(7)

≤ 2γE(Z2γ
t )
( m∑

i=1

|µi|+ |µi′ |
)2γ

:= A.

Choosing in (6) Cn = 2pA
1

2γ it follows that, for n large enough,

pA
1

2γ ≤ ‖Vj,n + Cn‖2γ ≤ 3pA
1

2γ .

So that, for n large enough,

P (|Vj,n −Wj,n| > ξn) = O

(
p

2γ
4γ+1α(q)

4γ
4γ+1

ξ
2γ

4γ+1
n

)
. (8)

If we consider now

∆n =

∑r
j=1Wj,n√
rp

−
∑r

j=1 Vj,n√
rp

,

it follows from (8)

P (|∆n| > ε) ≤
r∑

j=1

P

(
(Vj,n −Wj,n)

 > ε

√
p

r

)
= O

(
p

γ
4γ+1 r

5γ+1
4γ+1α(q)

4γ
4γ+1

)
.

Taking account of the convergence rate supposed for the strong mixing coefficients, it follows
that

P (|∆n| > ε) = O
(
n
γ+4cγ+c−4dβγ

4γ+1

)
. (9)

As c < 1 and β > γ, (9) converges to zero provided that d > 5γ+1
4γ2 , which is verified if

d >
11
16
. (10)

We prove now the asymptotic normality of (rp)−1/2
∑r

j=1Wj,n verifying the Lyapounov condition.
For this we will verify that, for some ρ > 2,

Zn =

∑r
j=1E(|Wj,n|ρ)

(rV ar(Wj,n))
ρ
2

−→ 0. (11)

First, we have

4
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V ar(W1,n) = V ar
( p∑

t=1

m∑

i=1

√
2(µi cosλit+ µi

′
sinλit)Zt

)
= 2σ2

p∑

t=1

( m∑

i=1

(µi cosλit+ µi
′
sinλit)

)2

so, it’s easy to check that (rV ar(W1,n))
ρ
2 ∼ (rp)

ρ
2 .

Now, we shall control the numerator in (11) by using Yokoyama’s inequality (1980). We have show
in (7) that E(|Y1,n|2γ) <∞, then it suffices to verify that there exists 2 < ρ < 2γ such that

∑
n

(n+ 1)
ρ
2
−1α(n)

2γ−ρ
2γ <∞.

Given the assumptions made on the mixing coefficients, the convergence of the series follows from
β > ργ

2γ−ρ .
Choosing ρ = γ, the convergence of the serie follows from the fact that β > γ.

Now, we may apply Yokoyama’s inequality to derive E(|Wj,n|ρ) = O(ρ
ρ
2 ), so that Zn = O

(
rp
ρ
2

(rp)
ρ
2

)
=

O(nc(1−
ρ
2

)). This converge to zero, since ρ > 2. This proves the asymptotic normality of
(rp)−1/2

∑r
j=1Wj,n from which follows the asymptotic normality of (rp)−1/2

∑r
j=1 Vj,n.

To finish our proof write
Sn =

∑r
j=1 Vj,n +

∑r
j=1 V

′
j,n +Rn.

Using the same coupling technique it is easy to check that

V ar

(∑r
j=1 V

′
j,n√

rp

)
= O

(rq
rp

)
= O(nd−1+c),

as the V
′
j,n are sums of q variables, and V ar

(
Rn√
rp

)
= O(nc−1), for analogous reasons. Thus

(rp)−1/2Rn converges in probability to zero. The term (rp)−1/2
∑r

j=1 Vj,n also converges in proba-
bility to zero if

c < 1− d. (12)

Taking account of (10), we derive c < 5
16 , so (i) is proved.

(ii) By definition of In,Z(ωj), we have

In,Z(ωj) = n−1
n∑

s=1

n∑

t=1

ZsZte
iωj(t−s),

hence

E(In,Z(ωj)In,Z(ωk)) = n−2
n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

E(ZsZtZuZv)eiωj(t−s)eiωk(v−u). (13)

We shall examine many cases

1) If s = t = u = v, then
T1 = n−2

∑
s=t=u=v

E(Z4
s ) = n−1ησ4. (14)

2) If s = t 6= u = v then

5
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T2 = n−2
∑

s6=u
E(Z2

sZ
2
u).

Applying the Davydov’s inequality (1968) we obtain,

|Cov(Z2
s , Z

2
u)| ≤ 2γ

γ − 2
‖Z2

s‖γ‖Z2
u‖γ
(
2α(s− u)

) γ−2
γ .

Hence,

E(Z2
sZ

2
u)) + σ4 ≤ 2γ

γ − 2
‖Z2

s‖γ‖Z2
u‖γ
(
2α(s− u)

) γ−2
γ , (15)

and
n−2

∑

s6=u
E(Z2

sZ
2
u)− (1− 1

n
)σ4 ≤ n−2 2γ

γ − 2
m2/γ
γ

∑

s6=u

(
2α(s− u)

) γ−2
γ ,

but,

n∑

s=2

∑

s 6=u

(
2α(s− u)

) γ−2
γ = 2

n∑

s=2

s−1∑

u=1

(
2α(s− u)

) γ−2
γ = 2

n∑

s=2

s−1∑

v=1

(
2α(v)

) γ−2
γ .

Then

T2 − (1− 1
n

)σ4 ≤ 2
n2

2γ
γ − 2

m2/γ
γ

n∑

s=2

s−1∑

v=1

(
2α(v)

) γ−2
γ .

Taking account of
∑

k α(k)
γ−2
γ <∞, we have

T2 = (1− 1
n

)σ4 +O(n−1), (16)

3) If s = u 6= t = v then

T3 = n−2
∑

s 6=t
E(Z2

sZ
2
t )ei(ωj+ωk)(t−s),

so it follows from (15) that

T3 ≤ 2
n2

2γ
γ − 2

m2/γ
γ

n∑

s=2

s−1∑

v=1

(
2α(v)

) γ−2
γ +

1
n2
σ4|

n∑

s=1

ei(ωj+ωk)s|2 − 1
n
σ4,

hence for the same reasons, we have

T3 = − 1
n
σ4 +O(n−1). (17)

4) If s = v 6= t = u then

T4 = n−2
∑

s6=t
E(Z2

sZ
2
t )ei(ωj−ωk)(t−s)

≤ 2
n2

2γ
γ − 2

m2/γ
γ

n∑

s=2

s−1∑

v=1

(
2α(v)

) γ−2
γ +

1
n2
σ4|

n∑

s=1

ei(ωj−ωk)s|2 − 1
n
σ4,

6
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thus
T4 = − 1

n
σ4 +O(n−1). (18)

5) If s = t, t 6= u and u 6= v then

|T5| =
 3!
n2

n∑

s=1

n∑

u=s+1

n∑

v=u+1

E(Z2
sZuZv)e

iωk(v−u)


≤ 3!
n2

n∑

s=1

n∑

u=s+1

Cov(Z2
s , Zu

n∑

v=u+1

Zv)


≤ 3!
n2

n∑

s=1

n−s∑

k=1

α(k).

It follows that
T5 = O(n−1). (19)

Using the same technique we can check the same result in the cases where s = u 6= t 6= v,
s = v 6= u 6= t, t = u 6= v 6= s, t = v 6= u 6= t and u = v 6= s 6= t, thus

Ti = O(n−1) for i = 6, .., 10. (20)

6) If s 6= t = u = v then

|T11| =
 2
n2

∑
s<t

E(ZsZ3
t )eiωj(t−s)



≤ 2
n2

n∑

s=1

n∑

t=s+1

|Cov(Zs, Z3
t )|

≤ 2
n2

n∑

s=1

n−s∑

k=1

α(k).

It follows that
T11 = O(n−1). (21)

We obtain the same result in the cases where t 6= s = u = v, u 6= s = t = v and v 6= s = t = u, thus

Ti = O(n−1) for i = 12, 13, 14. (22)

7) If s 6= t, s 6= u and s 6= v then ,

|T15| =
n−2

n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

E(ZsZtZuZv)eiωj(t−s)eiωk(v−u)


=
4!
n2


n∑

s=1

n∑

t=s+1

n∑

u=t+1

n∑

v=u+1

E(ZsZtZuZv)eiωj(t−s)eiωk(v−u)


≤ 4!
n2

n∑

s=1

n∑

t=s+1

Cov(Zs, Zt
n∑

u=t+1

n∑

v=u+1

ZuZv)


≤ 4!
n2

n∑

s=1

n−s∑

k=1

α(k),

7
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and thus
T15 = O(n−1). (23)

Taking account of (14), (16), (17), (18), (19), (20), (21), (22), and (23) it follows that

cov(In,Z(ωj)In,Z(ωk)) =
15∑

i=1

Ti−σ2 =





n−1(η − 3)σ4 + σ4 +O(n−1) if ωi = ωk and 0 < ωi < π,
n−1(η − 3)σ4 + 2σ4 +O(n−1) if ωi = ωk and ωi = 0 or π,
n−1(η − 3)σ4 +O(n−1) if ωi 6= ωk,

the proof of theorem is therefore complete.

Theorem 2.2 Let (Xt, t ∈ ZZ) be the linear process,

Xt =
∞∑

j=−∞
ψjZt−j ,

where
∑∞

j=−∞ |ψj | < ∞, and (Zt, t ∈ ZZ) is a strictly stationary and strong mixing sequence of
uncorrelated random variables, with mean 0 and variance σ2 > 0.

Suppose that for some γ > 2 and mγ ∈ IR+, E|Zt|2γ = mγ , t ∈ ZZ.
(i) If the strong mixing coefficients are such that α(k) = O(k−β) for some β > γ, if fX(λ) > 0 for all
λ ∈ [−π, π], then for 0 < λ1 < ... < λm < π the random vector (In,X(λ1), ..., In,X(λm))

′
converges

in distribution to a vector of independent and exponentially distributed random variables, the ith

component of which has mean 2πfX(λi), i = 1, ...,m.

(ii) If the strong mixing coefficient verify
∑

k α(k)
γ−2
γ <∞, if EZ4

1 = ησ4 <∞,
∑∞

j=−∞ |ψj ||j|1/2 <
∞, and ωj = 2πj/n ≥ 0 ωk = 2πk/n ≥ 0, then

Cov(In,X(ωj), In,X(ωk)) =





2(2π)2f2
X(ωj) +O(n−1/2) if ωj = ωk = 0 or π,

(2π)2f2
X(ωj) +O(n−1/2) if 0 < ωj = ωk < π,

O(n−1/2) if 0 < ωj 6= ωk.

Proof : From Theorem 10.3.1 page 346 of Brockwell and Davis (1991), we have

In,X(λ) = |ψ(e−ig(n,λ))|2In,Z(λ) +Rn(g(n, λ)), (24)

where ψ(e−iλ) =
∑+∞

j=−∞ ψje
−ijλ, −π ≤ λ ≤ π, supλ∈[−π,π]E|Rn(g(n, λ))| → 0.

It’s well known that
fX(λ) = |ψ(e−iλ)|2fZ(λ), −π ≤ λ ≤ π,

so

(24) =
fX(g(n, λ))
fZ(g(n, λ))

In,Z(λ) +Rn(g(n, λ))

=
2π
σ2
fX(g(n, ω))In,Z(ω) +Rn(g(n, λ)).

Since fX(g(n, λ))→ fX(λ) and Rn(g(n, λ))→P 0, the result (i) follows immediately from Theorem
2.1. Now if

∑∞
j=−∞ |ψj ||j|1/2 <∞ and EZ4

1 <∞ then from (24) we have

V ar(In,X(ωk)) = (2πfX(ωk)/σ2)2V ar(In,Z(ωk)) + V ar(Rn(ωk))
+2(2πfX(ωk)/σ2)Cov(In,Z(ωk), Rn(ωk)).

(25)

8
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Since V ar(Rn(ωk)) ≤ E|Rn(ωk)|2 = O(n−1) and since V ar(In,Z(ωk)) is bouded uniformly in ωk,
the Cauchy-Schwarz inegality implies that Cov(In,Z(ωk), Rn(ωk)) = O(n−1/2). It therefore follows
from (25) and Theorem 2.1 that

V ar(In,X(ωk)) =
{

2(2π)2f2
X(ωk) +O(n−1/2) if ωk = 0 or π,

(2π)2f2
X(ωk) +O(n−1/2) if 0 < ωk < π,

a similar argument also gives

Cov(In,X(ωj), In,X(ωk)) = O(n−1/2) if ωj 6= ωk.

3 Convergences of the periodogram smoothing

Let (Xt, t ∈ ZZ) be the linear process defined by (3). We consider the class of estimators of the form

f̂(wj) = (2π)−1
∑

|k|≤mn
Wn(k)In,X(ωj+k), (26)

where (mn, n ∈ IN) is a sequence of positive integers such that

mn −→∞, mn√
n
−→ 0 as n −→∞

and (Wn, n ∈ IN) is a sequence of weight functions satisfying the following conditions :

Wn(k) = Wn(−k), Wn(k) ≥ 0, for all k,
∑

|k|≤mn
Wn(k) = 1, and

∑

|k|≤mn
W 2
n(k) −→ 0 as n −→∞.

If ωj+k /∈ [−π, π], the term In,X(ωj+k) in (26) will be evaluated by defining In,X to have period 2π.
The same convention will be used to define fX(ω), ω /∈ [−π, π].
Now, for any ω ∈ [−π, π], we define the estimator of the spectral density of (Xt, t ∈ ZZ) as follows

f̂(ω) = f̂(g(n, ω))

with f̂(ωj) defined by (26).

Theorem 3.1 Let (Xt, t ∈ ZZ) be the linear process,

Xt =
∞∑

j=−∞
ψjZt−j ,

where
∑∞

j=−∞ |ψj ||j|1/2 < ∞ and (Zt, t ∈ ZZ) is a strictly stationary and strong mixing sequence
of uncorrelated random variables, with mean 0 and variance σ2 > 0. Then for λ, ω ∈ [0, π],
(a) limn→∞Ef̂(ω) = fX(ω)

and

(b) limn→∞
( ∑

|j|≤mn
W 2
n(j)

)−1
Cov(f̂(ω), f̂(λ)) =





2f2
X(ω) if ω = λ = 0 or π,

f2
X(ω) if 0 < ω = λ < π,

0 if ω 6= λ.

Proof : The proof is similar to that of the theorem 10.4.1 page 351 of Brockwell and Davis (1991).

9
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Remark 3.2 By theorem 2.2, the random variables In,X(ωj + ωk)/(πfX(ωj + ωk)), −j < k <
n/2 − j, are approximately independent and distributed as chi-squared with 2 degrees of free-
dom. As mentioned in Brockwell and Davis (1991), this suggests approximating the distribution of
νf̂(ωj)/fX(ωj) by the chi-squared with ν = 2/(

∑
|k|≤mnW

2
n(k)) degrees of freedom, then the interval

(
νf̂(ωj)
χ2

0.975(ν)
,
νf̂(ωj)
χ2

0.025(ν)

)
, 0 < ωj < π, (27)

is an approximate 95% confidence interval for fX(ωj). By taking logaritms in (27) we obtain the
95% confidence interval for lnfX(ωj):

(
lnf̂(ωj) + lnν − lnχ2

0.975(ν), lnf̂(ωj) + lnν − lnχ2
0.025(ν)

)
, 0 < ωj < π, (28)

4 Example

Let the MA(1) process
Xt = Zt − 0.6Zt−1, (29)

where Zt = UtUt−1, with (Ut, t ∈ ZZ) a sequence of i.i.d random variables with distribution N (0, 1).
The periodogram of 200 observations generated from (Xt, t ∈ ZZ) is displayed in figure 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

Figure 1: The periodogram I200(2πc), 0 < c ≤ 0.5, of the simulated MA(1) series.

Next we use a set of weights ( 1
231 ,

3
231 ,

6
231 ,

9
231 ,

12
231 ,

15
231 ,

18
231 ,

20
231 ,

21
231 ,

21
231 ,

21
231 ,

20
231 ,

18
231 ,

15
231 ,

12
231 ,

9
231 ,

6
231 ,

3
231 ,

1
231) producting the smoother spectral estimate. This particular weight function is obtained

by successive application of the filters (Wn(k) = (2m+1)−1, |k| ≤ m = 1, 3, 5). This smoother spec-
tral estimate and the true spectral density are shown in figure 2.

In figure 3, we have plotted the confidence interval (28) for the data of (29) using the spectral
estimate displayed in figure 2.
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Figure 2: The spectral estimate f̂(2πc), 0 < c ≤ 0.5, obtained with the inset weight function. The
true function is also shown.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−4

−3.5
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−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 3: 95% confidence interval for lnfX(2πc) based on the spectral estimates of figure 2 and a
χ2 approximation. The true function is also shown.

Using the weights specified above, we obtain
∑

|k|≤m
W 2
n(k) = 0.07052 and ν = 28.36

11
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so that (28) reduces to that interval
(
lnf̂(ωj)− 0.450, lnf̂(ωj) + 0.617

)
.
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