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Abstract

We have developed and extended the study of some combinatorial aspects of lattice
of isotone mappings to the case of lattice of residual mappings between two �nite lattices
of combinatorial structure. The algebraic characterization of residual mapping allows
us to study the covering relation in the lattice of ultrametrics and to give a way for
describing the lattice of closure operators on a �nite chain. In the �nal point, we give
a necessary condition for a class of couples of closures and anti-closures to be a Galois
connection on �nite distributive lattice.

1 Introduction

The notions of residuated, residual mappings and Galois connections are equivalent under du-
ality. They appear in many contexts and remain an important domain of research. Especially,
they constitute a useful tool in several domains related with data analysis ([3],[14],[16],[23]).
The study of combinatorial aspects of the ordered set of isotone mappings between two �nite
ordered sets studied by Du¤us and Rival [12] has motivated the extension to the case of the
lattice of Galois mappings in Yazi [29]. In the present paper we investigate the case of lattices
of residual mappings between two �nite lattices of combinatorial structure. This lattice will
be denoted by ResL(P;Q):
Section 3 is devoted to the case where (P;�) is a �nite chain and (Q;�) is a lattice of

partitions of �nite set. We have extended the covering relation of the ordered set of isotone
mappings between two �nite ordered sets, studied by Du¤us and Rival [12], to the lattice of
ultrametrics on a �nite set taking values in �nite chain. An example is given as illustration.
In section 4, we consider the case where (P;�) and (Q;�) are both the same �nite chain. We
give a way for describing the set of closure operators on the �nite chain (k:1 < 2 < ::: < k)
and we establish an isomorphism between the lattice of such operators ([22]) with that of the
set of ordered s�tuples of intervals on the same chain induced by ordered re�nement. We also
give a method for computing the value of its Möbius function. Notice that in Dwinger [13]
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it has been shown that the lattice of closer of (P;�) is a boolean lattice if and only if (P;�)
is an ordinal with the greatest element. This result remains then true in our case. From
this fact, our method can constitute an other method for computing the value of Möbius
function of boolean lattice. In the �nal point, we use the inversion formula of Möbius for
deriving the cardinality of each of its intervals. The last section concerns the case where
P = Q is a distributive lattice (not a chain). Among several characterisations of distributive
lattice known in the litterature, we mainly used here the characterisation based on cleavage
property (see Caspar et al. [8],[26]) which allowed us to get some results on closures of
such lattice and to suggest a new simpler method for computing its value of Möbius function.
These considered closures (resp, dual closures) being, under some condition, residuated (resp,
residual), they play an important role for the characterisation of several types of lattices as
mentionned in Blyth [5]. Before developing the study of these cases we give some basic
de�nitions on ordered sets and lattices and some notations, which are needed in the sequel.

2 De�nitions and Notations

Let be (P;�) an ordered set (or poset). Let be a and b two elements of P . a and b are said to
be comparable if a � b or b � a; if neither a � b nor b � a holds, a and b are incomparable,
and we write a k b. The subset of all elements x 2 P such that a � x � b is called the
interval [a; b], with a = min [a; b] and b = max [a; b]. We say that b covers a (denoted a � b)
if a � b, a 6= b, and for any x 2 P , a � x � b implies x = a or x = b. A subset C of (P;�) is
called a chain, if its elements are pairwise comparable.

Example 1 For any non negative integer k (k � 1), we denote by C(k) the chain 0 < 1 <
::: < k � 1 and by k the chain 1 < 2 < ::: < k.

The principal ideal generated by a 2 P is a #= fx 2 P : x � ag : The principal �lter
is dually de�ned and denoted by a ". Let be an other ordered set (Q;�). The set of all
mappings from P into Q is denoted by PQ. It is again an ordered set with pointwise order
on mappings: (for f and g 2 PQ, f � g i¤, for any x 2 P , f(x) � g(x)). A mapping f from
PQ is said to be isotone, if x � y implies f(x) � f(y), antitone if x � y implies f(x) � f(y),
for any x; y 2 P . The set of all isotone mappings from PQ (resp, antitone mappings from
PQ) is denoted by Isot(P;Q) (resp, Anti(P;Q)). They are suborders of PQ. A mapping f
of PQ is said to be resituated (resp,residual) if, for any y 2 Q, f�1(y #) is a principal ideal of
(P;�) (resp, f�1(y ") is a principal �lter of (P;�)). The set of such mappings are denoted as
Res(P;Q) and ResL(P;Q); respectively. They are suborders of Isot(P;Q) for the pointwise
order on mappings. A mapping f form PQ is said to be a Galois mapping if it is residuated
from P into Qd (dual of Q). The set of such mappings denoted as Gal(P;Q) is a suborder
of Anti(P;Q) for the pointwise order on mappings.
A closure operator ' of (P;�) is an operator satisfying the following conditions: for any

x; y 2 P

� x � y implies '(x) � '(y) (Isotonicity)

� x � '(x) (Extensivity).
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� ' � '(x) = '(x) (Idempotence).

The set of such mappings denoted as �(P ) is an ordered set for pointwise order on
mappings.
A Galois connection between (P;�) and (Q;�) is a pair (f; g) antitone mappings f :

P ! Q and g : Q! P such that both f � g and g � f are extensive.
A poset (P;�) is a lattice, if for all x; y 2 P have join denoted x _ y and meet denoted

x ^ y.

Example 2 The set of all partitions of the set X of cardinality n (denoted Pn) endowed with
the order re�nement is a lattice.

(P;�) is a complete lattice if, any subset X of P has a join and a meet, denoted by _X
and ^X, respectively.
The least element of (P;�) is denoted by 0P (if it exists) and its greatest element denoted

by 1P (if it exists).
An element j of (P;�) is a join-irreductible if, for any subset X of P , j = _X implies

j 2 X. Dually, i 2 P is a meet-irreducible element, if i = ^X implies i 2 X. Let J (P ) and
I(P ) be respectively the sets of all the join-irreductibles and all meet-irreductibles of (P;�).
If (P;�) is �nite, J (P ) is the set of elements j of P that covers an unique element denoted
by j� and I(P ) is the set of elements i 2 P that are covered by an unique element denoted
by i+. If for j 2 J (P ), j� = 0P ; j is called atom of (P;�); and the set of such elements is
denoted by A(P ). Dually, if for i 2 I(P ), i+ = 1P , i is called coatom (dual-atom); and the
set of such elements is denoted by C(P ). For other de�nitions not recalled here see [3] and
[11].

3 Covering relation in lattice of ultrametrics

We study the covering relation in the lattice of ultrametrics on X, set of cardinality n
(jXj = n), with values in the chain C(k), k � n. This lattice will be denoted UX;C(k). We
�rst recall some basic results on ordered set ResL(P;Q) when (P;�) and (Q;�) are both
lattices and some other related �elds, precisely those that are well known in data analysis.

Theorem 1 (Shmuley [25])
Let be two ordered sets (P;�) and (Q;�). If, (P;�) and (Q;�) are complete lattices, then
the ordered sets Res(P;Q), ResL(P;Q) and GaL(P;Q) are also complete lattices.
Furthermore, the ^-complete morphisms between (P;�) and (Q;�) (resp,the _-complete mor-
phisms) constitute exactly ResL(P;Q) (resp, Res(P;Q)).

This result is due to Shmuley [25].
Some results of Blyth and Janowitz (Exercise 2.21 page 37 [7], Exercise 4.1 page 32 [4]

and Exercise 1.10 page [7]) are summarized in the following statement.

Theorem 2 (Blyth and Janowitz [4], Blyth [7])
- Any morphism lattice between (P;�) and (Q;�) is isotone if and only if, (P;�) is a chain.
- If (P;�) and (Q;�) are both chains, then ResL(P;Q) is a lattice, sublattice of Isot(P;Q).
- Any isotone mapping from m into n is residual if and only if, f(m) = n.
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Some other results of Barthelemy, Leclerc and Janowitz ([2], [16], [17], [19]) are summa-
rized in the following statement.

Theorem 3 - The set of all C(k)-dendogram on X (denoted DC(k)) is exactly the set of
residual mappings from C(k) into Pn:
- The sets DC(k) and UX;C(k) are in one-to-one correspondence.
- DC(k) and UX;C(k) are lattices for pointwise order on mappings. Furthermore, they are dually
isomorphics.

Proposition 4 ResL(C(k);Pn) is an sublattice of Isot(C(k);Pn) preserving covers. i.e.,
for two elements f and g 2 ResL(C(k);Pn), f � g

ResL(C(k);Pn)
() f � g

Isot(C(k);Pn)
:

Proof. Let be two elements f and g of ResL(C(k);Pn). Then f; g, f ^ g and f _ g are
elements of Isot(C(k);Pn). It follows from Theorem 2 that f ^ g and f _ g are morphisms
lattices. Furthermore, one has f ^ g(k � 1) = f(k � 1) ^ g(k � 1) = 1Pn ^ 1Pn = 1Pn
and f _ g(k � 1) = f(k � 1) _ g(k � 1) = 1Pn _ 1Pn = 1Pn. From Theorem 1, f ^ g
and f _ g are then the elements of ResL(C(k);Pn): For the sequel, assume that f � g in
ResL(C(k);Pn) such that there exists h 2 Isot(C(k);Pn) satisfying f < h < g. So, one has
1Pn = f(k�1) � h(k�1) � g(k�1) = 1Pn, therefore h(k�1) = 1Pn : It result from Theorem
2 that the element h belongs to ResL(C(k);Pn), a contradiction. In other words, the covers
in ResL(C(k);Pn) is the restriction of the covers in Isot(C(k);Pn) to ResL(C(k);Pn).

Theorem 5 Let be u and v two elements of UX;C(k) such that u � v. Then ,for all elements
x; y 2 X, we have u(x; y) 2 fv(x; y); v(x; y) + 1g.

Proof. We �rst observe that for any chain of elements of Pn including the least and the
greatest re�ned partition 0Pn and 1Pn ,i.e., 0Pn � �1 � �2 � ::: � �i � �i+1 � ::: � 1Pn,
and for all elements x and y of X, there exists a smallest integer i such that x and y are
both in the same block in partition �i, and a greatest integer j such that they are sepa-
reted in partition �j with j = i + 1. So, if we consider the residual mappings from C(k)
into Pn associated with the ultrametrics u and v respectively, one has from Theorem 3
and Theorem 4 v � u

UX;C(k)
() f � g

ResL(C(k);Pn)
() f � g

Isot(C(k);Pn)
, and this, in view of Proposition

2.1 in Du¤us and Rival [12], is equivalent to: (9�0 2 C(k) such that f (�0) � g (�0) and
f (�) = g (�) for all � 6= �0). Setting C�0 the chain of Pn consisting of all elements f(�)
and g(�) where � 2 f0; 1; 2; :::; k � 1g including 0Pn and 1Pn,i.e. , C�0 : 0Pn � f(0) �
f(1) � ::: � f(�0 � 1) � f(�0) � g(�0) � g(�0 + 1) � ::: � g(k � 1) = f(k � 1) = 1Pn.
For all x and y of X, we can distinguish two cases. Firstly g(�0) is the smallet par-
tition in C�0 such that x and y belongs to the same block; from above, f(�0) is then
the greatest partition in C�0 such that x and y are separated.In this case ,we show then
that �0 = min f� : � 2 f0; :::; k � 1gg such that x; y 2 to the same block of g(�)g. Indeed, if
there exist �1 � �0 � 1 such that x and y belongs to the same block of g(�1), this gives
g(�1) � g(�0 � 1) = f(�0 � 1) � f(�0), and therefore x and y belongs to the same block
in the partition f(�0), a contradiction. Hence, v(x; y) is equal �0, and the smallest value
� 2 f0; :::; k � 1g such that x and y belongs to the same block in partition f(�) is equal
�0 + 1; i:e:; u(x; y) = v(x; y) + 1: In the second case where g(�0) is not the smallesl partition
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in C�0 such that x and y are in the same block. Clearly, one has u(x; y) = v(x; y). Finally,
u(x; y) 2 fv(x; y); v(x; y) + 1g.
The converse is not true. As illustration, we consider three ultrametrics u; v and w de�ned

over X = fa; b; c; dg with values in the chain C(4) = 0 < 1 < 2 < 3, and represented by the
following tables, repectively.

u :

b c d
a 0 2 2
b 2 2
c 0

v :

b c d
a 1 2 2
b 2 2
c 0

w :

b c d
a 1 3 3
b 3 3
c 0

Clearly,one has for all x; y 2 X; w(x; y) = u(x; y) or u(x; y) + 1, but u < v < w, i.e; w
does not cover u.

Proposition 6 Let be an element of the lattice ResL(C(k);Pn) and u its associated ultra-
metric. Let be i belongs to f0; 1; :::; k � 2g such that the length of the interval [f(i); f(i+ 1)]
is greatest than two. Then, for every element � 2 Pn satisfying f(i) � � < f(i + 1), the
ultrametric associated to the residual mapping g from C(k) into Pn described by

g(j) =

�
f(j) j 2 f0; 1; :::; k � 2g and j 6= i
� j = i

is covered by u, and the number of such ultrametrics is equal to the number of elements that
covers f(i) in the sublattice [f(i); f(i+ 1)].

Proof. Before starting the proof, we recall, on the one hand a classical result on combinatorial
lattice partitions Pn. Let be � = �1=�2=:::=�r and � = �1=�2=:::=�s two elements of Pn with
r and s their numbers of blocks respectively. Assume that � < �, then the interval [�; �] is
isomorphic to the direct product of lattice partitions Pr1 � Pr2 � :::� Prs with

Ps
i=1 ri = r.

On the other hand, g before de�ned is clearly an element of ResL(C(k);Pn); if, furthermore
r and s are the number of blocks of f(i) and f(i + 1) repectively, it follows, from this, that
the interval [f(i); f(i+ 1)] is isomorphic to the direct product of lallices Pr1 �Pr2 � :::�Prs
with

Ps
i=1 ri = r. As well known, ri(ri � 1)=2 is the number of atoms of Pri. Then, the

number of elements that covers f(i) in the interval [f(i); f(i+ 1)] is equal
Ps

i=1 ri(ri� 1)=2.

Notice that the dual result can be stated by the same argument above ,i.e; if, u is the
ultrametric associated with f , then, for � 2 Pn such that f(i) < � � f(i+1), the ultrametric
v associated to the residual mapping g from C(k) into Pn described by

g(j) =

�
f(j) j 2 f0; 1; :::; k � 1g and j 6= i+ 1
� j = i+ 1

covers u, and the number of such ultrametrics is equal to the number of elements covered by
f(i+ 1) in the sublattice [f(i); f(i+ 1)] ; i.e,

Ps
i=1

�
2(ri�1) � 1

�
([1],[24],[27]).

4 Closures on �nite chain and Möbius function

Let be given k a non-negative integer and r � k. In this section, we introduce two or-
dered sets denoted Pr;k (Pr;k � Pk) and �r;k consisting of ordered r�tuples of intervals
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of the chain k and the ordered r�partitions of the integer k, respectively. We �rst show
that the disjoint unions [

1�r�k
Pr;k, [

1�r�k
�r;k and the ordered set as denoted Isot(r; k) =

ff : r ! k strictly isotone with f(r) = kg are pairwise in one-to-one correspondence [1]. Af-
ter, we give a way for described a subset of ResL(k; k) denoted Res(r)k; and we show that
the set of closure operators of k denoted �(k) is exactly the disjoint union of Res(r)k: Thus,
we establish an order isomorphism between �(k) endowed with pointwise order on mappings
and [

1�r�k
Pr;k induced by ordered of re�nement. At last, we give a method for computing

directly the Mobius function of the ordered set �(k); and by inversion formula Möbius, we
deduce the cardinality of any interval of �(k). Before developing the study of ResL(k; k), let
us recall that for any isoton mapping f from k into the ordered set (Q;�); its image denoted
Imf is a chain of (Q;�).
If a1 < a2 < ::: < ar is the image of f and I = I1=I2=:::=Ir the canonical partition

associated with it, we ordered the set of these blocks fI1; I2; :::; Irg by setting:
Ii � Ij , ai < aj

A such partition denoted I = I1=I2=:::=Ir is an ordered r�tuples of intervals of the chain k;
that is ; I 2 Pr;k. As well known, an isomorphism between the ordered set fI1; I2; :::; Irg and
Imf is established (Stanley [28]).

Proposition 1 The three following sets Pr;k, �r;k and Isot(r; k) are pairwise in one-to-one
correspondence.

Proof. The bijection between �r;k and Pr;k is obtained by the mapping  de�ned:

k = k1 + k2 + :::+ kr �!  (k) = [1; k1] = [k1 + 1; k1 + k2] =:::= [k1 + k2 + :::+ kr�1 + 1; k]

whose converse denoted  �1 is given by

I = I1=I2=:::=Ir �!  �1 (I) = jI1j+ jI2j+ :::+ jIrj
where jIij is the cardinality of Ii. The bijection between Isot(r; k) and Pr;k is obtained by
means of the mapping � de�ned:

� �! � (�) = [1; �(1)] = [�(1) + 1; � (2)] =:::= [�(r � 1) + 1; �(r) = k]

Indeed, let be I = I1=I2=:::=Ir an element of Pr;k. The mapping � from r into k described by:
�(i) = max(Ii); for every i 2 f1; 2; : : : ; kg is well the unique mapping strictly isotone from
r into k such that � (�) = [1; �(1)] = [�(1) + 1; � (2)] =:::= [�(r � 1) + 1; �(r) = k]. Hence, the
one-to-one correspondence between Pr;k and Isot(r; k) follows, implying then the one-to-one
correspondence between Isot(r; k) and �r;k whose cardinality (see [1]) equal Cr�1

k�1.
This binomial coe¢ cient allows us to give in the last point in this section the value of

Möbius function of lattice �(k). Now, we are able to describe the subset denoted Res(r)k with
the following way: an element g 2 Res(r)k is a mapping from k into itself whose cardinality
of its image equal r (jIm gj = r); and such that there exists � 2 Isot(r; k)

g(j) =

8>>>>><>>>>>:

�(1) j 2 [1; �(1)]
�(2) j 2 [�(1) + 1; �(2)]

...
...

�(r � 1) j 2 [�(r � 2) + 1; �(r � 1)]
�(r) = k j 2 [�(r � 1) + 1; �(r) = k]
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From proposition 3.2, g is clearly an element of ResL(k; k) which canonical partition asso-
ciated denoted : Ig = [1; �(1)] = [�(1) + 1; � (2)] =:::= [�(r � 1) + 1; �(r) = k]. Conversly, let
be I = I1=I2=:::=Ir an element of Pr;k the unique element denoted gI belongs to Res(r)k
associated with I is given by:

gI(j) =

8>>><>>>:
max I1 j 2 I1
max I2 j 2 I2

...
...

max Ir j 2 Ir

It follows from proposition 4.1, that I = [1; �(1)] = [�(1) + 1; � (2)] =:::= [�(r � 1) + 1; �(r) = k].
So, for every r 2 f1; 2; : : : ; kg, Res(r)k and Pr;k are in one-to-one correspondence, and then
their disjoint union; i.e; [

1�r�k
Res(r)k and [

1�r�k
Pr;k are also in one-to-one correspondence.

Proposition 2 Let be an element f of Res(r)k. Then f satis�es the following properties
1. For all j 2 k; j � f(j) (extensivity)
2. For all j 2 k, f � f(j) = f(j) (idempotence)

Proof. By de�nition of Res(r)k, f belonging to Res(r)k is given by

f(j) =

8>>>>><>>>>>:

�(1) j 2 [1; �(1)]
�(2) j 2 [�(1) + 1; �(2)]

...
...

�(r � 1) j 2 [�(r � 2) + 1; �(r � 1)]
�(r) = k j 2 [�(r � 1) + 1; �(r) = k]

where � 2 Isot(r; k). f is clearly extensive and isotone (by construction); and on the other
hand, one has for all j 2 [�(i� 1); �(i)] ; f(j) = �(i), since �(i) 2 [�(i� 1); �(i)] implies
f � �(i) = �(i); that is f � f(j) = f(j). Hence, f 2 �(k). Conversely, we show that any
closure operator f over k which taking r values (r � k) is an element of Res(r)k. Indeed,
if a1 < a2 < ::: < ar is the image of f , by isotonicy, there exists an ordered r�tuples of
intervals of the chain k; i.e, I = I1=I2=:::=Ir such that

f(j) =

8>>><>>>:
a1 j 2 I1
a2 j 2 I2
...

...
ar j 2 Ir

Thus, for all i 2 f1; 2; : : : ; rg, and all j 2 Ii, one has, by extensivity j � f(j) = ai, and
then ai is an upper bound of Ii. Morever, the idempotence of f implies that f(ai) = ai; i.e,
ai 2 Ii. Hence, ai = max Ii. Therefore, f 2 Res(r)k.
As a consequence �(k) = [

1�r�k
Res(r)k:

It remains to show that �(k) for pointwise order between mappings and [
1�r�k

Pr;k induced

by the order of re�nement are isomorphics .
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Proposition 3 Let be f and g two elements of �(k) such that Im g � Im f . Then f � g.

Proof. Let be j 2k. By extensivity of g, one has j � g(j), and by isotonicity of f , its follows
that f(j) � f � g(j). Since g(j) 2 Im f , so the idempotence of f implies f(j) � g(j); i.e,
f � g ([21]).

Proposition 4 Let be I and J two elements of [
1�r�k

Pr;k. Let be fI and gJ the elements of

�(k) associated to I and J , respectively. Then, I � J implies fI � gJ .

Proof. Consider I = I1=I2=:::=Is and J = J1=J2=:::=Jt. The hypothese that I � J implies
t � s and there exists � 2 Isot(t; s) such that

J1 = I1=I2=:::=I�(1)

J2 = I�(1)+1=I�(1)+2=:::=I�(2)
...

Jt = I�(t�1)+1=I�(t�1)+2=:::=I�(t)=s

Thus, the mappings fI 2 Res(t)k and gJ 2 Res(s)k associated to I and J respectively are
given by

fI(j) =

8>>><>>>:
max I1 j 2 I1
max I2 j 2 I2

...
...

max Is j 2 Is
and

gJ(j) =

8>>><>>>:
max J1 j 2 J1
max J2 j 2 J2

...
...

max Jt j 2 Jt
By construction, Im g is obviously included in Im f and therefore, from proposition 4.3,
fI � gJ .

Proposition 5 Let be two elements f and g of �(k) such that Im g � Im f . Let be If and
Ig the canonical partitions of the chain k associated with f and g respectively. Then If � Ig:

Proof. By de�nition of f and g, there exists � 2 Isot(s; k) and  2 Isot(t; k) such that

f(j) =

8>>><>>>:
�(1) j 2 [1; �(1)]
�(2) j 2 [�(1) + 1; �(2)]

...
...

�(s) = k j 2 [�(s� 1) + 1; �(s) = k]

and

g(j) =

8>>><>>>:
(1) j 2 [1; (1)]
(2) j 2 [(1) + 1; (2)]

...
...

(t) = k j 2 [(t� 1) + 1; (t) = k]
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where If = [1; �(1)] = [�(1) + 1; � (2)] =::: = [�(s� 1) + 1; �(s) = k] and Ig = [1; (1)] = [(1) + 1;  (2)] =:::
= [(t� 1) + 1; (t) = k]. Since Im g � Im f , then the values (l�1) and (l), (l 2 f2; 3; : : : ; tg)
belongs to Im f ,and by idempotence of f , f((l � 1) + 1) = (l � 1) + 1 and f((l)) =
(l): Because of isotonocity of f , every i 2 [(l � 1) + 1; (l)] is invariant under f ;i.e,
[(l � 1) + 1; (l)] = [�(i� 1) + 1; �(i)] = [�(i) + 1; �(i+ 1)] =:::= [�(m� 1) + 1; �(m)] ; where
(l � 1) = �(i� 1); �(m) = (l) and 1 � i � m � s.
Then, the order isomorphism between �(k) and [

1�r�k
Pr;k is established.

Note that in Morgan [22] it has been given a necessary and su¢ cient condition on (P;�)
in order that �(P ) be a complete lattice: if (P;�) is a complete lattice then �(P ) is a
complete lattice. In particular if P = k: Consequently the ordered set [

1�r�k
Pr;k is a lattice.

Now, we propose to give a method for computing the value of Möbius function of �(k).
For every s 2 f1; 2; :::; kg, let be I(s) denote an ordered (k� s+ 1)�tuples of intervals of the
chain k of the following form: I(s) = =1234:::s==s + 1==s + 2==:::==k=; with this notation,
the bounds of the lattice [

1�r�k
Pr;k are obtained by taking s = 1 and s = k; that is, I(1) =

=1==2==:::==k= = min [
1�r�k

Pr;k (denoted simply 0k) and I(k) = =123:::k= = max [
1�r�k

Pr;k

(denoted simply 1k).

Proposition 6 Let be s an element of the set f1; 2; : : : ; kg. Then the interval
�
0k; I

(s)
�
of

the lattice [
1�r�k

Pr;k and the lattice [
1�r�s

Pr;s are isomorphic.

Proof. We �rst remark that the interval
�
0k; I

(s)
�
consists of elements I of [

1�r�k
Pr;k of the

form I = I1=I2=:::=Im==s + 1==s + 2==:::==k=, where I1=I2=:::=Im is an ordered m�tuples
of intervals of the chain s, m � s. Let be then the mapping  de�ned from

�
0k; I

(s)
�
into

[
1�r�s

Pr;s by

I = I1=I2=:::=Im==s+ 1==s+ 2==:::==k= �!  (I) = I1=I2=:::=Im

Clearly,  as de�ned is bijectif. On the other hand, the restriction to [
1�r�s

Pr;s of the order

re�nement implies that for J and K two elements of
�
0k; I

(s)
�
;i.e , J = J1==s + 1==s +

2==:::==k= andK = K1==s+1==s+2==:::==k=, where J1 andK1 are two elements of [
1�r�s

Pr;s,

J1 � K1 , J � k. Then, the isomorphism is established.

Remark 7 It has been shown above that these lattices �(k) and [
1�r�k

Pr;k are isomorphics;

then, the Möbius function of these two lattice are the same. If we denote by � this function,
one has � (�(k)) = �( [

1�r�k
Pr;k) = � (0k; 1k)

Now, we are able to state the following result (see [9],[10],[27]):

Theorem 8 � (0k; 1k) = (�1)k�1.

Proof. For any element s belongs f0; 1; 2 : : : k�1g, let be � (s) denote an element of [
1�r�k

Pr;k

the rank of which is s, i.e, an ordered (k� s)�tuples of intervals of the chain k. (Notice that

9



� (0) = 0k and � (k � 1) = 1k). We proceed by induction on the rank of [
1�r�k

Pr;k. It is easily

to verify that for k = 2 and k = 3, � (� (0) ; � (2)) = (�1)2 and � (� (0) ; � (3)) = (�1)3.
Assume that the assertion is true until k � 2; i.e, for all s � k � 2, � (� (0) ; � (s)) = (�1)s:
From the relation X

�(0)��(i)��(k�1)

� (� (0) ; � (i)) = 0;

it follows that

� (� (0) ; � (k � 1)) = �
X

�(0)��(i)<�(k�1)

� (� (0) ; � (i))

� (� (0) ; � (k � 1)) = �
X

�(0)��(i)��(k�2)

� (� (0) ; � (i))�
X

f�(i)k�(k�2)g

� (� (0) ; � (i))

for some � of rank equal k � 2; and
P

�(0)��(i)��(k�2) � (� (0) ; � (i)) = 0: This relation above
may be written by choosing among all elements � having the same rank k � 2, the element
I(k�1) de�ned before; i.e, I(k�1) = =123:::k � 1==k=, and we get

� (� (0) ; � (k � 1)) = �
X

f�(i)kI(k�1)g
� (� (0) ; � (i))

If we let Wi denote the set consisting of elements of the lattice [
1�r�k

Pr;k the rank of which

is i and which are incomparable with I(k�1), i.e., Wi =
�
� (i) ; � (i) k I(k�1)

	
. One has,

from propositions 4.1 and 4.6, the cardinality of each Wi, i = f0; 1; :::; k � 2g is equal to
C
k�(i+1)
k�1 � C

k�(i+2)
k�2 ; that is

jW0j = Ck�1
k�1 � Ck�2

k�2

jW1j = Ck�2
k�1 � Ck�3

k�2
...

jWk�2j = C1k�1 � C0k�2:

Thus, by hypothesis induction we get

� (� (0) ; � (k � 1)) = �
�
jW0j � 1 + jW1j � (�1) + :::+ jWk�3j � (�1)k�3 + jWk�2j � (�1)k�2

�
or equivalently

� (� (0) ; � (k � 1)) = �
h�
Ck�1
k�1 � Ck�2

k�2
�
� 1 +

�
Ck�2
k�1 � Ck�3

k�2
�
� (�1) + :::+

�
C1k�1 � C0k�2

�
� (�1)k�2

i
= �

 
k�1X
i=1

Ci
k�1 (�1)

k�1�i �
k�2X
i=0

Ci
k�2 (�1)

k�2�i

!
; with

k�2X
i=0

Ci
k�2 (�1)

k�2�i = 0

= �
 
k�1X
i=0

Ci
k�1 (�1)

k�1�i � C0k�1 (�1)
k�1

!
; with

k�1X
i=0

Ci
k�1 (�1)

k�1�i = 0:
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Hence,
� (� (0) ; � (k � 1)) = C0k�1 (�1)

k�1 = (�1)k�1 :

We end this section with the use principle of Möbius inversion on [
1�r�k

Pr;k for computing

the cardinality of all interval of form [�(s); 1k], s 2 f0; 1; :::; k � 1g ([9],[10]).

Proposition 9 Let be �(s) and (s) denote two elements of [
1�r�k

Pr;k of rank s. Then

1. The intervals [�(s); 1k] and [(s); 1k] are isomorphic.
2. The number of such intervals is equal to Ck�1�s

k�1 :

Proof. Because �(s) and (s) have the same number of blocks, the intervals [�(s); 1k] and
[(s); 1k] are then isomorphics. For the second assertion, we have from proposition 4.1, that
there exists exactly Ck�1�s

k�1 of elements of rank s, and therefore, Ck�1�s
k�1 intervals of form

[�(s); 1k].
Now, we apply the principle of Möbius inversion to the lattice [

1�r�k
Pr;k. To do this, de�ne

two mappings F and G from [
1�r�k

Pr;k into N

F : �(s) �! F (�(s)) =

������ 2 [
1�r�k

Pr;k : rank(�) = s and � � �(s)

�����
clearly, F (�(s)) = 1: And

G : (t) �! G ((t)) =
X

�(s)�(t)

F (�(s))

Thus, the principle of Möbius inversion on [
1�r�k

Pr;k gives:

1 = F ((t)) =
X

�(s)�(t)

� (� (s) ; (t))G (� (s)) : (4.1)

In the case (t) = 1k, the above relation can be written

1 =
X

f�(s):s2f0;1;:::;k�1gg

� (� (s) ; 1k)G (� (s)) : (4.2)

From proposition 4.1, 4.9 and theoreme 4.8 the equality above becomes

1 =
X

s2f0;1;:::;k�1g

Ck�1�s
k�1 (�1)k�1�sG (� (s)) : (4.3)

We can remark in the de�nition of G (� (s)) that it is exactly the number of elements of
[

1�r�k
Pr;k smallest than � (s); i.e, G (� (s)) = j[0k; � (s)]j, we �nally get

1 =
X

s2f0;1;:::;k�1g

Ck�1�s
k�1 (�1)k�1�s j[0k; � (s)]j : (4.4)

11



Proposition 10 For every s 2 f0; 1; :::; k � 1g, the cardinality of [0k; � (s)] is equal to 2s.

Proof. We use induction on k. If we let k = 1 and k = 2 in the equality (4.3) of
preceding proof, we obtain for k = 1, 1 = C00G (� (0)); i.e, G (� (0)) = 20: For k = 2,
1 =

P1
s=0C

1�s
1 (�1)1�s = �1+G(�(1)); i.e., G(�(1)) = 21: Assume that G (� (s)) = 2s is true

for every s 2 f0; 1; :::; k � 2g, for s = k � 1 one has 1 =
Pk�1

s=0 C
k�1�s
k�1 (�1)k�1�sG (� (s)) =Pk�2

s=0 C
k�1�s
k�1 (�1)k�1�sG (� (s)) + C0k�1G (� (k � 1)) : Thus,by hypothesis induction, we get

1 =
Pk�2

s=0 C
k�1�s
k�1 (�1)k�1�s 2s+C0k�1G (� (k � 1)) = 1�

Pk�1
s=0 C

k�1�s
k�1 (�1)k�1�s 2s+ C0k�1G (� (k � 1)) =

1� 2k�1 + C0k�1G (� (k � 1)) ; i.e, G (� (k � 1)) = j[0k; � (k � 1)]j = 2k�1.

5 Closures on �nite distributive lattice

In section 3, we give some results on closure of distributive lattice. Thus, let be given ' a
closure operator of a lattice (P;�) such that there exist an element cC(P ) which closed under
'('(c) = c). The mapping denoted ' de�ned by ' = '(cx); xP , is again a closure operator
of (P;�). If,in addition (P;�) is distributive, we get an upper bound of the cardinality of
the subset fxP : '(x) = 1g. With similar argument above, we get also an upper bound of
the subset fxP : (x) = 0g, where is a dual �closure of (P;�) such that there exist a A(P )
which closed under ((a) = a).
After, we give a su¢ cient condition in order that the following residual-closure constitutes

an Galois connection between (P;�) and its dual (P ):('(x) = '(cx); (x) = (ax)): At last,
we give a new simpler method for computing the Mobius function of distributive lattice. In
what follow,a useful characterisation based on the cleavage property is mainly applied 9. 32
Thus,one has the following result.

Theorem 1 ([8],[20],[26])
A lattice (P;�) is distributive, if and only if, for every element j 2 J (P ) (j join-irreductible),
there exists a unique element i 2 I(P ) such that P is the disjoint sum of j " and i #; that
is, P = j " +i #. As consequence in this case, one has j ^ i = j� and j _ i = i+.

Notice that this theorem can be stated by taking the cleavage property dualised.

Proposition 2 Let be (P;�) a lattice and ' an closure operator on (P;�) such that there
exist an element c 2 C(P ) which is closed under '. Then, the mapping denoted 'c de�ned by:
'c(x) = ' (c _ x) for all x 2 P , is again a closure on the same lattice. If, in addition (P;�)
is distributive, one has: jfx 2 P : '(x) = 1Pgj � j[jc; 1P ]j where jc is the unique element
belongs to J (P ) which corresponds to c in the decomposition P = jc " +c #. If we let
rm = jfx 2 P : '(x) = 1P and rank(x) = mgj, then

P
m�0

rm � min
fc2C(P ):'(c)=cg

j[jc; 1P ]j :

Proof. For c 2 C(P ) and x 2 P , one has

c _ x =
�

c x � c
1P x 
 c

12



thus

'c(x) =

�
'(c) = c x � c

'(1P ) = 1P x 
 c

Clearly, 'c as de�ned above is again a closure operator of (P;�). If (P;�) is a distributive
lattice; from theorem 5.1, there corresponds to c one and only one element denoted jc 2 J (P )
such that P = jc " +c #; that is, for all x 2 P , x � c is equivalent to x � jc: Hence,

'c(x) =

�
'(c) = c x � jc

'(1P ) = 1P x � jc

Therefore, fx 2 P : '(x) = 1Pg = f x 2 P : x � jcg; sincefx 2 P : '(x) = 1Pg � f x 2 P :
'c(x) = 1Pg, then jfx 2 P : '(x) = 1Pgj � j[jc; 1P ]j : If we let rn =j fx 2 P : '(x) = 1P and rank(x) = mg j
; we get �nally

P
m�0

rm � min
fc2C(P ):'(c)=cg

j[jc; 1P ]j :

By the same argument above, we get the dual result, i.e, if  is a dual-closure of (P;�)
such that  (a) = a for some aA(P ), one has the following inequality jfx 2 P :  (x) = 0Pgj �
j[0P ; ia]j where ia is the unique element belongs to I(P ) such that P = a " +ia #. If we let
Sm = jfx 2 P :  (x) = 0P and rank(x) = mgj, then

P
m�0

Sm � min
fa2A(P ): (a)=ag

j[0P ; ia]j :

Proposition 3 Let be (P;�) a distributive lattice. Let be a 2 A(P ) and c 2 C(P ). Then,
the following conditions are equivalent
1. Each element of the pair (a; c) is the complement of the other.(this is equivalent to: a==c).
2. P is the disjoint sum of a " and c #; that is, P = a " +c # :

Proof. 1 ) 2. Let be a 2 A(P ). By theorem 5.1, there exists an unique element i 2 I(P )
such that P = a " +i #; since a and c are incomparable, it follows that c 2 i #. This implies
c = i; i.e, P = a " +c #.
2 ) 1. These consequences of theorem 5.1 allows us to write a a _ c = c+ = 1P and
a ^ c = a� = 0P , where c+ (resp. a�) is the unique element which covers c (resp. is the
unique element covered by a). Therefore, each element of of the pair (a; c) is the complement
of the other.

Proposition 4 Let be (P;�) a distributive lattice. Let a 2 A(P ) and c 2 C(P ) such that
each element of the pair (a; c) is the complement of the other. Then the mappings 'c and  a
de�ned above constitute a resituated-residual pair between (P;�) and itself, or equivalently,
a Galois connection between (P;�) and its dual P d.

Proof. By proposition 5.3, one has P = a " +c #; thus, the mappings

'c(x) =

�
1P x � a
c x � c

and

 a(x) =

�
a x � a
0P x � c

13



verify the Pickert�s relation dualized; that is, for all element x and y belongs to P , x �
'c(y)()  a(x) � y. Indeed, it su¢ ces to remark that for all y 2 P;

 a � 'c(y) =
�

a y � a
0P y � c

That is,  a � 'c(y) � y and for all x 2 P

'c �  a(x) =
�
1P x � a
0P x � c

That is, x � 'c �  a(x): Therefore, from x � 'c(y), one has by isotonicity of  a;  a(x) �
 a � 'c(y) � y; thus,  a(x) � y: Also, from  a(x) � y; one has; by isotonicity of 'c,
'c � a(x) � 'c(y); thus , x � 'c(y). Then, the pair ('c;  a) constitutes a resituated-residual
pair between (P;�) and itself.
We end this section with the following result:

Proposition 5 Let be (P;�) a distributive lattice non complemented with jP j � 3 and �
denote its Möbius function. Then � (0P ; 1P ) = 0:

Proof. Since (P;�) is distributive lattice non complemented with jP j � 3, it follows that
_

a2A(P )
a < 1 (see Exercise 7 page 18 [3]). From this inequality above, there exists an element

c 2 C(P ) such that _
a2A(P )

a � c; or equivalenty a < c for all a 2 A(P ). Thus, by theorem

5.1 there corresponds to c a unique element j 2 J (P ) n A(P ) such that P = j " +c # with
c ^ j = j� 6= 0P . Hence, the subset denoted Ec;j described by fx 2 P , such that x ^ c = 0Pg
is reduced to the element 0P . Then, the dual Wesneir�s formula ([9],[24],[28]) allows us to
state:

0 =
X

x: x^c=0P

� (x; 1P ) = � (0P ; 1P ) :

Finally, we �nd again the well known result on non-complemented distributive lattice: � (0P ; 1P ) =
0.
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