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Some Combinatorial Aspects of Lattice of Residual Mappings

We have developed and extended the study of some combinatorial aspects of lattice of isotone mappings to the case of lattice of residual mappings between two …nite lattices of combinatorial structure. The algebraic characterization of residual mapping allows us to study the covering relation in the lattice of ultrametrics and to give a way for describing the lattice of closure operators on a …nite chain. In the …nal point, we give a necessary condition for a class of couples of closures and anti-closures to be a Galois connection on …nite distributive lattice.

Introduction

The notions of residuated, residual mappings and Galois connections are equivalent under duality. They appear in many contexts and remain an important domain of research. Especially, they constitute a useful tool in several domains related with data analysis ( [START_REF] Birkho¤ | Lattice theory[END_REF], [START_REF] Everett | Closure operators and Galois theory in Lattices[END_REF], [START_REF] Janowitz | An order theoric model for cluster analysis[END_REF], [START_REF] Öre | Galois connections[END_REF]). The study of combinatorial aspects of the ordered set of isotone mappings between two …nite ordered sets studied by Du¤us and Rival [START_REF] Du¤us | Structure and decomposition results for Function Lattices[END_REF] has motivated the extension to the case of the lattice of Galois mappings in Yazi [START_REF] Yazi | Applications à seuils et applications de Galois[END_REF]. In the present paper we investigate the case of lattices of residual mappings between two …nite lattices of combinatorial structure. This lattice will be denoted by ResL(P; Q):

Section 3 is devoted to the case where (P; ) is a …nite chain and (Q; ) is a lattice of partitions of …nite set. We have extended the covering relation of the ordered set of isotone mappings between two …nite ordered sets, studied by Du¤us and Rival [START_REF] Du¤us | Structure and decomposition results for Function Lattices[END_REF], to the lattice of ultrametrics on a …nite set taking values in …nite chain. An example is given as illustration.

In section 4, we consider the case where (P; ) and (Q; ) are both the same …nite chain. We give a way for describing the set of closure operators on the …nite chain (k:1 < 2 < ::: < k) and we establish an isomorphism between the lattice of such operators ( [START_REF] Morgan | The closure operators of a lattice[END_REF]) with that of the set of ordered s tuples of intervals on the same chain induced by ordered re…nement. We also give a method for computing the value of its Möbius function. Notice that in Dwinger [START_REF] Dwinger | on the Closure operators of Complete Lattice[END_REF] it has been shown that the lattice of closer of (P; ) is a boolean lattice if and only if (P; ) is an ordinal with the greatest element. This result remains then true in our case. From this fact, our method can constitute an other method for computing the value of Möbius function of boolean lattice. In the …nal point, we use the inversion formula of Möbius for deriving the cardinality of each of its intervals. The last section concerns the case where P = Q is a distributive lattice (not a chain). Among several characterisations of distributive lattice known in the litterature, we mainly used here the characterisation based on cleavage property (see Caspar et al. [START_REF] Caspard | Ensembles ordonnées …nis: concepts, résultats, et usages[END_REF], [START_REF] Shützenberger | Sur l'extension des théorèmes de dualité aux treillis distributifs non complémentés[END_REF]) which allowed us to get some results on closures of such lattice and to suggest a new simpler method for computing its value of Möbius function. These considered closures (resp, dual closures) being, under some condition, residuated (resp, residual), they play an important role for the characterisation of several types of lattices as mentionned in Blyth [START_REF] Blyth | Bear semigroup Coordinatizations of Modular Lattices[END_REF]. Before developing the study of these cases we give some basic de…nitions on ordered sets and lattices and some notations, which are needed in the sequel. The principal ideal generated by a 2 P is a #= fx 2 P : x ag : The principal …lter is dually de…ned and denoted by a ". Let be an other ordered set (Q; ). The set of all mappings from P into Q is denoted by P Q . It is again an ordered set with pointwise order on mappings: (for f and g 2 P Q , f g i¤, for any x 2 P , f (x) g(x)). A mapping f from P Q is said to be isotone, if x y implies f (x) f (y), antitone if x y implies f (x) f (y), for any x; y 2 P . The set of all isotone mappings from P Q (resp, antitone mappings from P Q ) is denoted by Isot(P; Q) (resp, Anti(P; Q)). They are suborders of P Q . A mapping f of P Q is said to be resituated (resp,residual) if, for any y 2 Q, f 1 (y #) is a principal ideal of (P; ) (resp, f 1 (y ") is a principal …lter of (P; )). The set of such mappings are denoted as Res(P; Q) and ResL(P; Q); respectively. They are suborders of Isot(P; Q) for the pointwise order on mappings. A mapping f form P Q is said to be a Galois mapping if it is residuated from P into Q d (dual of Q). The set of such mappings denoted as Gal(P; Q) is a suborder of Anti(P; Q) for the pointwise order on mappings.

De…nitions and Notations

A closure operator ' of (P; ) is an operator satisfying the following conditions: for any x; y 2 P x y implies '(x) '(y) (Isotonicity)

x '(x) (Extensivity).

' '(x) = '(x) (Idempotence).

The set of such mappings denoted as (P ) is an ordered set for pointwise order on mappings.

A Galois connection between (P; ) and (Q; ) is a pair (f; g) antitone mappings f : P ! Q and g : Q ! P such that both f g and g f are extensive.

A poset (P; ) is a lattice, if for all x; y 2 P have join denoted x _ y and meet denoted x ^y.

Example 2

The set of all partitions of the set X of cardinality n (denoted P n ) endowed with the order re…nement is a lattice.

(P; ) is a complete lattice if, any subset X of P has a join and a meet, denoted by _X and ^X, respectively.

The least element of (P; ) is denoted by 0 P (if it exists) and its greatest element denoted by 1 P (if it exists).

An element j of (P; ) is a join-irreductible if, for any subset X of P , j = _X implies j 2 X. Dually, i 2 P is a meet-irreducible element, if i = ^X implies i 2 X. Let J (P ) and I(P ) be respectively the sets of all the join-irreductibles and all meet-irreductibles of (P; ). If (P; ) is …nite, J (P ) is the set of elements j of P that covers an unique element denoted by j and I(P ) is the set of elements i 2 P that are covered by an unique element denoted by i + . If for j 2 J (P ), j = 0 P ; j is called atom of (P; ); and the set of such elements is denoted by A(P ). Dually, if for i 2 I(P ), i + = 1 P , i is called coatom (dual-atom); and the set of such elements is denoted by C(P ). For other de…nitions not recalled here see [START_REF] Birkho¤ | Lattice theory[END_REF] and [START_REF] Davey | Introduction to Lattices and order[END_REF].

Covering relation in lattice of ultrametrics

We study the covering relation in the lattice of ultrametrics on X, set of cardinality n (jXj = n), with values in the chain C(k), k n. This lattice will be denoted U X;C(k) . We …rst recall some basic results on ordered set ResL(P; Q) when (P; ) and (Q; ) are both lattices and some other related …elds, precisely those that are well known in data analysis.

Theorem 1 (Shmuley [START_REF] Shmuley | the Structure of GALOIS Connections[END_REF]) Let be two ordered sets (P; ) and (Q; ). If, (P; ) and (Q; ) are complete lattices, then the ordered sets Res(P; Q), ResL(P; Q) and GaL(P; Q) are also complete lattices. Furthermore, the ^-complete morphisms between (P; ) and (Q; ) (resp,the _-complete morphisms) constitute exactly ResL(P; Q) (resp, Res(P; Q)).

This result is due to Shmuley [START_REF] Shmuley | the Structure of GALOIS Connections[END_REF]. Some results of Blyth and Janowitz (Exercise 2.21 page 37 [START_REF] Blyth | Lattices and ordered Algebraïc structures[END_REF], Exercise 4.1 page 32 [START_REF] Blyth | Residuation theory[END_REF] and Exercise 1.10 page [START_REF] Blyth | Lattices and ordered Algebraïc structures[END_REF]) are summarized in the following statement.

Theorem 2 (Blyth and Janowitz [START_REF] Blyth | Residuation theory[END_REF], Blyth [START_REF] Blyth | Lattices and ordered Algebraïc structures[END_REF]) -Any morphism lattice between (P; ) and (Q; ) is isotone if and only if, (P; ) is a chain. -If (P; ) and (Q; ) are both chains, then ResL(P; Q) is a lattice, sublattice of Isot(P; Q).

-Any isotone mapping from m into n is residual if and only if, f (m) = n. Some other results of Barthelemy,Leclerc and Janowitz ([2], [START_REF] Janowitz | An order theoric model for cluster analysis[END_REF], [17], [START_REF] Leclerc | the residuation Model for the ordinal construction of dissimularities and other Valued objects[END_REF]) are summarized in the following statement. 

f ^g(k 1) = f (k 1) ^g(k 1) = 1 Pn ^1Pn = 1 Pn and f _ g(k 1) = f (k 1) _ g(k 1) = 1 Pn _ 1 Pn = 1 Pn . From Theorem 1, f ^g and f _ g are then the elements of ResL(C(k); P n ): For the sequel, assume that f g in ResL(C(k); P n ) such that there exists h 2 Isot(C(k); P n ) satisfying f < h < g. So, one has 1 Pn = f (k 1) h(k 1) g(k 1) = 1 Pn , therefore h(k 1) = 1 Pn : It result from Theorem 2 that the element h belongs to ResL(C(k); P n ), a contradiction. In other words, the covers in ResL(C(k); P n ) is the restriction of the covers in Isot(C(k); P n ) to ResL(C(k); P n ).
Theorem 5 Let be u and v two elements of U X;C(k) such that u v. Then ,for all elements x; y 2 X, we have u(x; y) 2 fv(x; y); v(x; y) + 1g.

Proof. We …rst observe that for any chain of elements of P n including the least and the greatest re…ned partition 0 Pn and 1 Pn ,i.e., 0 Pn :::

i i+1
:::

1 Pn , and for all elements x and y of X, there exists a smallest integer i such that x and y are both in the same block in partition i , and a greatest integer j such that they are separeted in partition j with j = i + 1. So, if we consider the residual mappings from C(k) into P n associated with the ultrametrics u and v respectively, one has from Theorem 3 and Theorem 4 v u

U X;C(k) () f g ResL(C(k);Pn) () f g Isot(C(k);Pn)
, and this, in view of Proposition 2.1 in Du¤us and Rival [START_REF] Du¤us | Structure and decomposition results for Function Lattices[END_REF], is equivalent to: (9 0 2 C(k) such that f ( 0 ) g ( 0 ) and f ( ) = g ( ) for all 6 = 0 ). Setting C 0 the chain of P n consisting of all elements f ( ) and g( ) where 2 f0; 1; 2; :::; k 1g including 0 Pn and 1 Pn ,i.e. , C 0 :

0 Pn f (0) f (1) ::: f ( 0 1) f ( 0 ) g( 0 ) g( 0 + 1) ::: g(k 1) = f (k 1) = 1
Pn . For all x and y of X, we can distinguish two cases. Firstly g( 0 ) is the smallet partition in C 0 such that x and y belongs to the same block; from above, f ( 0 ) is then the greatest partition in C 0 such that x and y are separated.In this case ,we show then that 0 = min f : 2 f0; :::; k 1gg such that x; y 2 to the same block of g( )g. Indeed, if there exist 1 0 1 such that x and y belongs to the same block of g( 1 ), this gives g( 1 )

g( 0 1) = f ( 0 1) f ( 0 ), and therefore x and y belongs to the same block in the partition f ( 0 ), a contradiction. Hence, v(x; y) is equal 0 , and the smallest value 2 f0; :::; k 1g such that x and y belongs to the same block in partition f ( ) is equal in C 0 such that x and y are in the same block. Clearly, one has u(x; y) = v(x; y). Finally, u(x; y) 2 fv(x; y); v(x; y) + 1g. The converse is not true. As illustration, we consider three ultrametrics u; v and w de…ned over X = fa; b; c; dg with values in the chain C(4) = 0 < 1 < 2 < 3, and represented by the following tables, repectively.

u : b c d a 0 2 2 b 2 2 c 0 v : b c d a 1 2 2 b 2 2 c 0 w : b c d a 1 3 3 b 3 3 c 0
Clearly,one has for all x; y 2 X; w(x; y) = u(x; y) or u(x; y) + 1, but u < v < w, i.e; w does not cover u.

Proposition 6 Let be an element of the lattice ResL(C(k); P n ) and u its associated ultrametric. Let be i belongs to f0; 1; :::; k 2g such that the length of the interval [f (i); f (i + 1)] is greatest than two. Then, for every element 2 P n satisfying f (i) < f (i + 1), the ultrametric associated to the residual mapping g from C(k) into P n described by g(j) = f (j) j 2 f0; 1; :::; k 2g and j 6 = i j = i is covered by u, and the number of such ultrametrics is equal to the number of elements that covers

f (i) in the sublattice [f (i); f (i + 1)].
Proof. Before starting the proof, we recall, on the one hand a classical result on combinatorial lattice partitions P n . Let be = 1 = 2 =:::= r and = 1 = 2 =:::= s two elements of P n with r and s their numbers of blocks respectively. Assume that < , then the interval [ ; ] is isomorphic to the direct product of lattice partitions P r 1 P r 2 ::: P rs with P s i=1 r i = r. On the other hand, g before de…ned is clearly an element of ResL(C(k); P n ); if, furthermore r and s are the number of blocks of f (i) and f (i + 1) repectively, it follows, from this, that the interval [f (i); f (i + 1)] is isomorphic to the direct product of lallices P r 1 P r 2 ::: P rs with P s i=1 r i = r. As well known, r i (r i 1)=2 is the number of atoms of P r i . Then, the number of elements that covers f (i) in the interval [f (i); f (i + 1)] is equal P s i=1 r i (r i 1)=2.

Notice that the dual result can be stated by the same argument above ,i.e; if, u is the ultrametric associated with f , then, for 2 P n such that f (i) < f (i+1), the ultrametric v associated to the residual mapping g from C(k) into P n described by g(j) = f (j) j 2 f0; 1; :::; k 1g and j 6 = i + 1

j = i + 1
covers u, and the number of such ultrametrics is equal to the number of elements covered by f (i + 1) in the sublattice [f (i); f (i + 1)] ; i.e, P s i=1 2 (r i 1) 1 ([1], [START_REF] Rota | the number of partitions of set[END_REF], [START_REF] Stanley | ordered structures and partitons Memoins[END_REF]).

Closures on …nite chain and Möbius function

Let be given k a non-negative integer and r k. In this section, we introduce two ordered sets denoted P r;k (P r;k P k ) and r;k consisting of ordered r tuples of intervals of the chain k and the ordered r partitions of the integer k, respectively. We …rst show that the disjoint unions [ 1 r k P r;k , [ 1 r k r;k and the ordered set as denoted Isot(r; k) = ff : r ! k strictly isotone with f (r) = kg are pairwise in one-to-one correspondence [START_REF] Aigner | Combinatorial theory[END_REF]. After, we give a way for described a subset of ResL(k; k) denoted Res (r) k; and we show that the set of closure operators of k denoted (k) is exactly the disjoint union of Res (r) k: Thus, we establish an order isomorphism between (k) endowed with pointwise order on mappings and [ 1 r k P r;k induced by ordered of re…nement. At last, we give a method for computing directly the Mobius function of the ordered set (k); and by inversion formula Möbius, we deduce the cardinality of any interval of (k). Before developing the study of ResL(k; k), let us recall that for any isoton mapping f from k into the ordered set (Q; ); its image denoted Imf is a chain of (Q; ).

If a 1 < a 2 < ::: < a r is the image of f and I = I 1 =I 2 =:::=I r the canonical partition associated with it, we ordered the set of these blocks fI 1 ; I 2 ; :::; I r g by setting:

I i I j , a i < a j
A such partition denoted I = I 1 =I 2 =:::=I r is an ordered r tuples of intervals of the chain k; that is ; I 2 P r;k . As well known, an isomorphism between the ordered set fI 1 ; I 2 ; :::; I r g and Imf is established (Stanley [28]).

Proposition 1 The three following sets P r;k , r;k and Isot(r; k) are pairwise in one-to-one correspondence.

Proof. The bijection between r;k and P r;k is obtained by the mapping de…ned:

k = k 1 + k 2 + ::: + k r ! (k) = [1; k 1 ] = [k 1 + 1; k 1 + k 2 ] =:::= [k 1 + k 2 + ::: + k r 1 + 1; k]
whose converse denoted 1 is given by I = I 1 =I 2 =:::=I r ! 1 (I) = jI 1 j + jI 2 j + ::: + jI r j

where jI i j is the cardinality of I i . The bijection between Isot(r; k) and P r;k is obtained by means of the mapping de…ned:

! ( ) = [1; (1)] = [ (1) + 1; (2)] =:::= [ (r 1) + 1; (r) = k]
Indeed, let be I = I 1 =I 2 =:::=I r an element of P r;k . The mapping from r into k described by: (i) = max(I i ); for every i 2 f1; 2; : : : ; kg is well the unique mapping strictly isotone from

r into k such that ( ) = [1; (1)] = [ (1) + 1; (2)] =:::= [ (r 1) + 1; (r) = k].
Hence, the one-to-one correspondence between P r;k and Isot(r; k) follows, implying then the one-to-one correspondence between Isot(r; k) and r;k whose cardinality (see [START_REF] Aigner | Combinatorial theory[END_REF]) equal C r 1 k 1 . This binomial coe¢ cient allows us to give in the last point in this section the value of Möbius function of lattice (k). Now, we are able to describe the subset denoted Res (r) k with the following way: an element g 2 Res (r) k is a mapping from k into itself whose cardinality of its image equal r (jIm gj = r); and such that there exists 2 Isot(r; k) Proposition 2 Let be an element f of Res (r) k. Then f satis…es the following properties 1. For all j 2 k; j f (j) (extensivity) 2. For all j 2 k, f f (j) = f (j) (idempotence)

g(j) = 8 > > > > > < > > > > > : (1) j 2 [1; (1)] (2) j 2 [ (1) + 1; (2)] . . . . . . ( r 
Proof. By de…nition of Res (r) k, f belonging to Res (r) k is given by where 2 Isot(r; k). f is clearly extensive and isotone (by construction); and on the other hand, one has for all j 2 [ (i 1)

f (j) = 8 > > > > > < > > > > > : (1) j 2 [1; (1)] (2) j 2 [ (1) + 1; (2)] . . . . . . ( r 
; (i)] ; f (j) = (i), since (i) 2 [ (i 1); (i)] implies f (i) = (i); that is f f (j) = f (j). Hence, f 2 (k).
Conversely, we show that any closure operator f over k which taking r values (r k) is an element of Res (r) k. Indeed, if a 1 < a 2 < ::: < a r is the image of f , by isotonicy, there exists an ordered r tuples of intervals of the chain k; i.e, I = I 1 =I 2 =:::=I r such that

f (j) = 8 > > > < > > > : a 1 j 2 I 1 a 2 j 2 I 2 . . . . . . a r j 2 I r
Thus, for all i 2 f1; 2; : : : ; rg, and all j 2 I i , one has, by extensivity j f (j) = a i , and then a i is an upper bound of I i . Morever, the idempotence of f implies that f (a i ) = a i ; i.e, a i 2 I i . Hence, a i = max I i . Therefore, f 2 Res (r) k.

As a consequence (k) = [ Proposition 3 Let be f and g two elements of (k) such that Im g Im f . Then f g.

Proof. Let be j 2k. By extensivity of g, one has j g(j), and by isotonicity of f , its follows that f (j) f g(j). Since g(j) 2 Im f , so the idempotence of f implies f (j) g(j); i.e, f g ( [START_REF] Morgado | Some results on closure operators of ordered sets[END_REF]). Proposition 4 Let be I and J two elements of [ 1 r k P r;k . Let be f I and g J the elements of (k) associated to I and J, respectively. Then, I J implies f I g J .

Proof. Consider I = I 1 =I 2 =:::=I s and J = J 1 =J 2 =:::=J t . The hypothese that I J implies t s and there exists 2 Isot(t; s) such that

J 1 = I 1 =I 2 =:::=I (1) J 2 = I (1)+1 =I (1)+2 =:::=I (2)
. . .

J t = I (t 1)+1 =I (t 1)+2 =:::=I (t)=s
Thus, the mappings f I 2 Res (t) k and g J 2 Res (s) k associated to I and J respectively are given by

f I (j) = 8 > > > < > > > : max I 1 j 2 I 1 max I 2 j 2 I 2 . . . . . . max I s j 2 I s and g J (j) = 8 > > > < > > > : max J 1 j 2 J 1 max J 2 j 2 J 2 . . . . . . max J t j 2 J t
By construction, Im g is obviously included in Im f and therefore, from proposition 4.3, f I g J .

Proposition 5 Let be two elements f and g of (k) such that Im g Im f . Let be I f and I g the canonical partitions of the chain k associated with f and g respectively. Then I f I g :

Proof. By de…nition of f and g, there exists 2 Isot(s; k) and 2 Isot(t; k) such that

f (j) = 8 > > > < > > > : (1) j 2 [1; (1)] (2) j 2 [ (1) + 1; (2)] . . . . . . (s) = k j 2 [ (s 1) + 1; (s) = k]
and

g(j) = 8 > > > < > > > : (1) j 2 [1; (1)] (2) j 2 [ (1) + 1; (2)] . . . . . . (t) = k j 2 [ (t 1) + 1; (t) = k]
where Then, the order isomorphism between (k) and [

I f = [1; (1) 
1 r k P r;k is established.
Note that in Morgan [START_REF] Morgan | The closure operators of a lattice[END_REF] it has been given a necessary and su¢ cient condition on (P; ) in order that (P ) be a complete lattice: if (P; ) is a complete lattice then (P ) is a complete lattice. In particular if P = k: Consequently the ordered set [ 1 r k P r;k is a lattice. Now, we propose to give a method for computing the value of Möbius function of (k). For every s 2 f1; 2; :::; kg, let be I (s) denote an ordered (k s + 1) tuples of intervals of the chain k of the following form: I (s) = =1234:::s==s + 1==s + 2==:::==k=; with this notation, the bounds of the lattice [ Proof. We …rst remark that the interval 0 k ; I (s) consists of elements I of [ Clearly, as de…ned is bijectif. On the other hand, the restriction to [ 1 r s P r;s of the re…nement implies that for J and K two elements of 0 k ; I (s) ;i.e , J = J 1 ==s + 1==s + 2==:::==k= and K = K 1 ==s+1==s+2==:::==k=, where J 1 and K 1 are two elements of [ 1 r s P r;s , J 1 K 1 , J k. Then, the isomorphism is established. Now, we are able to state the following result (see [START_REF] Crapo | the Möbius function in lattice[END_REF], [START_REF] Crapo | the Möbius Inversion in Lattices[END_REF], [START_REF] Stanley | ordered structures and partitons Memoins[END_REF]):

Theorem 8 (0 k ; 1 k ) = ( 1) k 1 .
Proof. For any element s belongs f0; 1; 2 : : : k 1g, let be (s) denote an element of [ Assume that the assertion is true until k 2; i.e, for all s k 2, ( (0) ; (s)) = ( 1) s : From the relation X

(0) (i) (k 1) ( (0) ; (i)) = 0; it follows that ( (0) ; (k 1)) = X (0) (i)< (k 1) ( (0) ; (i)) ( (0) ; (k 1)) = X (0) (i) (k 2) ( (0) ; (i)) X f (i)k (k 2)g ( (0) ; (i))
for some of rank equal k 2; and P (0) (i) (k 2) ( (0) ; (i)) = 0: This relation above may be written by choosing among all elements having the same rank k 2, the element I (k 1) de…ned before; i.e, I (k 1) = =123:::k 1==k=, and we get

( (0) ; (k 1)) = X f (i)kI (k 1) g ( (0) ; (i))
If we let W i denote the set consisting of elements of the lattice [ 1 r k P r;k the rank of which is i and which are incomparable with I (k 1) , i.e., W i = (i) ; (i) k I (k 1) . One has, from propositions 4.1 and 4.6, the cardinality of each W i , i = f0; 1; :::

; k 2g is equal to C k (i+1) k 1 C k (i+2) k 2 ; that is jW 0 j = C k 1 k 1 C k 2 k 2 jW 1 j = C k 2 k 1 C k 3 k 2 . . . jW k 2 j = C 1 k 1 C 0 k 2 :
Thus, by hypothesis induction we get

( (0) ; (k 1)) = jW 0 j 1 + jW 1 j ( 1) + ::: + jW k 3 j ( 1) k 3 + jW k 2 j ( 1) k 2
or equivalently

( (0) ; (k 1)) = h C k 1 k 1 C k 2 k 2 1 + C k 2 k 1 C k 3 k 2
( 1) + :::

+ C 1 k 1 C 0 k 2 ( 1) k 2 i = k 1 X i=1 C i k 1 ( 1) k 1 i k 2 X i=0 C i k 2 ( 1) k 2 i ! ; with k 2 X i=0 C i k 2 ( 1) k 2 i = 0 = k 1 X i=0 C i k 1 ( 1) k 1 i C 0 k 1 ( 1) k 1 ! ; with k 1 X i=0 C i k 1 ( 1) k 1 i = 0: Hence, ( (0) 
; (k 1)) = C 0 k 1 ( 1) k 1 = ( 1) k 1 :
We end this section with the use principle of Möbius inversion on [ In the case (t) = 1 k , the above relation can be written ( 1) k 1 s j[0 k ; (s)]j : (4.4) verify the Pickert's relation dualized; that is, for all element x and y belongs to P , x ' c (y) () a (x) y. Indeed, it su¢ ces to remark that for all y 2 P;

a ' c (y) = a y a 0 P y c

That is, a ' c (y) y and for all x 2 P ' c a (x) = 1 P x a 0 P x c

That is, x ' c a (x): Therefore, from x ' c (y), one has by isotonicity of a ; a (x) a ' c (y) y; thus, a (x) y: Also, from a (x) y; one has; by isotonicity of ' c , ' c a (x) ' c (y); thus , x ' c (y). Then, the pair (' c ; a ) constitutes a resituated-residual pair between (P; ) and itself.

We end this section with the following result:

Proposition 5 Let be (P; ) a distributive lattice non complemented with jP j 3 and denote its Möbius function. Then (0 P ; 1 P ) = 0:

Proof. Since (P; ) is distributive lattice non complemented with jP j 3, it follows that _ a2A(P )

a < 1 (see Exercise 7 page 18 [START_REF] Birkho¤ | Lattice theory[END_REF]). From this inequality above, there exists an element c 2 C(P ) such that _ a2A(P ) a c; or equivalenty a < c for all a 2 A(P ). Thus, by theorem 5.1 there corresponds to c a unique element j 2 J (P ) n A(P ) such that P = j " +c # with c ^j = j 6 = 0 P . Hence, the subset denoted E c;j described by fx 2 P , such that x ^c = 0 P g is reduced to the element 0 P . Then, the dual Wesneir's formula ( [START_REF] Crapo | the Möbius function in lattice[END_REF], [START_REF] Rota | the number of partitions of set[END_REF], [START_REF] Stanley | Enumerative Combinatorics[END_REF]) allows us to state: 0 = X

x: x^c=0 P (x; 1 P ) = (0 P ; 1 P ) :

Finally, we …nd again the well known result on non-complemented distributive lattice: (0 P ; 1 P ) = 0.

Example 1

 1 Let be (P; ) an ordered set (or poset). Let be a and b two elements of P . a and b are said to be comparable if a b or b a; if neither a b nor b a holds, a and b are incomparable, and we write a k b. The subset of all elements x 2 P such that a x b is called the interval [a; b], with a = min [a; b] and b = max [a; b]. We say that b covers a (denoted a b) if a b, a 6 = b, and for any x 2 P , a x b implies x = a or x = b. A subset C of (P; ) is called a chain, if its elements are pairwise comparable. For any non negative integer k (k 1), we denote by C(k) the chain 0 < 1 < ::: < k 1 and by k the chain 1 < 2 < ::: < k.

Theorem 3 -Proposition 4

 34 The set of all C(k)-dendogram on X (denoted D C(k) ) is exactly the set of residual mappings from C(k) into P n : -The sets D C(k) and U X;C(k) are in one-to-one correspondence.-D C(k) and U X;C(k) are lattices for pointwise order on mappings. Furthermore, they are dually isomorphics. ResL(C(k); P n ) is an sublattice of Isot(C(k); P n ) preserving covers. i.e., for two elements f and g 2 ResL(C(k); P n ), Let be two elements f and g of ResL(C(k); P n ). Then f; g, f ^g and f _ g are elements of Isot(C(k); P n ). It follows from Theorem 2 that f ^g and f _ g are morphisms lattices. Furthermore, one has

1 ) j 2 [

 12 (r 2) + 1; (r 1)] (r) = k j 2 [ (r 1) + 1; (r) = k] From proposition 3.2, g is clearly an element of ResL(k; k) which canonical partition associated denoted : I g = [1; (1)] = [ (1) + 1; (2)] =:::= [ (r 1) + 1; (r) = k]. Conversly, let be I = I 1 =I 2 =:::=I r an element of P r;k the unique element denoted g I belongs to Res (r) k associated with I is given by: It follows from proposition 4.1, that I = [1; (1)] = [ (1) + 1; (2)] =:::= [ (r 1) + 1; (r) = k]. So, for every r 2 f1; 2; : : : ; kg, Res (r) k and P r;k are in one-to-one correspondence, and then their disjoint union; i.e; [ 1 r k Res (r) k and [ 1 r k P r;k are also in one-to-one correspondence.

1 ) j 2 [

 12 (r 2) + 1; (r 1)] (r) = k j 2 [ (r 1) + 1; (r) = k]

  Res(r) k:It remains to show that (k) for pointwise order between mappings and [ 1 r k P r;k induced by the order of re…nement are isomorphics .

  ] = [ (1) + 1; (2)] =::: = [ (s 1) + 1; (s) = k] and I g = [1; (1)] = [ (1) + 1; (2)] =::: = [ (t 1) + 1; (t) = k]. Since Im g Im f , then the values (l 1) and (l), (l 2 f2; 3; : : : ; tg) belongs to Im f ,and by idempotence of f , f ( (l 1) + 1) = (l 1) + 1 and f ( (l)) = (l): Because of isotonocity of f , every i 2 [ (l 1) + 1; (l)] is invariant under f ;i.e, [ (l 1) + 1; (l)] = [ (i 1) + 1; (i)] = [ (i) + 1; (i + 1)] =:::= [ (m 1) + 1; (m)] ; where (l 1) = (i 1); (m) = (l) and 1 i m s.

Proposition 6

 6 1 r k P r;k are obtained by taking s = 1 and s = k; that is, I (1) = =1==2==:::==k= = min [ 1 r k P r;k (denoted simply 0 k ) and I (k) = =123:::k= = max [ 1 r k P r;k (denoted simply 1 k ). Let be s an element of the set f1; 2; : : : ; kg. Then the interval 0 k ; I (s) of the lattice [ 1 r k P r;k and the lattice [ 1 r s P r;s are isomorphic.

P

  r;k of the form I = I 1 =I 2 =:::=I m ==s + 1==s + 2==:::==k=, where I 1 =I 2 =:::=I m is an ordered m tuples of intervals of the chain s, m s. Let be then the mapping de…ned from 0 k ; I (s) into [ 1 r s P r;s by I = I 1 =I 2 =:::=I m ==s + 1==s + 2==:::==k= ! (I) = I 1 =I 2 =:::=I m

Remark 7

 7 It has been shown above that these lattices (k) and [ 1 r k P r;k are isomorphics; then, the Möbius function of these two lattice are the same. If we denote by this function, one has ( (k)) = ( [ 1 r k P r;k ) = (0 k ; 1 k )

  1 r k P r;k the rank of which is s, i.e, an ordered (k s) tuples of intervals of the chain k. (Notice that (0) = 0 k and (k 1) = 1 k ). We proceed by induction on the rank of [ 1 r k P r;k . It is easily to verify that for k = 2 and k = 3, ( (0) ; (2)) = ( 1) 2 and ( (0) ; (3)) = ( 1) 3 .

P

  r;k : rank( ) = s and (s)clearly, F ( (s)) = 1: And G : (t) ! G ( (t)) = X (s) (t) F ( (s))Thus, the principle of Möbius inversion on [ 1 r k P r;k gives:1 = F ( (t)) = X (s) (t) ((s) ; (t)) G ( (s)) : (4.1)

C k 1 s k 1 ( 1 )

 11 k 1 s G ( (s)) : (4.3) We can remark in the de…nition of G ( (s)) that it is exactly the number of elements of [ 1 r k P r;k smallest than (s); i.e, G ( (s)) = j[0 k ; (s)]j, we …nally get 1 = X s2f0;1;:::;k 1g C k 1 s k 1

  Proof. Because (s) and (s) have the same number of blocks, the intervals [ (s); 1 k ] and [ (s); 1 k ] are then isomorphics. For the second assertion, we have from proposition 4.1, that there exists exactly C k 1 s

			1 r k	P r;k for computing
	the cardinality of all interval of form [ (s); 1 k ], s 2 f0; 1; :::; k 1g ([9],[10]).
	Proposition 9 Let be (s) and (s) denote two elements of [ 1 r k	P r;k of rank s. Then
	1. The intervals [ (s); 1 k ] and [ (s); 1 k ] are isomorphic.	
	2. The number of such intervals is equal to C k 1 s k 1 :	
	k 1	of elements of rank s, and therefore, C k 1 s k 1	intervals of form
	[ (s); 1 k ].		
	Now, we apply the principle of Möbius inversion to the lattice [ 1 r k

P r;k . To do this, de…ne two mappings F and G from [

+

1; i:e:; u(x; y) = v(x; y) + 1: In the second case where g( 0 ) is not the smallesl partition

Proposition 10 For every s 2 f0; 1; :::; k 1g, the cardinality of [0 k ; (s)] is equal to 2 s .

Proof. We use induction on k. If we let k = 1 and k = 2 in the equality (4.3) of preceding proof, we obtain for k = 1, 1 = C 0 0 G ( (0)); i.e, G ( (0)) = 2 0 : For k = 2, 1 = P 1 s=0 C 1 s 1 ( 1) 1 s = 1+G( (1)); i.e., G( (1)) = 2 1 : Assume that G ( (s)) = 2 s is true for every s 2 f0; 1; :::; k 2g, for s = k 1 one has

)) : Thus,by hypothesis induction, we get

Closures on …nite distributive lattice

In section 3, we give some results on closure of distributive lattice. Thus, let be given ' a closure operator of a lattice (P; ) such that there exist an element cC(P ) which closed under '('(c) = c). The mapping denoted ' de…ned by ' = '(cx); xP , is again a closure operator of (P; ). If,in addition (P; ) is distributive, we get an upper bound of the cardinality of the fxP : '(x) = 1g. With similar argument above, we get also an upper bound of the subset fxP : (x) = 0g, where is a dual -closure of (P; ) such that there exist a A(P ) which closed under ((a) = a).

After, we give a su¢ cient condition in order that the following residual-closure constitutes an Galois connection between (P; ) and its dual (P ):('(x) = '(cx); (x) = (ax)): At last, we give a new simpler method for computing the Mobius function of distributive lattice. In what follow,a useful characterisation based on the cleavage property is mainly applied 9. 32 Thus,one has the following result.

Theorem 1 ([8], [START_REF] Monjardet | on a dépendance relation in …nité Lattices[END_REF], [START_REF] Shützenberger | Sur l'extension des théorèmes de dualité aux treillis distributifs non complémentés[END_REF]) A lattice (P; ) is distributive, if and only if, for every element j 2 J (P ) (j join-irreductible), there exists a unique element i 2 I(P ) such that P is the disjoint sum of j " and i #; that is, P = j " +i #. As consequence in this case, one has j ^i = j and j _ i = i + .

Notice that this theorem can be stated by taking the cleavage property dualised.

Proposition 2 Let be (P; ) a lattice and ' an closure operator on (P; ) such that there exist an element c 2 C(P ) which is closed under '. Then, the mapping denoted ' c de…ned by: ' c (x) = ' (c _ x) for all x 2 P , is again a closure on the same lattice. If, in addition (P; ) is distributive, one has: jfx 2 P : '(x) = 1 P gj j[j c ; 1 P ]j where j c is the unique element belongs to J (P ) which corresponds to c in the decomposition P = j c " +c #. If we let r m = jfx 2 P : '(x) = 1 P and rank(x) = mgj, then P m 0 r m min fc2C(P ):'(c)=cg j[j c ; 1 P ]j :

Proof. For c 2 C(P ) and x 2 P , one has

Clearly, ' c as de…ned above is again a closure operator of (P; ). If (P; ) is a distributive lattice; from theorem 5.1, there corresponds to c one and only one element denoted j c 2 J (P ) such that P = j c " +c #; that is, for all x 2 P , x c is equivalent to x j c : Hence,

Therefore, fx 2 P : '(x) = 1 P g = f x 2 P : x j c g; sincefx 2 P : '(x) = 1 P g f x 2 P : ' c (x) = 1 P g, then jfx 2 P : '(x) = 1 P gj j[j c ; 1 P ]j : If we let r n =j fx 2 P : '(x) = 1 P and rank(x) = mg ; we get …nally P m 0 r m min fc2C(P ):'(c)=cg j[j c ; 1 P ]j :

By the same argument above, we get the dual result, i.e, if is a dual-closure of (P; ) such that (a) = a for some a A(P ), one has the following inequality jfx 2 P : (x) = 0 P gj j[0 P ; i a ]j where i a is the unique element belongs to I(P ) such that P = a " +i a #. If we let S m = jfx 2 P : (x) = 0 P and rank(x) = mgj, then P m 0 S m min fa2A(P ): (a)=ag j[0 P ; i a ]j : Proposition 3 Let be (P; ) a distributive lattice. Let be a 2 A(P ) and c 2 C(P ). Then, the following conditions are equivalent 1. Each element of the pair (a; c) is the complement of the other.(this is equivalent to: a==c).

2. P is the disjoint sum of a " and c #; that is, P = a " +c # :

Proof. 1 ) 2. Let be a 2 A(P ). By theorem 5.1, there exists an unique element i 2 I(P ) such that P = a " +i #; since a and c are incomparable, it follows that c 2 i #. This implies c = i; i.e, P = a " +c #.

2 ) 1. These consequences of theorem 5.1 allows us to write a a _ c = c + = 1 P and a ^c = a = 0 P , where c + (resp. a ) is the unique element which covers c (resp. is the unique element covered by a). Therefore, each element of of the pair (a; c) is the complement of the other.