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Abstract

This article extends previous work by the authors on the single- and multi-domain time-harmonic
elastodynamic multi-level fast multipole BEM formulations to the case of weakly dissipative viscoelas-
tic media. The underlying boundary integral equation and fast multipole formulations are formally
identical to that of elastodynamics, except that the wavenumbers are complex-valued due to atten-
uation. Attention is focused on evaluating the multipole decomposition of the viscoelastodynamic
fundamental solution. A damping-dependent modification of the selection rule for the multipole trun-
cation parameter, required by the presence of complex wavenumbers, is proposed. It is empirically
adjusted so as to maintain a constant accuracy over the damping range of interest in the approxi-
mation of the fundamental solution, and validated on numerical tests focusing on the evaluation of
the latter. The proposed modification is then assessed on 3D single-region and multi-region visco-
elastodynamic examples for which exact solutions are known. Finally, the multi-region formulation
is applied to the problem of a wave propagating in a semi-infinite medium with a lossy semi-spherical
inclusion (seismic wave in alluvial basin). These examples involve problem sizes of up to about 3 105

boundary unknowns.

1 INTRODUCTION

Elastic wave propagation in unbounded media is a useful idealization for a variety of real-life engineering
problems, e.g. railway- or machinery-induced vibrations, seismic wave propagation, or soil-structure
interaction. Various domain-based numerical methods, such as the finite difference method [1, 2], the
finite element method [3, 4] and the spectral element method [5, 6] allow to solve elastic wave propagation
in three-dimensional unbounded media. They however require the discretization of large 3D regions,
leading after discretization to large systems of equations that easily involve millions of degrees of freedom
and are prone to cumulative numerical dispersion. Moreover, to avoid the spurious reflected waves induced
by artificially truncated domain boundaries, specific techniques such as absorbing boundary conditions
[7, 8], the perfectly matched layers (PMLs) [9–11] or infinite elements [12] must be implemented. On the
other hand, the Boundary Element method (BEM) [13, 14], in addition to the reduced model size allowed
by the boundary-only discretization, is very well suited to dealing with propagation in unbounded media
because of the built-in, exact satisfaction of radiation conditions.

However, solving the potentially large fully-populated non-symmetric linear system arising in the
classical BEM formulation entails unreasonably high CPU time and memory requirements. The fast
multipole algorithm is often applied to accelerate iterative solution algorithms applied to the global
linear system of BEM equations [15]. The capabilities of the Fast Multipole-Boundary Element Method
(FMBEM) and its recursive variant the Multi Level-FMBEM (ML-FMBEM) have rapidly progressed
during the last decade, allowing many engineering applications requiring large BEM models, in connection
with e.g. acoustics [16], elastodynamics [17], Stokes flows [18] or electromagnetism [19]. Fast BEMs have
also been proposed using other approaches, in particular based on hierarchical matrices [20–22].

FMBEMs for real values of the wavenumber k, which correspond to wave propagation problems
in undamped media, have been extensively studied and implemented, see e.g. [23–25] for background,
while the collocation FMBEM for 3D-frequency domain elastodynamics in homogeneous or piecewise-
homogeneous elastic media is addressed in [17, 26]. Importantly, these algorithms are backed by error
analysis results for the multipole expansion of the fundamental solutions, which also provide guidelines
about suitable settings of e.g. truncation parameters.

In contrast, only scattered efforts have so far been devoted to FMMs for Helmholtz-type problems
involving complex wavenumbers of the form k⋆ = k(1 + iβ), with β > 0 quantifying material damping.
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The overall FMBEM algorithm is identical to that for the corresponding lossless medium, but the setting
of important algorithmic parameters such as the truncation parameter is affected by β, an issue which has
not been studied in depth, in particular in terms of mathematical error analysis. A complex-wavenumber
FMBEM formulation for electromagnetic scattering is proposed in [27, 28], where the truncation param-
eter is empirically shown to increase with β in order to maintain a given accuracy on the fundamental
solution evaluation. Empirical studies on the low-frequency expansion [29] yield guidelines on the ad-
justment of the truncation parameter depending on β. The FMBEM analysis of sound fields in porous
materials is addressed in [30], where contributions from cells located beyond a certain normalized dis-
tance from the evaluation point are simply ignored, resulting in a well-conditioned influence matrix and a
reduced computational time. The latter approach is, however, not suitable for weakly dissipative media
(β ≪ 1) because the cut-off distance is proportional to β−1.

This work is concerned with carrying over the single- and multi-domain elastodynamic FMBEM
formulations of [17, 26] to the case of weakly dissipative viscoelastic media. Indeed, the ability to consider
material attenuation enables more realistic wave propagation modelling, allowing to e.g. reproduce the
amplitude decay of propagating waves or free vibrations or describe the finite amplitudes and phase
shifts of systems excited near resonance [31]. This article is organized as follows. Section 2 gathers
necessary background about the time-harmonic behavior of weakly dissipative viscoelastic media, the
relevant BIE formulation and its solution using the ML-FMBEM. Section 3 then concentrates on the
crucial task of evaluating the multipole decomposition of the viscoelastodynamic fundamental solution,
where a damping-dependent modification of the selection rule for the multipole truncation parameter,
required by the presence of complex wavenumbers, is proposed, empirically adjusted so as to maintain a
constant accuracy over the damping range of interest in the approximation of the fundamental solution,
and validated on numerical tests focusing on the evaluation of the latter. The proposed modification
is next assessed in Sec. 4 on full visco-elastodynamic examples for which an exact solution is known.
In Sec. 5, the visco-elastodynamic settings are finally applied to the multi-domain version of the ML-
FMBEM featuring a BE-BE coupling strategy, previously developed in [17] for the elastodynamic case,
and validated on a simple spherically-symmetric configuration and on the problem of a wave propagating
in a semi-infinite medium with a lossy semi-spherical inclusion (seismic wave in alluvial basin).

2 MULTI-LEVEL FM-BEM FORMULATION FOR 3D VISCOELASTODYNAMICS

2.1 The time-harmonic dynamics of viscoelastic media

Experimental evidence shows that strains below the so-called linear cyclic threshold strain correspond
to a nearly linear material response, whereas at larger strains non-linear behavior sets in and eventually
dominates. The intended applications of this work are seismic or traffic-induced wave propagation, for
which shear strain levels are below the linear threshold. In this range, the soil behavior is accurately
described, from the phenomenological point of view, by the theory of linear viscoelasticity.

Constitutive law for an isotropic linear viscoelastic medium. The constitutive relation for a
linear viscoelastic medium is given by [32]

σij(x, t) =

∫ t

−∞

Cijkℓ(t− τ) ε̇kℓ(x, τ)dτ, (1)

where σij(x, t) and εkℓ(x, τ) are generic components of the stress and linearized strain tensors and Cijkℓ is
the relaxation tensor. For an homogeneous isotropic viscoelastic medium, the relaxation tensor is written
in terms of two independent Lamé-type coefficients

Cijkℓ(t) =
[

λ(t)δijδkℓ + µ(t)(δikδjℓ + δiℓδjk)
]

H(t), (2)

where H(·) is the Heaviside step function. In this article, time-harmonic motions with angular frequency
ω are considered, and the strain then takes the form εij(x, τ) = εij(x)e

−iωτ ; a similar behavior is assumed
for all other time-varying quantities. Eq. (1) then becomes [33]

σij(x, t) =

[

iω

∫ ∞

−∞

λ(η)H(η)eiωηdη

]

εkk(x)δije
−iωt + 2

[

iω

∫ ∞

−∞

µ(η)H(η)eiωηdη

]

εij(x)e
−iωt,
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having used the transformation η := t − τ and with the zero lower bound of the integral replaced by
−∞ by virtue of (2). The terms inside square brackets are the Fourier transforms λ⋆(ω) of λ(t)H(t) and
µ⋆(ω) of µ(t)H(t), respectively. With the time factor e−iωτ omitted hereon, the constitutive relation (1)
is finally written in the form

σij(x, ω) = C⋆
ijkℓ(ω)εkℓ(x, ω), C⋆

ijkℓ(ω) = λ⋆(ω)δijδkℓ + µ⋆(ω)(δikδjℓ + δiℓδjk), (3)

which emphasizes the well-known formal analogy between linear viscoelastic and linear elastic time-
harmonic problems, the main difference between the two situations being that the Lamé coefficients,
wave velocities and wavenumbers are complex-valued and frequency-dependent in the viscoelastic case
(in which case an asterisk is used, in (3) and hereinafter, to distinguish them from their real-valued,
elastic, counterparts). For the present work, carried out in the frequency domain, the dependence of
the material damping on the frequency does not play a significant role, whereas time-domain analyses
would require an appropriate theoretical or empirical model for the lossy medium (soil), e.g. a rheological
model, which takes into account the attenuation-frequency dependence [34, 35].

Complex wavenumbers and mechanical parameters for weakly dissipative media. Complex
wavenumbers k⋆ have the form [34, 36]

(k⋆(ω))2 = ρω2/M⋆(ω) (4)

(where M⋆(ω) = Mr(ω)− iMi(ω), with Mr > 0 and Mi ≥ 0, is a complex modulus (e.g. M⋆ = λ⋆ or µ⋆)
and |M⋆(ω)| =

√

M2
r (ω) +M2

i (ω) its absolute value), and may be written as

k⋆(ω) = k(ω)[1 + iβ(ω)], (5)

where k(ω) (the real wavenumber) and β(ω) (the material damping ratio) are given by [37]:

k(ω) = ω

√

ρ(|M⋆|+Mr)

2|M⋆|2 , β(ω) =

√

|M⋆| −Mr

|M⋆|+Mr

. (6)

The material damping parameter β is mostly used in geotechnical earthquake engineering. Damping is
equivalently quantified using the loss factor η = 2β (in structural dynamics and vibration analysis), or the
attenuation Q−1 = 2β (in seismology [38] or acoustics [34]); all these parameters are clearly dimensionless.

In the case of weakly dissipative media, i.e. |Mi| ≪ Mr, a Taylor expansion of β(ω) in powers of
ζ(ω) := Mi(ω)/Mr(ω) yields

β(ω) = ζ(ω)/2 + o(ζ(ω)) (7)

Damping in real soils follows the weak-dissipation assumption, with typical values in the range β =
0.03− 0.06. The complex-valued Lamé constants can then be written as [33]:

µ⋆ = µ(1− 2iβµ) + o(βµ), λ⋆ = λ(1− 2iβλ) + o(βλ)

in terms of the distinct material damping ratios βµ, βλ which allow to distinguish the contribution to the
damping of shear and pressure waves. The complex shear wavenumber is hence given by k⋆S = kS(1+iβµ),

where kS = ω
√

ρ/µ is the real shear wavenumber. The complex pressure wavenumber k⋆P , the complex
Poisson’s ratio ν⋆ and the complex S- and P-wave velocities are then given by:

k⋆P = k⋆Sγ
⋆, ν⋆ = λ⋆ / (2λ⋆ + 2µ⋆), c⋆S =

√

µ⋆/ρ et c⋆P = c⋆S/γ
⋆, (8)

with γ⋆2 = µ⋆/(λ⋆+2µ⋆) = (1−2ν⋆)/(2(1−ν⋆)). For the sake of simplicity, the material damping ratios
are assumed to be the same, i.e. β = βµ = βλ, in the remainder of this article. The complex Poisson’s
ratio then reduces to the real Poisson’s ratio, i.e. ν⋆ = ν = λ/2(λ+ µ).

2.2 Viscoelastodynamic boundary element formulation

Let Ω ⊂ R
3 denote a region of space occupied by a three-dimensional isotropic homogeneous viscoelastic

solid. Assuming the absence of body forces, the displacement u is given at an interior point x ∈ Ω by the
classical boundary integral representation formula

uk(x) =

∫

∂Ω

[

ti(y)U
k
i (y−x;ω)− ui(y)T

k
i (x,y;ω)

]

dSy (x ∈ Ω), (9)
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where t is the traction vector. Uk
i (y−x;ω) and T k

i (x,y;ω) denote the i−th components of the displacement
and traction vector associated to the visco-elastodynamic fundamental solution generated at a point
y ∈ R

3 by a unit point force applied at x ∈ R
3 along the direction k, given by [39]

Uk
i (y− x;ω) =

1

k⋆2S µ⋆

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(‖y−x‖; k⋆S) +

∂

∂xi

∂

∂yk
G(‖y−x‖; k⋆P )

)

T k
i (x,y;ω) = C⋆

ijhℓ(ω)
∂

∂yl
Uk
h (y− x;ω)nj(y), (10)

in terms of the free-space Green’s function for the Helmholtz equation

G(r; k⋆) =
eik

⋆r

4πr
= e−βkr e

ikr

4πr
, (11)

and where n(y) is the outward unit normal and the relaxation tensor components C⋆
ijhℓ are given by (3).

In (11), waves emitted by a source point x are spatially oscillatory, which is reflected by the real wavenum-
ber k, while also exponentially decaying away from x when material damping is present, i.e. β > 0.

Assuming Neumann boundary conditions for definiteness, the limiting case x ∈ ∂Ω in the integral
representation (9) yields the singular boundary integral equation (BIE) [13, 14]:

(Ku)(x) = f(x) (x ∈ ∂Ω), (12)

with the linear operator K and the right-hand side f given by

(Ku)(x) = cik(x)ui(x) + (P.V.)

∫

∂Ω

ui(y)T
k
i (x,y;ω)dSy

f(x) =

∫

∂Ω

tDi (y)Uk
i (x,y;ω)dSy (x ∈ ∂Ω).

where (P.V.) indicates a Cauchy principal value (CPV) singular integral. The free-term cik(x) depends
on the local boundary geometry and it is equal to δik/2 at any smooth boundary point x ∈ ∂Ω.

The numerical solution of BIE (12) is based on a discretization of the surface ∂Ω into NE isoparametric
boundary elements, with piecewise-linear interpolation of displacements, based on three-noded triangular
boundary elements, used in this work. The NI displacement interpolation nodes thus defined also serve
as collocation points. A square complex-valued matrix equation of size N = 3NI of the form

KU = F, (13)

is obtained, where (i) U ∈ C
N collects the unknown nodal displacement components and (ii) K ∈ C

N×N

(influence matrix) and F ∈ C
N are discrete versions of K and f , respectively. Setting up K classically

entails computing all element integrals for each collocation point, at a O(N2) computational cost.

2.3 Multi-Level Fast Multipole BEM (ML-FMBEM)

The fully-populated nature of K makes both its storage and the application of direct solvers either
impractical or impossible for BEM model sizes exceeding N = O(104). Instead, iterative solvers such as
GMRES [40] must be used, but large BEMmodels require that integral operators (i.e., after discretization,
matrix-vector products KU) be evaluated using procedures which are faster than the standard method,
whose O(N2) complexity is prohibitive. A widely used approach for that purpose is the fast multipole
method (FMM), based on a reformulation of the fundamental solutions in terms of products of functions
of x and y. This allows to re-use integrations with respect to y when the collocation point x is changed,
and thus to lower the overall complexity (to O(N logN) using the multi-level form of the FMM).

The main features of the fast multipole BEM (FMBEM) formulation considered are those previously
developed in [26] for the elastodynamic (i.e. non-dissipative) case, based on the decomposition of G(r; k)
in diagonal form [15, 41, 42]. The latter, which rests upon choosing two poles x0,y0 respectively close to
x,y, recasting the position vector r = y−x as r = (y−y0) + r0 + (x0−x) = r0 + r′ (Fig. 1) and invoking
the Gegenbauer addition theorem (see [25] and [43] formulae 10.1.45 and 10.1.46), reads:

G(r; k⋆) = lim
L→+∞

GL(r; k
⋆), GL(r; k

⋆) :=

∫

ŝ∈S

eik
⋆ŝ.(y−y

0
)GL(ŝ; r0; k

⋆)eik
⋆ŝ.(x0−x)dŝ (14)
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ry

y0

r0

x

x0

r
′ = (y − y0) + (x0 − x)

Figure 1: Plane wave expansion of the Helmholtz Green’s function: decomposition of the position vector.

where S =
{

ŝ ∈ R
3, ‖ŝ‖ = 1

}

is the unit sphere and the transfer function GL(ŝ; r0; k
⋆) is given by

GL(ŝ; r0; k
⋆) =

ik⋆

16π2

L
∑

ℓ=1

(2ℓ+ 1)iℓh
(1)
ℓ (k⋆r0)Pℓ(ŝ.r̂0), (15)

in terms of the spherical Hankel functions of first kind h
(1)
ℓ and Legendre polynomials Pℓ, and with

r̂0 = r0/r0. Equation (14) essentially represents G as a superposition of plane waves. A key error
analysis result for the real-wavenumber case [25] states that, if x0,y0 are chosen so as to have

r′/r0 ≤ 2/
√
5 (r′ := ‖r′‖, r0 := ‖r0‖) (16)

there exist four constants C1, C2, C3, C4 such that for given ǫ < 1, one has |GL(r; k)−G(r; k)| < ǫ if [25]

L(r′) = C1 + C2kr
′ + C3 ln(kr

′) + C4 ln(ǫ
−1). (17)

The multi-level FM-BEM exploits a recursive subdivision of a cube enclosing the domain Ω (level 0)
into 8 cubic cells (levels 1, , 2 . . .), see Fig. 2. The subdivision process stops when the linear size of the
smallest cells becomes smaller than the threshold dmin = αλS corresponding to a certain preset fraction
α of the shear wavelength λS . The deepest level ℓ̄ reached in the subdivision process, termed the leaf

level, is such that d(ℓ̄+1) ≤ dmin ≤ d(ℓ̄). The presence of a lower threshold dmin is due to the divergent

behavior of h
(1)
n (z) in the small-argument limit, entailing a loss of accuracy when using small cell sizes.

The cell size threshold α has to be estimated through numerical tests. The value α = 0.3 was found to
be suitable in the elastodynamic case [26].

In this hierarchical structure, x0 and y0 in (14) are chosen as the centers of two cubic cells. For
two cells that are not adjacent (i.e. that do not even share a corner), one always has r′/r0 ≤

√
3/2.

Partitioning the space into cubic cells thus ensures verification of condition (16), and hence convergence

Ω

Ω

Level 0

Adjacent

Level 1

Level 2

Level 3

Level 4
cells

x0

(2)

( )

y(2)y0
( )

x

Figure 2: Sketch of the ML-FMBEM. For a given collocation point x, far field contributions from points

y belonging to non-adjacent cells are gathered at y
(ℓ̄)
0 , accumulated upwards at all parent cell centers up

to y
(2)
0 , transferred to same-level non-adjacent cell centers x

(2)
0 belonging to the interaction list of y

(2)
0 ,

accumulated downwards in all children cells down to x
(ℓ̄)
0 , and finally locally expanded at x about x

(ℓ̄)
0 .
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of (14) for L → +∞, whenever the collocation points x and the integration points y lie in non-adjacent
cells. The highest active level is ℓ = 2, as pairs of non-adjacent cells cannot occur at levels 0 or 1. The
multi-level FMBEM exploits the representation (14) to evaluate the influence of far integration points
y clustered around y0 on the collocation points x clustered around x0, y0 and x0 being the center of
non-adjacent clusters. The influence matrix K is then additively split into two parts. The part K

near

containing the contributions from adjacent cells, which is sparse, is set up (using usual BEM integration
and assembly techniques) and stored. The contribution K

FM exploiting the expansion (14) is neither
set up nor stored. Instead, the contribution K

FM
U to the matrix-vector product KU is computed for

each GMRES iteration. Summarizing, the acceleration introduced by the FM algorithm rests on (i) the
reduction of the integrations on ∂Ω coming from the separation of variables introduced in (14), and (ii)
the optimal tasks partitioning allowed by the recursive subdivision.

Truncation of the transfer function. The multipole expansion (14) is convergent in the limit L →
+∞ allowing the convergence of the viscoelastodynamic kernels. However, for computational reasons,
it is evaluated for a finite value of the truncation parameter L, and the FMBEM uses the truncated
approximation GL(r; k

⋆) of G(r; k⋆). Choosing a suitable truncation level L is delicate, as L has to be
large enough to guarantee sufficient accuracy in (14), while not exceeding values significantly larger than

k⋆r so as to avoid blow-up of the Hankel functions h
(1)
n occurring for n ≫ z.

Besides its influence on the convergence of (14), the parameter L affects both computational time and
memory consumption. Indeed, the numerical integration over the unit sphere S is based on a product rule
in the angular spherical coordinates (θ, φ) which needsO(L2) points overall [42], since the polar coordinate
θ ∈ [0, π] and the azimuthal coordinate φ ∈ [0, 2π] are treated using a (L+1)-point Gaussian rule and
a 2L-point uniform rule, respectively. This approach allows to integrate exactly the L2(S)-orthonormal
set of spherical harmonics (Yp,m(θ, φ))0≤p≤L,−p≤m≤p of order ≤ L.

The choice of the parameter L is thus critical for both the performance and the efficiency of the
FMBEM algorithm. In real-wavenumber problems, L is set according to a rule involving kD (with D
the length of the cell diagonal), and is thus level-dependent as a result. In particular, for an accurate
evaluation of decomposition (14), L must be slightly greater than kD [44].

In practice, selecting the truncation parameter L using rules inspired by (17) requires adjusting the
constants using numerical experiments [45, 46]. In elastodynamics, starting from a relation of the form

LE(D;C) = kD + C log10(kD + π), (18)

the constant C has been empirically set to C = 7.5, by seeking a trade-off between the RMS discrepancy
between ML-FMBEM versus standard BEM and the CPU time per iteration [26]. Relation (18) depends
on the cell linear size D through the dimensionless parameter k|r′|, hence is level-dependent.

3 TRUNCATION OF THE TRANSFER FUNCTION WITH COMPLEX WAVENUMBER

This section is concerned with the numerical evaluation of the plane-wave decomposition (14) when using
complex wavenumbers, so as to determine practical settings for the visco-elastodynamic ML-FMBEM
exploiting that representation of the fundamental solution.

3.1 Evaluation of the transfer function

The viscoelastic constitutive parameters of the medium, e.g. the wave velocities and wavenumbers, are
complex-valued and frequency-dependent (Sec. 2.1). This is expected to affect the ML-FMBEM mainly
through the setting of L for the evaluation of the kernel approximation (14). The latter, after replacing
the integral over the unit sphere S by a discrete quadrature with points ŝq ∈ S and weights wq, reads:

G(r; k⋆) ∼
Q
∑

q=1

wqe
ik⋆(ŝq.r

′)GL(ŝq; r0; k
⋆). (19)

In general, the error induced by using decomposition (14) for a finite value of L and replacing the
integration over S by the discrete numerical quadrature (featuring Q = O(L2) points) depends on r′
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(position of points x,y with respect to local poles x0,y0), |k⋆D| (dimensionless cell size), r0 (distance
between cells) and on the choice of quadrature rule. At any given level, the most unfavorable configuration,
leading to the least accurate evaluation of G(r; k⋆), corresponds to non-adjacent cells that are closest
(Fig. 3). This particular configuration has been considered as a reference configuration in the following.

Empirical observations in the real-wavenumber case (k⋆ = k, β = 0). When r0 increases, the
approximation GL(r; k

) of G(r; k) becomes more accurate, as shown in Fig. 4(a-c), where the relative
error ε = |GL−G|/|G| is depicted as a function of kd and L for three different relative distances between
cells r0 = 2d, 2D and 3D (Fig. 4, top left), d being the linear cell size and D =

√
3d the cell diagonal.

When r′ increases, i.e. the points x,y move farther from poles x0,y0, the exponential in (19) oscillates,
reducing the accuracy of GL, see Fig. 5.

Loss of accuracy of the multipole expansion in the damped case. For a given configuration of
cells and points, increasing values of the damping ratio β leads to a loss of accuracy in the evaluation
of G(r; k⋆). This is shown in Fig. 6 for two points x,y lying in a pair of closest non-adjacent cells and
such that r′ = 0.8D. The behavior of the spherical Hankel functions with complex arguments influences
the computation of the transfer operator (15); it is addressed in [47, 48]. The classical ascending three-

d

r0

Figure 3: Closest non-adjacent cells (r0 = 2d), for which GL yields a least accurate approximation of G.
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Figure 4: Influence of the distance between cells r0 on the accuracy of the multipole expansion: contour
lines of log10(ε). x and y are located at a fixed distance r′ = D.
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Figure 5: Influence of r′ on the accuracy of expansion (14): contour lines of log10ε (a) r′ = 0, i.e.
x = x0, y = y0; (b) r

′ = 0.6D; (c) r′ = D, i.e.x,y lie on opposite vertices.

term recurrence (TTR) formula [43] is stable and can be employed for the evaluation of h
(1)
n (k⋆r0) with

ascending n. The value of L defined by equation (18) becomes suboptimal for β > 0 and needs to be
adjusted as a function of β. To study the error due to the choice of L on the approximation GL(k

⋆, |r0+r′|)
of G(k⋆, r), a relative error ξ has been defined for the most unfavorable cell configuration (r0 = 2d) in
the form:

ξ2(β) =

(

∑

|k⋆d|

∑

r′

|G−GL|2
)/(

∑

|k⋆d|

∑

r′

|G|2
)

. (20)

Mesh nodes or quadrature points may lie anywhere in a cell. Thus, to obtain a realistic set of points
inside a cell, uniform and Gaussian distributions have been considered for r′. The error ξ(β) is depicted
in Fig. 7 (solid lines) for one distribution of r′ of each type. Although ξ(β) is lower for the Gaussian
distribution, the accuracy in the evaluation of G(k⋆, r) for both distributions progressively deteriorates
as β increases. In the following, we propose to modify the selection rule (18) by making it dependent on
β so as to achieve a constant average accuracy ξ over the damping range 0 ≤ β ≤ 0.1 representative of
weakly dissipative materials.

3.2 New damping-dependent selection rule for truncation parameter L

Having shown in section 3.1 that selecting L according to (18) does not guarantee that GL given by (14)
approximates G sufficiently well in the complex-wavenumber case, a modified selection rule that depends
on the damping level β, where LE(D;C) defined by (18) is replaced by LV(D;β,C1, C2) defined by

LV(D;β,C1, C2) = k⋆D + (7.5 + C1β) log10(k
⋆D + π) + C2β, (21)

is now considered. Note that (18) is a special case of (21), since LV(D; 0, 0, 0) = LE(D), and that
the influence of β on the selection rule is controlled by the adjustable constants C1, C2. The relative
error indicator (20) has accordingly be redefined so as to perform an averaging over the damping range
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Figure 6: Influence of β on the accuracy of expansion (14): contour lines of log10ε for two given points
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Figure 7: Relative error ξ in the numerical evaluation of expansion (14): influence of β and constants
C1, C2, for two assumed distributions of r′, with r0 = 2d fixed.

0 ≤ β ≤ 0.1:

ζ2(C1, C2) =

(

∑

β

∑

|k⋆d|

∑

r′

∣

∣G−GL

∣

∣

2
)/(

∑

β

∑

|k⋆d|

∑

r′

|G|2
)

. (22)

Suitable settings of C1, C2 are now sought from empirical tests. Figure 8 shows the contour lines of
ζ(C1, C2) for 0 ≤ C1, C2 ≤ 50 (blue lines) and the value of LV(D;β,C1, C2) (red lines). As C1, C2 > 0
increase, the value of L increases while decomposition (14) approximates G better. Many combinations
of C1, C2 thus achieve a given error level ζ. Among these, setting C2 = 0 and using a nonzero value for
C1 is seen to correspond to the lowest value of L, i.e. it is cheapest in terms of CPU time. This required
reformulating the adjustment rule for L in terms of a new function L′

V, with

L′
V(D;β,C) = k⋆D + (7.5 + Cβ) log10(k

⋆D + π) = LV(D;β,C, 0) (23)
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instead of LV defined by (21). To further illustrate this choice, which is retained thereafter, Fig 7,
shows ξ(β) defined by (20) as a function of β for the uniform and Gaussian distributions of points
and (C1, C2) = (0, 0), (50, 50) or (60, 0). In particular, the combination (C1, C2) = (60, 0) is seen to
return an almost constant accuracy over the damping range of interest, while (C1, C2) = (0, 0) leads to a
deteriorating accuracy as β increases.

4 FULL ML-FMBEM EXAMPLES IN 3-D VISCO-ELASTODYNAMICS

In this section, the effect of introducing the complex wavenumbers k⋆P,S into the complete ML-FMBEM
formulation, and in particular the importance of evaluating the kernels G(r; k⋆P,S) using the damping-
dependent selection rule (23) for L, are studied on two 3D visco-elastodynamic examples for which
analytical solutions are known. Both examples involve a spherical cavity of radius R embedded in a
viscoelastic isotropic infinite medium. In the first example the cavity surface is subjected to a time-
harmonic uniform pressure P (Fig. 9.a), while the second example considers the scattering by the cavity,
now assumed traction-free, of an incident plane P-wave (Fig. 9.b) defined by uinc = ∇ exp

(

ik⋆P z−βkPR
)

.
The corresponding analytic solutions are given for convenience in the Appendix. Only the surface of the
spherical cavity is meshed. The Poisson ratio is set to ν = 0.25, and the dimensionless frequency defined
as ηP = kPR/π. Three values of ηP have been considered, with the size of the models adjusted so as to
maintain a mesh density of about 10 points per S-wavelength, see Table 1.

The results obtained by selecting L according to either the existing real-wavenumber rule LE (18) or
the proposed complex-wavenumber rule L′(·, β, C) (23) are compared, in terms of relative RMS error,

R

Ω

P

x

z
y

o

R

Ω

P-wave

x

z
y

o
θ

(a) (b)

Figure 9: Geometry and notation: (a) pressurized spherical cavity, and (b) diffraction of a P-wave by a
spherical cavity.
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Mesh sphere3 sphere4 sphere5
N 7 686 30 726 122 886
ηP 1.5 3 6

Nb. levels 4 5 6

Table 1: Reference tests for the cavity problems. ηP = kPR/2π is the normalized frequency.

Level L
ηP = 1.5 ηP = 3. ηP = 6.

2 15 24 40
3 10 15 24
4 — 10 15
5 — — 10

Level L
C = 0 C = 60 C = 120 C = 150

2 24 31 38 42
3 15 21 27 30
4 10 15 20 22

Table 2: Spherical cavity example: values of L at the active levels given by rule (18) for the results of
Fig. 10 (left) and by rule (23) for the results of Fig. 11 (right)
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Figure 10: Spherical cavity example: results obtained by selecting L using the real-wavenumber rule LE,
for (a) the pressurized spherical cavity, and (b) the scattering of a P-wave by a spherical cavity.

CPU time per GMRES iteration and number of GMRES iterations, for the two examples considered.
Moreover, the values of L at the active levels given by rules (18) and (23) are given in Table 2.
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Performance of the previous rule LE. When LE is used (Fig. 10), i.e. for L independent on β, the
relative RMS error remains almost constant (or slightly decreases) as β increases, with the CPU time per
iteration also relatively insensitive to β, and GMRES converges within fewer iterations. The reduction
in the iteration count is ascribed to the exponential spatial decay of G(r; k⋆) with r for β > 0, which
balances the loss of accuracy in the kernel approximation.
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Figure 11: Influence of different values of the constant C in relation (23) : pressurized cavity (a) and
scattering by a spherical cavity (b) for ηP = 3.

Performance of the new β-dependent rule L′
V. To evaluate the influence of the constant C, the

two examples have been solved using several different values of C in L′
V(·, β, C); results are shown in

Fig. 11. In addition to the improved accuracy in the evaluation of G permitted by rule (23) (see Sec. 3.2),
this choice yields increasing solution accuracy (i.e. decreasing relative RMS solution error), at the cost of
a growing CPU time (due to the O(L2) quadrature points) as β increases. The case C = 0 corresponds
to L′

V = LE (real-wavenumber rule) and is reported for comparison. When too-large L are generated
(C = 150), the divergence threshold of the Hankel functions is reached for β = 0.1, with a sharp drop in
solution accuracy. The choice C = 60, which yields an approximately constant accuracy in the evaluation
of G, offers a good compromise in terms of computational efficiency. Hence, the final proposed damping-
dependent selection rule is:

L′′
V(D;β) = k⋆D + (7.5 + 60β) log10(k

⋆D + π) = L′
V(D;β, 60) (24)

Results obtained on the two example configurations using the selection rule (24) are reported in
Fig. 12. The good agreement between the ML-FMBEM and analytical solutions is also evident on
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Figure 12: Results using L=L′′

V: pressurized cavity (a) and scattering by a spherical cavity (b)

Fig. 13 for the scattering problem, with comparisons for the total radial displacement along radial lines
emanating from the sphere shown for several azimuths (θ = 0, π/4, π/2, 3π/4, π) and damping factors
(β = 0, 0.04, 0.08). For 0 ≤ θ ≤ π/2, the amplitude reduction occurring with increasing damping is
clearly seen. For θ > π/2, the amplitude growth with β is due to the apparent backward propagation on
the r/R axis (forward amplitude decay appearing as a backward exponential growth).

Remarks on the cell size threshold. The possibility to adjust the cell size threshold dmin = αλS

(Sec. 2) as a function of β is now investigated. Recall that α = 0.3 was found to be suitable in the
elastodynamic case [26]. Setting α = 0.15 instead adds one level to the octree. This extra level results in
loss of solution accuracy (of about one order of magnitude in terms of RMS), which for viscoelastic cases
is only partially compensated by the accuracy gains observed for increasing β, see Fig. 14 where the effect
of an extra level is tested for the two examples, with L set using (24). In Fig. 14b, the relative RMS error
for α = 0.15 and β > 0.08 has a value comparable to the elastodynamic combination α = 0.3 and β = 0
(in which case adding the new level led to acceptable results). However, this is not the case for the other
example. Thus, the presence of viscoelastic damping does not appear to allow a modification of α = 0.3,
e.g. by making it dependent upon β, that is guaranteed to yield uniform acceptable solution accuracy.
In fact, a simple β-dependent rule for determining α = 0.3 was tried, leading to similar conclusions.
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Figure 13: Scattering of an incident plane P-wave by a spherical cavity (with ηP = 4): comparison between
the ML-FMBEM and analytical solutions (radial displacement along radial lines emanating from the sphere)
for several azimuths (θ = 0, π/4, π/2, 3π/4, π) and damping factors (β = 0, 0.04, 0.08).

5 MULTI-DOMAIN ML-FMBEM IN 3-D VISCO-ELASTODYNAMICS

5.1 The multi-domain BE-BE coupling

Wave propagation analyses often involve heterogeneous media (e.g. seismic waves in geological structures).
Following the single-domain elastodynamic ML-FMBEM formulation [26], allowing to study e.g. the
amplification by topographical irregularities of seismic waves propagating in homogeneous media, a multi-
region version of the elastodynamic ML-FMBEM was proposed in [17]. Therein the elastic propagation
medium is partitioned into n piecewise-homogeneous subdomains Ωi (1 ≤ i ≤ n, Ω = ∪iΩi). For each Ωi,
a separate octree structure is defined, a boundary integral equation is formulated and the corresponding
contributions to the global matrix-vector product are computed. To ensure a global square system of
equations, linear combinations of the BE equations arising from collocation at nodes or interfacial element
shared by more than one subregion are defined, and the global matrix-vector product is evaluated by
combining accordingly the contributions coming from the various interfaces relative to each subregion.
Details on this elastodynamic ML-FM-based BE-BE coupling strategy are given in [17].

The possibility to account for material damping allows a more realistic modelling of seismic wave
propagation in alluvial soil deposits, which are lossy materials. Here, the previously discussed alterations
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Figure 14: Influence of the cell size threshold α = 0.3, 0.15 using the proposed L−relation: pressurized
cavity (a) and scattering by a spherical cavity (b).

to the previous elastodynamic ML-FMBEM allowing its extension to visco-elastodynamics have been
introduced into the multi-domain ML-FM BE-BE. The visco-elastodynamic multi-domain ML-FM BE-
BE thus obtained is now studied on numerical examples derived from those of [17], in order to study the
effect of damping.

5.2 Verification on a two-region example

Consider a spherical cavity of radius R1, surrounded by a spherical layer Ω1 of outer radius R2 and
embedded in a 3-D visco-elastic isotropic infinite medium Ω2, submitted to an internal uniform time-
harmonic pressure P , see Fig. 15. The materials in Ω1 and Ω2 are homogeneous and their mechanical
properties are detailed in Table 3. This problem has an analytical solution, given in the Appendix.

The damping in Ω2 is β2 = 0.05, while various values in the range 0 ≤ β1 ≤ 0.1 are considered for Ω1.
The size of the problem is N = 307, 224, and the octree for each region has a leaf level ℓ̄1 = ℓ̄2 = 5. This
problem has been solved with L set using either the elastic rule (18) or the damping-dependent rule (24).
Results on the relative error between the numerical and analytical solutions for the displacement on the
cavity wall and the interface between Ω1 and Ω2 are shown in Fig. 16, while the values of L1 at the active
levels ℓ1 = 2, 3, 4 given by rules (18) and (24) are reported in Table 3. Compared to the elastic rule LE,
the proposed damping-dependent rule L′′

V brings improvement on solution accuracy while requiring fewer
GMRES iterations, each iteration being however somewhat more expensive due to the fact that L′′(D;β)
increases with β.
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Figure 15: Multi-domain validation problem.
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Figure 16: Two-region example, comparison of results obtained with L set using either LE (18) or L′′

V (24).
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Figure 17: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:
geometry and finite boundary element discretization.

5.3 Seismic wave propagation in a canonical damped basin

In this section, an example previously used in [49] and [17] for elastic waves is considered, where a
vertically-incident plane P-wave propagates in a viscoelastic half-space containing a semi-spherical soft
basin Ω2 (Fig. 17). As the present FM-BEM is based on the full-space fundamental solution, the BE
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µ ν ρ
Ω1 4 0.25 3
Ω2 2 1/3 1

ℓ L
(ℓ)
1 = LE(·) L

(ℓ)
1 = L′′

V(·;β1)
(β1 = 0.04) (β1 = 0.1)

2 25 28 32
3 16 18 22
4 10 13 15

Table 3: Two-region example: material properties (left), value of L1 for active levels 2, 3, 4 using rules (18)
or (24), for β1 = 0.04 or 0.1 (right).

k
(1)
P

R/π N dmin/λS ℓ̄1 ; ℓ̄2 CPU/Iter;Nb Iter CPU/Iter ;Nb Iter CPU/Iter;Nb Iter
(β = 0) (β = 0.05) (β = 0.1)

0.5 17,502 0.15 5; 4 7.6; 26 7.7; 23 9.2; 22
0.7 17,502 0.15 6; 4 5.7; 34 5.9; 27 7.1; 24
1 90,057 0.3 5; 4 62.6; 51 72.7; 34 95.5; 29
2 190,299 0.3 6; 5 120.3; 95 153.7; 49 189.9; 35

Table 4: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:
computational data and results.

mesh must include the free surface (Fig. 17, here truncated within a radius D = 5R centered at the basin
center). The basin Ω2 and the complementary semi-infinite medium Ω1 are constituted of homogeneous,
isotropic and visco-elastic materials, with equal damping ratios (β(1) = β(2) = β) and other mechanical
parameters such that ν(1) = 0.25, ν(2) = 1/3, µ(2) = 0.3µ(1) and ρ(2) = 1.2ρ(1). Four different normalized

frequencies ηP = k
(1)
P R/π are considered. Computational data and results are summarized, for each

frequency and damping values β = 0.0, 0.05, 0.1, in Table 4, in terms of BEM model size N , cell division
threshold α = dmin/λS , number of levels of the octree for each subregion, CPU time per GMRES iteration,
and GMRES iteration count. The results obtained are consistent with observations made in the previous
sections. In particular, for increasing β, the iteration count drops while the CPU time per iteration
increases. Moreover, the necessary coincidence of the results for β = 0 with the corresponding ones
of [17] has been successfully checked.

Contour maps for the vertical and horizontal displacements, uz and uy, on the free surface are shown
in Fig. 18 for three levels of damping β, illustrating the effect of damping on the basin response. The
surface displacements are then compared in Fig. 19 with corresponding (elastic) results reported in [17]
for the four frequencies ηP = 0.5, 0.7, 1.0, 2.0. Damping is seen to reduce by up to roughly 30% (case

k
(1)
P R/π = 0.5, β = 0.1) the magnitude of the vertical displacement at the basin center, compared to the

undamped case.

Influence of the truncation radius D. An interesting issue concerns the choice of the truncation
radius D of the discretized free surface, i.e. the smallest value Dmin of D for which the solution is
insensitive to the free-surface truncation. Such parametric studies were conducted for the elastic case
in [17], and the results compared with those obtained using a semi-analytical approach in [49]. Here, it is
important to determine how Dmin depends on damping. Figure 20a shows |uz| on the soft basin surface
computed using meshes corresponding to different values D. The oscillations reflecting the sensitivity of
the solution to the choice of D in the elastic case (β = 0) are apparent. Convergence was found to be
achieved for D ≥ 13R in the elastic case [17], with oscillations of up to ±4% about the reference solutions
when using D < 13R. Here, with β = 0.05, such oscillations are strongly reduced, as shown in Fig. 20b.
Figure 21 emphasizes these observations by plotting the ratio |uz|(D)/|uz|ref at the basin center, with
|uz|(D) computed using given truncation radius D and |uz|ref := |uz|(D = 20R) a reference solution
obtained using D = 20R, the normalized frequency being set to ηP = 0.5. The fact that damping reduces
the solution errors caused by the free surface truncation allows to use lower values of D when dealing
with viscoelastic media, with truncation values Dmin = 6R (resp. Dmin = 3R) found to be suitable for
β = 0.05 (resp. β = 0.1).
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|uz|

(a) (b) (c)

|uy|

(d) (e) (f)

Figure 18: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

contour maps of |uz| (a,b,c) and |uy| (d,e,f) at k
(1)
P R/π = 2 for three levels of damping in both media

(β1 = β2 = β): (a,d) β = 0 (purely elastic case), (b,e) β = 0.05 and (c,f) β = 0.1.

5.4 Some remarks on preconditioning

This article does not address the very important, and still largely open, issue of preconditioning the
FMBEM. Frequently-used techniques include block-diagonal preconditioners [50, 51], the incomplete LU
factorization with threshold [52], the flexible generalized minimal residual method (fGMRES) proposed
in [53] and used e.g. in [54] for the 3-D Helmholtz equation), the sparse approximate inverse (SPAI [55]).
More recently, a preconditioning based on the Calderon identities for periodic transmission problems for
the 3-D Helmholtz equation has been proposed [56] for accelerating the convergence in the presence of
sharp solution variations caused by high velocity contrasts.

For multi-domain problems, the system matrix is populated with various blocks whose magnitude
depend on material properties, with magnitude disparities leading to significant increases in GMRES
iteration count. In a previous work [17], an equation scaling approach was implemented and shown on
various examples to reduce this problem. The iteration count is nevertheless known to increase with N
or k. A simple preconditioning strategy is proposed in [57], where the matrix of near interactions (i.e.
gathering the contributions from adjacent cells to the influence matrix K) is used in a preconditioning
matrix equation, which is solved using GMRES set with a low accuracy threshold (hence the iterative
solution algorithm features two nested GMRES solvers).

No preconditioner was used in this work, in order to compare “raw” versions of the FMBEM with
or without attenuation. The latter, moreover, does not appear to harm the GMRES convergence, since
the iteration count was usually found to reduce as β increases (see Figs. 10-12). The inner-outer pre-
conditioned GMRES solver previously used for the elastodynamic FMBEM can easily, and in due course
will, be incorporated into the present visco-elastodynamic FMBEM, with expected computational savings
similar to those observed in [57].
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Figure 19: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

influence of the damping (β = 0, 0.05, 0.1) on the surface displacements |uy| and |uz| at k
(1)
P R/π = 0.5 (a),

0.7 (b), 1 (c) and 2 (d).
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Figure 20: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:

influence of damping on the basin surface displacements at k
(1)
P R/π = 0.5 for different free surface truncation

radii D/R = 2, 4, 10, 15, 20: (a) β = 0, i.e. elastic case; (b) β = 0.05.

6 CONCLUSIONS

In this paper, the application of a previously-published ML-FMBEM for 3-D time-harmonic elastody-
namics (involving real wavenumbers) to linear visco-elastodynamics (involving complex wavenumbers,
with a small imaginary part accounting for weakly dissipative materials) has been investigated. While
the underlying BIE and FM formulations are formally identical to that of elastodynamics, the presence
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Figure 21: Vertically incident P-wave in a viscoelastic half-space containing a semi-spherical soft basin:
ratio |uz|(D)/|uz|ref for the vertical displacement at the basin center, with |uz|ref := |uz|(D = 20R).

of complex wavenumbers called for a reassessment of the main settings of the ML-FMBEM, and es-
pecially of the level-dependent rule for choosing the truncation parameter L. An empirical study has
been conducted, showing that a modified, damping-dependent selection rule for L improves the average
accuracy for the evaluation of the visco-elastodynamic fundamental solution over a range of material
damping ratio values β consistent with intended applications in civil engineering or geophysics. The
resulting visco-elastodynamic ML-FMBEM has been tested on several 3D example problems involving ei-
ther single-domain or multi-domain configurations, with comparisons to known analytical solutions made
in both cases. These examples involved BE models of size up to N ≈ 3 105 boundary unknowns. Finally,
the multi-region formulation was applied to the problem of a (seismic) wave propagating in a semi-infinite
medium with a lossy semi-spherical inclusion (seismic wave in alluvial basin). The influence of the trun-
cation radius on the free surface was tested on this problem, using BE models of size up to N ≈ 2 105.
As expected, accounting for material damping was found to permit lower values of the truncation spatial
radius than in the purely elastic case, implying substantial savings on the BE model size.

A ANALYTICAL SOLUTIONS FOR TEST PROBLEMS

A.1 Spherical cavity under uniform pressure

Let R be the radius of a spherical cavity embedded in a viscoelastic isotropic infinite medium and
subjected to an internal time-harmonic uniform pressure P . This spherically-symmetric problem has a
closed-form solution, with the radial displacement and stress given (with α = ik⋆PR, θ = 4(1−α)+α2/γ⋆2

and γ⋆ defined as in (8)), by

ur(r) =
PR2

µ⋆θr2
(R−αr) exp

[

α
( r

R
− 1

)]

, σrr(r) =
PR

θr3

(

− αr

γ⋆2
+4αRr− 4R2

)

exp
[

α
( r

R
− 1

)]

(25)

A.2 Spherical cavity under uniform pressure surrounded by a spherical shell

This spherically-symmetric problem also has a closed-form solution. Referring to Fig. 15, the radial

displacement u
(i)
r in domains Ωi (i = 1, 2) is such that u

(i)
r = ∂φi/∂r, with potentials φi given by

φ1 =
A1

r
exp(ik

⋆(1)
P r) +

B1

r
exp(−ik

⋆(1)
P r) , φ=

A2

r
exp(ik

⋆(2)
P r) (26)

where the coefficients A1, A2, B1 are found by solving




eα1(α1 − 1) −e−α1(α1 + 1) eα2(1− α2)
eα1µ1θ1 e−α1µ1(θ1 + 8α1) −eα2µ2θ2
eα3µ1θ3 e−α3µ1(θ3 + 8α3) 0











A1

B1

A2







=







0
0

−PR3
1γ

⋆2
1
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with α1 = ik
⋆(1)
P R2, α2 = ik

⋆(2)
P R2, α3 = ik

⋆(1)
P R1 and θi = 4(1 − αi) + α2

i /γ
⋆2
i (i = 1, 2) where γ⋆

i is
defined in each domain as in (25).

A.3 Scattering of a P-wave by a spherical cavity

ur =
1

r

+∞
∑

n=0

[Φ0i
n(2n+ 1)U

(1)
1 (k⋆P r) +AnU

(3)
1 (k⋆P r) + CnU

(3)
3 (k⋆Sr)]Pn(cos θ) (27)

uθ =
1

r

+∞
∑

n=0

[Φ0i
n(2n+ 1)V

(1)
1 (k⋆P r) +AnV

(3)
1 (k⋆P r) + CnV

(3)
3 (k⋆Sr)]

d

dθ
Pn(cos θ) (28)

with

U
(1)
1 (z) = njn(z)− zjn+1(z) V

(1)
1 (z) = jn(z)

U
(3)
1 (z) = nh(1)

n (z)− zh
(1)
n+1(z) V

(3)
1 (z) = h(1)

n (z)

U
(3)
3 (z) = n(n+ 1)h(1)

n (z) V
(3)
3 (z) = (n+ 1)h(1)

n (z)− zh
(1)
n+1(z)

and where the constants An, Cn, obtained from enforcing the traction-free boundary condition on the
surface of the spherical cavity, are given by

An = φ0i
n(2n+ 1)

[

T
(1)
11 (k⋆PR) T

(3)
43 (k⋆SR)− T

(1)
41 (k⋆PR) T

(3)
13 (k⋆SR)

]

/∆n

Cn = φ0i
n(2n+ 1)

[

T
(1)
11 (k⋆PR) T

(3)
41 (k⋆SR)− T

(1)
41 (k⋆PR) T

(3)
11 (k⋆SR)

]

/∆n

with

T
(1)
11 (z) = (n2 − n− 1

2
k⋆2S r2)jn(z) + 2zjn+1(z)

T
(1)
41 (z) = (n− 1)jn(z)− zjn+1(z)

T
(3)
11 (z) = (n2 − n− 1

2
k⋆2S r2)h(1)

n (z) + 2zh
(1)
n+1(z)

T
(3)
13 (z) = n(n+ 1)[(n− 1)h(1)

n (z)− zh
(1)
n+1(z)]

T
(3)
41 (z) = (n− 1)h(1)

n (z)− zh
(1)
n+1(z)

T
(3)
43 (z) = (n2 − 1− 1

2
k⋆2S r2)h(1)

n (z) + zh
(1)
n+1(z)

and
∆n = T

(3)
11 (k⋆PR) T

(3)
43 (k⋆SR)− T

(3)
41 (k⋆PR) T

(3)
13 (k⋆SR)
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