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This paper considers the problem of estimating the spectral density of a linear process whose innovations are uncorrelated and strong mixing. We prove that the Periodogram ordinates I n (λ i ) at any set of frequencies λ 1 , ..., λ m , 0 < λ 1 < ... < λ m < π, are asymptotically independent exponential random variables with means 2πf (λ i ). Consequently the periodogram I n is not consistent estimator of 2πf . Consistent estimators can however be constructed by applying linear smoothing filters to the periodogram.

Introduction

For a sequence (X t , t ∈ Z Z) of random variables we consider its periodogram, defined at the Fourrier frequencies ω j = 2πj/n, ω j ∈ [-π, π], by

I n,X (ω j ) = 1 n    n t=1 X t e -itω j    2 , (1) 
then, if (X t , t ∈ Z Z) is a stationary time series with mean m and autocovariance γ(.), I n (ω j )/2π appears to be the natural estimator of f X (ω j ), the spectral density of (X t , t ∈ Z Z), defined by

f X (ω) = 1/(2π) +∞ k=-∞ γ(k) exp -ikω , ω ∈ [-π, π].
(2)

If γ(.) is a absolutely summable autocovariance function of the process (X t , t ∈ Z Z), then f X is continuous and the definition (1) is equivalent to

I n,X (0) = n|X| 2 I n,X (ω j ) = |k|<n γ(k)e -itω j if ω j = 0,
where

γ(k) = 1/n n-|k| t=1 (X t -X)(X t+|k| -X) and X = 1/n n t=1 X t .
It is well known that the extensive studies of the periodogram and of closely related expressions produce several solutions to the problem of estimating the spectral density function of stationary random processes. It would be hard to compile a complete list. Here we only mention some representatives: [START_REF] Tukey | The sampling theory of power spectrum estimates[END_REF], [START_REF] Bartlett | Periodogram analysis and continuous spectra[END_REF], [START_REF] Parzen | On consistent estimates of the spectrum of a stationary time series[END_REF], [START_REF] Grenander | Statistical Analysis of Stationary Time Series[END_REF], [START_REF] Hannan | Multiple Time Series[END_REF], [START_REF] Anderson | The Statistical Analysis of Time Series[END_REF], [START_REF] Brillinger | Time Series: Data Analysis and Theory[END_REF], [START_REF] Priestley | Spectral Analysis and Time Series[END_REF] and [START_REF] Brockwell | Time Series: Theory and methods[END_REF]. The purpose of this paper is to investigate the asymptotic properties of spectral density estimates of linear process whose innovations are uncorrelated and strong mixing. Under more general conditions we obtain results quite analogous to the i.i.d case. More precisely, we are interested in the limit behaviour of the periodogram and the smooth-periodogram of {X t , ..., X n }, where (X t , t ∈ Z Z) is the linear process

X t = +∞ j=-∞ ψ j Z t-j , t ∈ Z Z (3)
and (Z t , t ∈ Z Z) is a strictly stationary sequence of uncorrelated random variables, with mean 0, variance σ 2 > 0, and spectral density f Z , satisfying the strong mixing condition defined below. 

α(k) = sup{|P (A ∩ B) -P (A)P (B)|, A ∈ F 0 -∞ , B ∈ F +∞ k } -→ 0 as k -→ +∞.
The case when the random variables Z t are independently and identically distributed with mean 0 and variance σ 2 has been studied in [START_REF] Brockwell | Time Series: Theory and methods[END_REF]. The paper is organized as follows. The essential results are contained in theorem 2.2 in section 2 where we prove that the periodogram ordinates at any set of different frequencies λ 1 , ..., λ m ∈ [-π, π] are asymptotically independent exponential r.v.s with means 2πf (λ i ). Consequently, the periodogram is not consistent estimator of 2πf . Consistent estimators can however be constructed, in section 3, by applying linear smoothing filters to the periodogram. The asymptotic behaviour of the resulting discrete spectral average estimators can be derived from the asymptotic behaviour of the periodogram.

Convergences of the periodogram

In order to estimate f X (ω) for arbitrary non-zero frequencies in the interval [-π, π], we need to extend the domain of I n,X to the whole interval [-π, π].

For any ω ∈ [-π, π] the periodogram is defined as follows :

I n,X (ω) = I n,X (ω k ) if ω k -π/n < ω < ω k + π/n and 0 ≤ ω ≤ π I n,X (-ω) if ω ∈ [-π, 0).
Let g(n, ω) be the multiple of 2π/n closest to ω (the smaller one if there are two) and for ω ∈ [-π, 0] let g(n, ω) = g(n, -ω). Then (1) can be rewritten as I n,X (ω) = I n,X (g(n, ω)). Let for ω j ∈ [-π, π]:

A(ω j ) = (2/n) 1 2 n t=1 X t cos(ω j t) B(ω j ) = (2/n) 1 2 n t=1 X t sin(ω j t) (4)
so that :

I n,X (ω j ) = A 2 (ω j ) + B 2 (ω j ) 2 .
Theorem 2.1 Let (Z t , t ∈ Z Z) be a strictly stationary and strong mixing sequence of uncorrelated random variables, with mean 0 and variance σ 2 > 0. Suppose that for some γ > 2 and 

m γ ∈ IR + E|Z t | 2γ = m γ , t ∈ Z Z, ( 
Cov(I n,Z (ω j ), I n,Z (ω k )) =    n -1 (η -3)σ 4 + 2σ 4 + O(n -1 ) if ω j = ω k = 0 or π, n -1 (η -3)σ 4 + σ 4 + O(n -1 ) if 0 < ω j = ω k < π, n -1 (η -3)σ 4 + O(n -1 ) if ω j = ω k .
Proof : For arbitrary frequency λ ∈ (0, π) define A(λ) := A(g(n, λ)) and B(λ) := B(g(n, λ)), where A(ω j ) and B(ω j ) are given by ( 4) with Z t replacing X t . Since

I n,Z (λ j ) = (A 2 (λ j ) + B 2 (λ j ))/2, it suffices to show that (A(λ 1 ), B(λ 1 ), ..., A(λ m ), B(λ m )) (5) 
converges in distribution as n → ∞ to a centered Gaussian random vector with covariance matrix σ 2 I 2m where I 2m is the 2m x 2m identity matrix.

Let

µ 1 , • • • , µ m , µ 1 , • • • , µ m ∈ IR be fixed and define for each n ∈ IN, t = 1, • • • , n, the random variables Y t,n = m i=1 √ 2(µ i cos λ i t + µ i sin λ i t)Z t and S n = n t=1 Y t,n .
The linear combination of the coordinates of (2) needed to use the Cramer-Wold theorem. The method of proof consists on defining large and small blocks, of sizes p n and q n , respectively, of variables and coupling them using the Bradley's lemma (1983). On what follows we will drop the subscript n on p n and q n to avoid heavy notation. Let r ∈ IN be such that r(p+q) ≤ n < r(p+q +1) (again we should denote by r n , what we do not for the same reason as before) and define

V 1,n = Y 1,n + • • • + Y p,n , V 1,n = Y p+1,n + • • • + Y p+q,n V 2,n = Y p+q+1,n + • • • + Y 2p+q,n , V 2,n = Y 2p+q+1,n + • • • + Y 2(p+q),n . . . . . . V r,n = Y (r-1)(p+q)+1,n + • • • + Y rp+(r-1)q,n , V r,n = Y rp+(r-1)q+1,n + • • • + Y r(p+q),n . Suppose that r = O(n c ), p = O(n 1-c ), q = O(n d
), with c, d ∈ (0, 1) suitably chosen, as it will be explained in course of proof.

Using recursively the Bradley's Lemma (1983) with p = 2γ, γ > 2, we may conclude that there exist independent variables W 1,n , • • • , W r,n , with distributions P W j,n = P V j,n and such that

P (|V j,n -W j,n | > ξ n ) ≤ 11 V j,n + C n 2γ ξ n 2γ 4γ+1 α(q) 4γ 4γ+1 , ( 6 
)
where

ξ n ∈ (0, V j,n + C n 2γ ] and V j,n + C n 2γ > 0. Now Y t,n 2γ 2γ = E m t=1 √ 2(µ i cos λ i t + µ i sin λ i t)Z t 2γ (7) ≤ 2 γ E(Z 2γ t ) m i=1 |µ i | + |µ i | 2γ := A.
Choosing in ( 6)

C n = 2pA 1 2γ it follows that, for n large enough, pA 1 2γ ≤ V j,n + C n 2γ ≤ 3pA 1 2γ .
So that, for n large enough,

P (|V j,n -W j,n | > ξ n ) = O p 2γ 4γ+1 α(q) 4γ 4γ+1 ξ 2γ 4γ+1 n . ( 8 
)
If we consider now

∆ n = r j=1 W j,n √ rp - r j=1 V j,n √ rp ,
it follows from ( 8)

P (|∆ n | > ) ≤ r j=1 P   (V j,n -W j,n )   > p r = O p γ 4γ+1 r 5γ+1 4γ+1 α(q) 4γ 4γ+1 .
Taking account of the convergence rate supposed for the strong mixing coefficients, it follows that

P (|∆ n | > ) = O n γ+4cγ+c-4dβγ 4γ+1 . ( 9 
)
As c < 1 and β > γ, (9) converges to zero provided that d > 5γ+1 4γ 2 , which is verified if

d > 11 16 . ( 10 
)
We prove now the asymptotic normality of (rp) -1/2 r j=1 W j,n verifying the Lyapounov condition. For this we will verify that, for some ρ > 2,

Z n = r j=1 E(|W j,n | ρ ) (rV ar(W j,n )) ρ 2 -→ 0. ( 11 
)
First, we have

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT V ar(W 1,n ) = V ar p t=1 m i=1 √ 2(µ i cos λ i t + µ i sin λ i t)Z t = 2σ 2 p t=1 m i=1 (µ i cos λ i t + µ i sin λ i t)
2 so, it's easy to check that (rV ar(W 1,n ))

ρ 2 ∼ (rp) ρ 2
. Now, we shall control the numerator in (11) by using Yokoyama's inequality (1980). We have show in ( 7) that E(|Y 1,n | 2γ ) < ∞, then it suffices to verify that there exists 2 < ρ < 2γ such that

n (n + 1) ρ 2 -1 α(n) 2γ-ρ 2γ < ∞.
Given the assumptions made on the mixing coefficients, the convergence of the series follows from β > ργ 2γ-ρ . Choosing ρ = γ, the convergence of the serie follows from the fact that β > γ. Now, we may apply Yokoyama's inequality to derive

E(|W j,n | ρ ) = O(ρ ρ 2 ), so that Z n = O rp ρ 2 (rp) ρ 2 = O(n c(1-ρ 2 )
). This converge to zero, since ρ > 2. This proves the asymptotic normality of (rp) -1/2 r j=1 W j,n from which follows the asymptotic normality of (rp) -1/2 r j=1 V j,n . To finish our proof write

S n = r j=1 V j,n + r j=1 V j,n + R n . Using the same coupling technique it is easy to check that V ar r j=1 V j,n √ rp = O rq rp = O(n d-1+c ),
as the V j,n are sums of q variables, and V ar R n √ rp

= O(n c-1 ), for analogous reasons. Thus (rp) -1/2 R n converges in probability to zero. The term (rp) -1/2 r j=1 V j,n also converges in probability to zero if

c < 1 -d. ( 12 
)
Taking account of (10), we derive c < 5 16 , so (i) is proved.

(ii) By definition of I n,Z (ω j ), we have

I n,Z (ω j ) = n -1 n s=1 n t=1 Z s Z t e iω j (t-s) , hence E(I n,Z (ω j )I n,Z (ω k )) = n -2 n s=1 n t=1 n u=1 n v=1 E(Z s Z t Z u Z v )e iω j (t-s) e iω k (v-u) . ( 13 
)
We shall examine many cases

1) If s = t = u = v, then T 1 = n -2 s=t=u=v E(Z 4 s ) = n -1 ησ 4 . (14) 2) If s = t = u = v then A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT T 2 = n -2 s =u E(Z 2 s Z 2 u ).
Applying the Davydov's inequality (1968) we obtain,

|Cov(Z 2 s , Z 2 u )| ≤ 2γ γ -2 Z 2 s γ Z 2 u γ 2α(s -u) γ-2 γ .
Hence,

E(Z 2 s Z 2 u )) + σ 4 ≤ 2γ γ -2 Z 2 s γ Z 2 u γ 2α(s -u) γ-2 γ , ( 15 
)
and n -2

s =u E(Z 2 s Z 2 u ) -(1 - 1 n )σ 4 ≤ n -2 2γ γ -2 m 2/γ γ s =u 2α(s -u) γ-2 γ , but, n s=2 s =u 2α(s -u) γ-2 γ = 2 n s=2 s-1 u=1 2α(s -u) γ-2 γ = 2 n s=2 s-1 v=1 2α(v) γ-2 γ .
Then

T 2 -(1 - 1 n )σ 4 ≤ 2 n 2 2γ γ -2 m 2/γ γ n s=2 s-1 v=1 2α(v) γ-2 γ . Taking account of k α(k) γ-2 γ
< ∞, we have

T 2 = (1 - 1 n )σ 4 + O(n -1
), ( 16)

3) If s = u = t = v then T 3 = n -2 s =t E(Z 2 s Z 2 t )e i(ω j +ω k )(t-s) ,
so it follows from (15) that

T 3 ≤ 2 n 2 2γ γ -2 m 2/γ γ n s=2 s-1 v=1 2α(v) γ-2 γ + 1 n 2 σ 4 | n s=1 e i(ω j +ω k )s | 2 - 1 n σ 4 ,
hence for the same reasons, we have

T 3 = - 1 n σ 4 + O(n -1 ). (17) 4) If s = v = t = u then T 4 = n -2 s =t E(Z 2 s Z 2 t )e i(ω j -ω k )(t-s) ≤ 2 n 2 2γ γ -2 m 2/γ γ n s=2 s-1 v=1 2α(v) γ-2 γ + 1 n 2 σ 4 | n s=1 e i(ω j -ω k )s | 2 - 1 n σ 4 , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT thus T 4 = - 1 n σ 4 + O(n -1 ). (18) 5) If s = t, t = u and u = v then |T 5 | =    3! n 2 n s=1 n u=s+1 n v=u+1 E(Z 2 s Z u Z v )e iω k (v-u)    ≤ 3! n 2 n s=1 n u=s+1   Cov(Z 2 s , Z u n v=u+1 Z v )   ≤ 3! n 2 n s=1 n-s k=1 α(k).
It follows that

T 5 = O(n -1 ). ( 19 
)
Using the same technique we can check the same result in the cases where

s = u = t = v, s = v = u = t, t = u = v = s, t = v = u = t and u = v = s = t, thus T i = O(n -1 ) for i = 6, .., 10. (20) 6) If s = t = u = v then |T 11 | =    2 n 2 s<t E(Z s Z 3 t )e iω j (t-s)    ≤ 2 n 2 n s=1 n t=s+1 |Cov(Z s , Z 3 t )| ≤ 2 n 2 n s=1 n-s k=1 α(k).
It follows that

T 11 = O(n -1 ). ( 21 
)
We obtain the same result in the cases where

t = s = u = v, u = s = t = v and v = s = t = u, thus T i = O(n -1 ) for i = 12, 13, 14. (22) 7) If s = t, s = u and s = v then , |T 15 | =   n -2 n s=1 n t=1 n u=1 n v=1 E(Z s Z t Z u Z v )e iω j (t-s) e iω k (v-u)    = 4! n 2    n s=1 n t=s+1 n u=t+1 n v=u+1 E(Z s Z t Z u Z v )e iω j (t-s) e iω k (v-u)    ≤ 4! n 2 n s=1 n t=s+1   Cov(Z s , Z t n u=t+1 n v=u+1 Z u Z v )    ≤ 4! n 2 n s=1 n-s k=1 α(k), A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and thus T 15 = O(n -1 ). ( 23 
)
Taking account of ( 14), ( 16), ( 17), ( 18), ( 19), ( 20), ( 21), ( 22), and ( 23) it follows that

cov(I n,Z (ω j )I n,Z (ω k )) = 15 i=1 T i -σ 2 =    n -1 (η -3)σ 4 + σ 4 + O(n -1 ) if ω i = ω k and 0 < ω i < π, n -1 (η -3)σ 4 + 2σ 4 + O(n -1 ) if ω i = ω k and ω i = 0 or π, n -1 (η -3)σ 4 + O(n -1 ) if ω i = ω k ,
the proof of theorem is therefore complete.

Theorem 2.2 Let (X t , t ∈ Z Z) be the linear process,

X t = ∞ j=-∞ ψ j Z t-j ,
where ∞ j=-∞ |ψ j | < ∞, and (Z t , t ∈ Z Z) is a strictly stationary and strong mixing sequence of uncorrelated random variables, with mean 0 and variance σ 2 > 0.

Suppose that for some γ > 2 and

m γ ∈ IR + , E|Z t | 2γ = m γ , t ∈ Z Z. (i) If the strong mixing coefficients are such that α(k) = O(k -β ) for some β > γ, if f X (λ) > 0 for all λ ∈ [-π, π], then for 0 < λ 1 < ... < λ m < π the random vector (I n,X (λ 1 ), ..., I n,X (λ m ))
converges in distribution to a vector of independent and exponentially distributed random variables, the i th component of which has mean 2πf X (λ i ), i = 1, ..., m.

(ii) If the strong mixing coefficient verify

k α(k) γ-2 γ < ∞, if EZ 4 1 = ησ 4 < ∞, ∞ j=-∞ |ψ j ||j| 1/2 < ∞, and ω j = 2πj/n ≥ 0 ω k = 2πk/n ≥ 0, then Cov(I n,X (ω j ), I n,X (ω k )) =    2(2π) 2 f 2 X (ω j ) + O(n -1/2 ) if ω j = ω k = 0 or π, (2π) 2 f 2 X (ω j ) + O(n -1/2 ) if 0 < ω j = ω k < π, O(n -1/2 ) if 0 < ω j = ω k .
Proof : From Theorem 10.3.1 page 346 of [START_REF] Brockwell | Time Series: Theory and methods[END_REF], we have

I n,X (λ) = |ψ(e -ig(n,λ) )| 2 I n,Z (λ) + R n (g(n, λ)), (24) 
where

ψ(e -iλ ) = +∞ j=-∞ ψ j e -ijλ , -π ≤ λ ≤ π, sup λ∈[-π,π] E|R n (g(n, λ))| → 0. It's well known that f X (λ) = |ψ(e -iλ )| 2 f Z (λ), -π ≤ λ ≤ π, so (24) = f X (g(n, λ)) f Z (g(n, λ)) I n,Z (λ) + R n (g(n, λ)) = 2π σ 2 f X (g(n, ω))I n,Z (ω) + R n (g(n, λ)).
Since f X (g(n, λ)) → f X (λ) and R n (g(n, λ)) → P 0, the result (i) follows immediately from Theorem 2.1. Now if ∞ j=-∞ |ψ j ||j| 1/2 < ∞ and EZ 4 1 < ∞ then from (24) we have

V ar(I n,X (ω k )) = (2πf X (ω k )/σ 2 ) 2 V ar(I n,Z (ω k )) + V ar(R n (ω k )) +2(2πf X (ω k )/σ 2 )Cov(I n,Z (ω k ), R n (ω k )). ( 25 
) Since V ar(R n (ω k )) ≤ E|R n (ω k )| 2 = O(n -1
) and since V ar(I n,Z (ω k )) is bouded uniformly in ω k , the Cauchy-Schwarz inegality implies that Cov(I n,Z (ω k ), R n (ω k )) = O(n -1/2 ). It therefore follows from (25) and Theorem 2.1 that

V ar(I n,X (ω k )) = 2(2π) 2 f 2 X (ω k ) + O(n -1/2 ) if ω k = 0 or π, (2π) 2 f 2 X (ω k ) + O(n -1/2 ) if 0 < ω k < π, a similar argument also gives Cov(I n,X (ω j ), I n,X (ω k )) = O(n -1/2 ) if ω j = ω k .
3 Convergences of the periodogram smoothing Let (X t , t ∈ Z Z) be the linear process defined by (3). We consider the class of estimators of the form

f (w j ) = (2π) -1 |k|≤mn W n (k)I n,X (ω j+k ), (26) 
where (m n , n ∈ IN) is a sequence of positive integers such that

m n -→ ∞, m n √ n -→ 0 as n -→ ∞
and (W n , n ∈ IN) is a sequence of weight functions satisfying the following conditions :

W n (k) = W n (-k), W n (k) ≥ 0, for all k, |k|≤mn W n (k) = 1, and |k|≤mn W 2 n (k) -→ 0 as n -→ ∞.
If ω j+k / ∈ [-π, π], the term I n,X (ω j+k ) in (26) will be evaluated by defining I n,X to have period 2π. The same convention will be used to define f X (ω), ω / ∈ [-π, π]. Now, for any ω ∈ [-π, π], we define the estimator of the spectral density of (X t , t ∈ Z Z) as follows

f (ω) = f (g(n, ω))
with f (ω j ) defined by (26).

Theorem 3.1 Let (X t , t ∈ Z Z) be the linear process,

X t = ∞ j=-∞ ψ j Z t-j , where ∞ j=-∞ |ψ j ||j| 1/2 < ∞ and (Z t , t ∈ Z Z
) is a strictly stationary and strong mixing sequence of uncorrelated random variables, with mean 0 and variance σ 2 > 0. Then for λ, ω ∈

[0, π], (a) lim n→∞ E f (ω) = f X (ω) and (b) lim n→∞ |j|≤m n W 2 n (j) -1 Cov( f (ω), f (λ)) =    2f 2 X (ω) if ω = λ = 0 or π, f 2 X (ω) if 0 < ω = λ < π, 0 if ω = λ.
Proof : The proof is similar to that of the theorem 10.4.1 page 351 of [START_REF] Brockwell | Time Series: Theory and methods[END_REF].

Remark 3.2 By theorem 2.2, the random variables I n,X (ω j + ω k )/(πf X (ω j + ω k )), -j < k < n/2 -j, are approximately independent and distributed as chi-squared with 2 degrees of freedom. As mentioned in [START_REF] Brockwell | Time Series: Theory and methods[END_REF], this suggests approximating the distribution of ν f (ω j )/f X (ω j ) by the chi-squared with ν = 2/( |k|≤m n W 2 n (k)) degrees of freedom, then the interval

ν f (ω j ) χ 2 0.975 (ν) , ν f (ω j ) χ 2 0.025 (ν) , 0 < ω j < π, ( 27 
)
is an approximate 95% confidence interval for f X (ω j ). By taking logaritms in ( 27) we obtain the 95% confidence interval for lnf X (ω j ):

ln f (ω j ) + lnν -lnχ 2 0.975 (ν), ln f (ω j ) + lnν -lnχ 2 0.025 (ν) , 0 < ω j < π, ( 28 
)
4 Example

Let the MA(1) process

X t = Z t -0.6Z t-1 , ( 29 
)
where Z t = U t U t-1 , with (U t , t ∈ Z Z) a sequence of i.i.d random variables with distribution N (0, 1). The periodogram of 200 observations generated from (X t , t ∈ Z Z) is displayed in figure 1. ) producting the smoother spectral estimate. This particular weight function is obtained by successive application of the filters (W n (k) = (2m+1) -1 , |k| ≤ m = 1, 3, 5). This smoother spectral estimate and the true spectral density are shown in figure 2.

In figure 3, we have plotted the confidence interval (28) for the data of (29) using the spectral estimate displayed in figure 2. 

Figure 1 :

 1 Figure 1: The periodogram I 200 (2πc), 0 < c ≤ 0.5, of the simulated MA(1) series. Next we use a set of weights (1 231 , 3 231 , 6 231 , 9 231 , 12 231 , 15 231 , 18 231 , 20 231 , 21 231 , 21 231 , 21 231 , 20 231 , 18 231 , 15 231 , 12 231 , 9 231 ,

Figure 2 :

 2 Figure 2: The spectral estimate f (2πc), 0 < c ≤ 0.5, obtained with the inset weight function. The true function is also shown.

Figure 3 :

 3 Figure 3: 95% confidence interval for lnf X (2πc) based on the spectral estimates of figure 2 and a χ 2 approximation. The true function is also shown.
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so that (28) reduces to that interval ln f (ω j ) -0.450, ln f (ω j ) + 0.617 .