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Abstract: Classical models used in radiotherapy typically assume that after treatment all surviving
cells have a constant and homogeneous sensitivity during the treatment period. In Keinj et al. (2010), a
multinomial model based on a discrete-time Markov chain able to take into account both cell repair and
cell damage heterogeneity due to radiations has been proposed. In this paper, we introduce the notion
of lifespan for a single cell, a tumor and a normal tissue. We also determine the cumulative distribution
functions of these random variables. These results lead to original formulations of the tumor control
probability (TCP) and the normal tissue complication probability (NTCP). Finally, we propose a new
characteristic: the Efficiency-Complication Trade-off diagram which provides to the radiotherapeutist
all the information needed to choose the most appropriate treatment plan, i.e. the suited number of dose
fractions to be applied to control the tumor while preserving the adjacent normal tissue. ∗
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1. INTRODUCTION

Cancer is a disease that affects millions of people worldwide.
One of the common therapies used to treat cancer is external
beam radiotherapy. In this treatment, ionizing radiations are
used to eliminate tumors. The ionizations induced by radiations
cause a variety of possible lesions in cells, Curtis (1986). The
most harmful damages are the lesions which affect the DNA
structure, Feinendegen et al. (2008). Mathematical modelling
may help to quantify the effects of the radioactive treatments
on cell populations. It can be used to predict tumor growth and
cancer spread, but also allows to determine the effectiveness of
a specific treatment. Two probabilities are generally involved
in the design of a treatment plan in radiotherapy : (i) the
tumor control probability (TCP) and (ii) the normal tissue
complication probability (NTCP). The TCP is the probability
that all cancer cells are dead in the irradiated region, see Zaider
and Minerbo (2000); Dawson and Hillen (2006). The NTCP
is another probability that measures the sensitivity of normal
tissue to radiations. The optimum choice of radiation dose
delivery technique in the treatment of a given tumor is those
that maximizes the TCP while keeping the NTCP lower than
a given tolerance threshold. A classical method to obtain TCP,
and probably the most used one, is to evaluate the probability
that the surviving cell number, in the tumor, equals to zero. The
expression of TCP and NTCP requires stochastic models and
we are interested here in the simplest class of models used in
radiotherapy: the hit models associated with the target theory.
Note that other model structures, e.g. survival curves in Fowler

(1989), stochastic cell population-dynamic models in Sachs
et al. (2001)or the cell-cycle models, in Kirkby et al. (2002),
are also used to determine TCP and NTCP.

The target theory and hit-modeling paradigm were introduced
in the 1920s when biologists were beginning to apply quantum
physics to biology, see Dessauer (1922); Blau and Altenburger
(1922). The modeling of radiation effects on living cells was
initiated theoretically and experimentally by Lea and Catch-
eside (1942), and continued by Atwood and Norman (1949),
and Pollard et al. (1955). In this theoretical setting, it is assumed
that specific regions of the DNA called targets must be all
inactivated to kill the cell. Each target is deactivated when it
is hit by a number of radiation particules. Several classes of
hit models classified by the number of targets and the number
of hits were proposed, see Satow and Kawai (2006); Chapman
(2007); Ditlov (2009).

Unfortunately two main aspects of tumor growth are often miss-
ing in target and hit models: (i) the target reparation between
two consecutive dose fractions and (ii) the heterogeneity of
damages induced by radiations in the cancer cell population af-
ter each dose fraction. In Keinj et al. (2010), an extension of hit
models is proposed through a multinomial model that takes into
account the different states of a surviving cell corresponding to
the degree of DNA damage. Moreover, the proposed model is
able to describe both target reparation between two consecutive
dose fractions of the radiation schedule and the heterogeneity
of damages induced by radiations in the cancer cell population
after each dose fraction. In this multinomial model, a cell is



supposed to contain m targets which must be all deactivated to
produce cell death. The cell population is then split up into m+
1 categories. Like the majority of models used to measure the
cell mortality, the multinomial model examines the number of
surviving cells in a population. In this paper, we are interested
in developing this model for the following objectives:

• to introduce the lifespan of a single cell, a tumor and
a normal tissue and to study the randomness of these
lifespans by determining their mean values, variances and
their cumulative distribution functions;
• to use the previous probabilistic features to provide orig-

inal formulations of TCP and NTCP. A concrete applica-
tion of these results is to estimate the suitable dose to both
control the tumor and limit the damage in healthy tissues.

In Section 2 we give a reminder on the tumor growth multi-
nomial model. The modeling of the cancer cell lifespan T
is developed in Section 3. We then introduce the tumor and
normal tissue lifespans Ln0 and Ln̄,n̄0 in Section 4 and we give
new expressions of TCP and NTCP. Before concluding, we also
propose a new diagram that summarizes all the information
needed to choose the appropriate treatment schedule.

2. MULTINOMIAL MODEL

In Keinj et al. (2010), we have proposed a multinomial model of
tumor growth relying on the target and hit modeling paradigm.
This model is based on the following assumptions :

• a cell has m targets;
• each target may be made inactive by a single hit caused by

a radiation particule;
• the cell death happens when the m targets are deactivated;
• between two consecutive dose fractions, if the cell is still

alive then a target repair mechanism occurs;
• fractionated radiation doses are delivered at times k =

1,2,3, · · · , k is the number of treatment days.

2.1 Heterogeneity of cell states after radiations

We have m+1 possible states for a cell:

• state i, the cell has i inactive targets, i ∈ {0,1, . . . ,m−1},
they are the m states of a surviving cell;
• state m, the cell having m inactive targets is a dead cell.

Figure 1 shows the case of a 3-target cell and the corresponding
cell states. Let Zk the random variable denoting the state of

Zk
0 1 2 3

Fig. 1. 3-target cell, active and inactivated (crossed circles)
targets and damage state Zk at time k

the cell at time k, Zk = i ∈ {0,1, · · · ,m} is the number of
deactivated targets. We suppose that (Zk) is a discrete-time
Markov chain, i.e. the cell state at time k+ 1 only depends on
the current state at time k. Let Π be the corresponding transition
matrix. Moreover, m is an absorbing state, because when the
cell is died, it remains in state m with a probability equal

to 1. We model the dynamic of the Markov chain (Zk)k∈N by
taking firstly the effects of dose fractions, and secondly repair
mechanisms into account as follows

Π = PR, (1)
where P models the effects of dose fractions, and R describes
repair mechanisms. In this paragraph, the first row and first
column of a matrix will be noted by the index value 0.

2.2 Treatment effect modelling

Let P(i, j) the probability to deactivate j targets at time k+ 1
when i targets are disabled at time k. We assume that

• an active target becomes inactive with probability q;
• a deactivated target remains inactive with probability 1;
• the disabling of targets in the cell are independent events.

Therefore, if i targets are inactive then after applying a new
fraction dose we obtain j inactive targets with probability

P(i, j) =
{
(m−i

j−i )q
j−i(1−q)m− j i≤ j

0 j < i.
(2)

2.3 Cellular reparation modelling

We introduce now repair mechanisms of deactivated targets
which occur between two consecutive dose fractions. We sup-
pose that

• a deactivated target in an alive cell can be repaired with
probability r;

• an active target remains active with probability 1;
• the behaviors of the targets are independent.

Therefore, a cell in state i<m at time k may switch at time k+1
to the state j ≤ i if i− j targets among the i inactive targets are
repaired and with probability

R(i, j) =
{
(i

j)r
i− j(1− r) j j ≤ i < m

0 i < j.
(3)

When i=m, i.e. the cell is dead, the only possible case is j =m,
then R(m,m) = 1.

2.4 Probability distribution of Zk

Set νk = (ν0
k , . . . ,ν

m
k ) the probability distribution vector of Zk

with ν i
k = Pr(Zk = i). From the transition matrix Π and the

initial probability distribution ν0 of Z0, we can determine νk,
for all k ∈ N∗, using the Markov chain property,

νk = ν0Π
k. (4)

If we assume that all cells are initially in state i0 (i0 inactive
targets), then Pr(Z0 = i0) = 1 and ν0 = (ν0

0 , . . . ,ν
i0
0 , . . . ,νm

0 ) =
(0, . . . ,1, . . . ,0). Therefore, we obtain

ν
i
k = Π

k(i0, i) i ∈ {0, . . . ,m}. (5)

2.5 Multinomial model of the tumor

Consider a group of n0 cells that behave independently and with
the same dynamic. We suppose that each cell has m targets and
admits alternative damage and repair phases as explained at
the begining of this section. For i ∈ {0, . . . ,m}, let the random



variable Xk(i) denote the number of cells in state i, among the
n0 initial cells, at time k:

Xk(i) =
n0

∑
l=1

1
{Z(l)

k =i}
, i ∈ {0,1, · · · ,m}, (6)

where Z(l)
k is the number of inactive target(s) in the lth cell.

From our assumptions, Z(1)
k , . . . ,Z(n0)

k are i.i.d. and distributed
as Zk. Consequently, the random vector (Xk(0), · · · , Xk(m))
follows a multinomial distribution with parameters n0 and νk =
(ν0

k , . . . ,ν
m
k ) given in (5). Therefore,

P
(
Xk(0)= a0, · · · ,Xk(m)= am

)
=

n0!
a0! · · ·am!

(
ν

0
k
)a1 . · · · .

(
ν

m
k
)am

(7)
where a0, · · · ,am ∈ {1, · · · ,n0} and a0 + · · ·+ am = n0. The
number Xk(i) of cells in state i at time k follows the binomial
distribution with parameters n0 and ν i

k = Πk(i0, i),

Xk(i)∼B
(
n0,Π

k(i0, i)
)
. (8)
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Fig. 2. Fractionated radiation schedules (black bullets) with
5 dose fractions per week, and the mean size of the
living cell population: n0−E(Xk(m)) where k denotes the
number of dose fractions in the treatment schedule and
d is the discrete time based on a daily sampling rate.
Red circles show the 99.9% confidence interval on the
population size.

3. LIFESPAN T OF A CANCER CELL

3.1 Cell lifespan: definition and properties

In this section, we develop an original approach based on
the lifespan of a cancer cell which has received a sequence
of successive dose fractions of radiation. The cell lifespan is
the first (random) instant of treatment time when the cell is
dead. We would like to emphasize this new viewpoint of cell
mortality modeling. Indeed, in the usual hit models and in the
previous multinomial model, k is fixed and we only consider
random variables at time k, e.g. the number Zk of deactivated
targets. In the multinomial setting it has been proved that the
distribution of Zk is given by Πk.

Now, we consider a random variable T denoting the lifespan of
a single cell composed of m targets. In other terms, T is the first
instant k when the cell is in state m (death state) :

T = in f{i≥ 1; Zi = m}. (9)

The knowledge of T allows to recover information at time k
for instance T ≤ k is equivalent to Zk = m. Moreover T reveals
the dynamical aspect of the cell lifespan, so {T = k} = {Z1 6=
m, · · · ,Zk−1 6= m,Zk = m} and therefore involves the sequence
Z1, · · · ,Zk instead of Zk only. T gives naturally rise to Monte
Carlo simulations.

The counterpart is that we have to deal with a random element.
In Proposition 3.1 below, we calculate its mean time and the
associated variance. The second parameter permits to control
the variability of T around its mean value. This rough infor-
mation can be completed by the cumulative distribution which
highlights how T fluctuates.
Proposition 3.1. If the cell is initially in state Z0 = i0 ∈
{0, . . . ,m− 1}, the random variable T of the cancer cell life-
span verifies the following properties :

(1) The cumulative distribution function F of T is related to
the transition matrix Π:

F(k) = P(T ≤ k) = Π
k(i0,m).

(2) For all n ∈ N∗, the expected value E(T n) is finite and

E(T ) = ∑
k≥1

k
(
Π

k(i0,m)−Π
k−1(i0,m)

)
.

(3) The variance V (T ) is finite and given by

V (T ) = ∑
k≥1

k2(
Π

k(i0,m)−Π
k−1(i0,m)

)
−
(
E(T )

)2
.

Proof 1. According to the definition of T (cf (9)) and the
crucial fact that m is an absorbant state we have

P(T ≤ k) = P(Zk = m | Z0 = i0) ∀ k ∈ N∗. (10)

According to (5), we obtain

F(k) = P(T ≤ k) = Π
k(i0,m). (11)

2. Set

λ1 = max{1−Π(i,m),0≤ i≤ m−1} (12)
= max{ ∑

j≤m−1
Π(i, j),0≤ i≤ m−1} (13)

λ2 = max{Π(i,m),0≤ i≤ m−1} (14)
λ = max(λ1,λ2). (15)

Note that, λ1 < 1 and λ2 < 1 then λ ∈]0,1[. We prove that

P(T = k)≤ λ2λ
k−1
1 ≤ λ

k

only when k = 3. The general proof being similar:

P(T = 3) = P(Z1 6= m,Z2 6= m,Z3 = m)

= ∑
i1,i2≤m−1

Π(i0, i1)Π(i1, i2)Π(i2,m)

≤ λ2
(

∑
i1≤m−1

(
∑

i2≤m−1
Π(i1, i2)

)
Π(i0, i1)

)
≤ λ2λ1

(
∑

i1≤m−1
Π(i0, i1)

)
≤ λ2λ

2
1 ≤ λ

3.

As λ ∈]0,1[, we deduce that the mean value E(T n)< ∞, n≥ 1:



E(T n) = ∑
k≥1

knP(T = k) (16)

≤ ∑
k≥1

kn
λ

k < ∞.

For n = 1, E(T n) = E(T )< ∞. Now, we express E(T ) in terms
of the cumulative distribution function F . Thus,

E(T ) = ∑
k≥1

k
(
P(T < k+1)−P(T < k)

)
(17)

= ∑
k≥1

k
(
F(k)−F(k−1)

)
.

= ∑
k≥1

k
(
Π

k(i0,m)−Π
k−1(i0,m)

)
.

3. For n = 2, E(T 2) < ∞ and the variance of T is finite as it
given by:

V (T ) = E(T 2)−
(
E(T )

)2 (18)

= ∑
k≥1

k2(P(T < k+1)−P(T < k)
)
−
(
E(T )

)2

= ∑
k≥1

k2(
Π

k(i0,m)−Π
k−1(i0,m)

)
−
(
E(T )

)2
.

3.2 Confidence interval of T

We are interested in a most probable interval I i.e. I such that
P(T ∈ I)≥ 1−α, (19)

where 1−α is the confidence level. We restrict ourselves to
interval I of the type I =]E(T )− ε1,E(T )+ ε2]. The positive
real numbers ε1 and ε2 are determined by the conditions :

P
(
T ≤ E(T )− ε1

)
≤ β1 and P

(
T > E(T )+ ε2

)
≤ β2,

(20)
where β1 + β2 = α . For instance, α = 0.05, β1 = β2 = α

2 =
0.025.
The confidence interval I represents values of T for which the
difference between T and E(T ) is not statistically significant at
the α level. F being the cumulative distribution function of T ,
it is clear that (20) is equivalent to

F
(
E(T )− ε1

)
≤ β1 and F

(
E(T )+ ε2

)
≥ 1−β2. (21)

3.3 Numerical analysis

We present here a set of numerical experiments to show the
influence of the parameters q, r and the initial state Z0 = i0,
on the interval I in the case β1 = β2 = α

2 = 0.025. We fix
two parameters and we vary the third one. We implemented
the cumulative distribution function F on Matlab with m = 3.
Table 1, figures 3 and 4 present all the numerical results.

We can observe and quantify numerically the monotonicity
of the confidence interval I, specially when the efficiency of
the treatment or the repair mechanisms are changed. It also
appears that the interval I is smaller when the initial state of
the cell is fragile and also when the treatment is more efficient.
Conversely, the interval I becomes larger when the cellular
repair mechanisms are stronger.

4. ORIGINAL FORMULATIONS OF TCP AND NTCP

The TCP is the probability that all cancer cells are dead in
the irradiated region and the NTCP measures the sensitivity
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Fig. 3. Sensitivity of the cell lifespan T to the target deactivation
probability q
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Fig. 4. Sensitivity of the cell lifespan T to the target reparation
probability r

Fixed parameters Varied parameter E(T ) I
q = 0.4 Z0 = 0 5.76 [1,17]
r = 0.3 Z0 = 2 3.63 [1,14]
r = 0.3 q = 0.6 2.90 [1,7]
Z0 = 0 q = 0.8 1.70 [1,3]
q = 0.6 r = 0.2 2.75 [1,6]
Z0 = 0 r = 0.6 3.47 [1,10]

Table 1. Influence of the multinomial parameters
q, r and i0 on the confidence interval I of T with

m = 3, n0 = 104 and β1 = β2 = 0.025.

of the adjacent normal tissue for a given radiation treatment
schedule. These probabilities are simultaneously used to opti-
mize the quality of a treatment planning. The treatment goal
is to maximizes the TCP and to keep the NTCP lower than a
given tolerance threshold. In this section, we give an original
approach based on the cell lifespan to choose the optimal dose
fraction number for a treatment plan and we give new expres-
sions of TCP and NTCP.

4.1 Tumor Control Probability

The tumor control probability at time k is the probability to
destroy the tumor at this time. If Ln0 is the lifespan of the tumor,
then TCPk is the probability that Ln0 is lower than k,

TCPk = P(Ln0 ≤ k). (22)



n0 E(Ln0 ) J

n0 = 103 12.9 [10;18]
n0 = 106 23.6 [21;28]
n0 = 109 34.2 [31;39]
n0 = 1012 44.9 [42;50]

Table 2. Influence of the initial cancer cell number
n0 on the expected value and confidence interval J

of Ln0 .

In order to find an explicit expression of TCPk, we express Ln0
in terms of the single cell lifespans.

Lifespan Ln0 of the tumor. We consider a tumor initially
composed of n0 living cells. For each single cell j we associate
the corresponding lifespan:

T ( j) = in f{i≥ 1;Z( j)
i = m}. (23)

Ln0 corresponds to the time when the whole tumor is elimi-
nated, i.e. all the cells are killed. Ln0 can then be expressed with
respect to the variables {T ( j)} j∈{1,...,n0} as

Ln0 = max{T (1), . . . ,T (n0)}. (24)
Consequently,

P(Ln0 ≤ k) = P(T (1) ≤ k, . . . ,T (n0) ≤ k). (25)
Under the assumption that all cells behave independently and
with the same dynamic, T (1), . . ., T (n0) are then i.i.d. random
variables and have the same distribution as T (cf (11)). There-
fore, we obtain

P(Ln0 ≤ k) = P(T (1) ≤ k)× . . .×P(T (n0) ≤ k) (26)

=
(
P(T ≤ k)

)n0 . (27)
According to Proposition 3.1, equation (17) and the assumption
that all cells are initially in state i0, we have

TCPk =
(
Π

k(i0,m)
)n0 (28)

Confidence interval of Ln0 . Let J the confidence interval of
Ln0 of the type J =]E(Ln0)−κ1,E(Ln0)+κ2] and we determine
the positive real numbers κ1 and κ2 by the conditions :

P
(
Ln0 ≤ E(Ln0)−κ1

)
≤ 0.025 (29)

and
P
(
Ln0 > E(Ln0)+κ2

)
≤ 0.025. (30)

These conditions are equivalent to
G
(
E(Ln0)−κ1

)
≤ 0.025 and G

(
E(Ln0)+κ2

)
≥ 0.975,

(31)
where G(·) denotes the cumulative distribution function of Ln0 ,
i.e. G(k) := P(Ln0 ≤ k).

Numerical analysis

We implemented the cumulative distribution function G and
E(Ln0) in Matlab. Numerical results are given in table 4.1.2.
The mean lifespan of the tumor increases with n0 while the
width of the confidence interval remains almost constant.

4.2 Normal Tissue Complication Probability

Normal Tissue Complication Probability (NTCP) is the proba-
bility that a complication appears in the adjacent normal tissue.
A complication occurs when the number of dead cells in the
normal tissue is larger than a given threshold number n̄.

We suppose that the normal cells behave similarly than the
cancer cells, the difference coming from different values of the
model parameters. A normal cell contains m̄ targets, each of
them is deactivated with a probability q̄ and it is repaired with
a probability r̄. For simplicity, we use the same notation, as for
cancer cells, to denote the probability Π̄k(ī0, m̄) that a normal
cell is in state m̄ at time k (dead cell).

Lifespan T̄ of a normal cell. We consider a single normal cell
that contains m̄ targets. Let Z̄k be the random variable denoting
the state of the normal cell at time k and T̄ its lifespan. Similary
to the case of a cancer cell, T̄ is defined as

T̄ = in f{i≥ 1; Z̄i = m̄}, (32)
and the corresponding cumulative distribution function is

F̄(k) = P(T̄ ≤ k) = Π̄
k(ī0, m̄). (33)

Lifespan Ln̄,n̄0 of the normal tissue. Consider now a normal
tissue containing initially n̄0 cells and we define Ln̄,n̄0 the
random variable denoting the lifespan of the entire normal
tissue. For each cell j we associate the corresponding lifespan,

T̄ ( j) = in f{i≥ 1; Z̄( j)
i = m̄}. (34)

Let us rearrange these random variables into a nondecreasing
sequence

T̄ (1:n̄0) ≤ T̄ (2:n̄0) ≤ . . .≤ T̄ (n̄0:n̄0). (35)
where T̄ (l:n̄0) denotes the lifespan of l normal cells among n̄0.
This sequence is called the order statistics of T̄ (1), T̄ (2), . . . , T̄ (n̄0).
T̄ (l:n̄0) is called the lth order statistic.
Proposition 4.1. The normal tissue lifespan Ln̄,n̄0 is the n̄th

order statistic and the NTCP at time k is given by

NTCPk = P(Ln̄,n̄0 ≤ k) =
n̄0

∑
i=n̄

(n̄0
i

)
F̄ i(k)

(
1− F̄(k)

)n̄0−i
. (36)

Proof Firstly, we determine the distribution of T̄ (n̄:n̄0). As a
matter of fact, if we put

A j(k) = {T̄ ( j) ≤ k}, (37)
then

{T̄ (n̄:n̄0) ≤ k}= {
n̄0

∑
j=1

1A j(k) ≥ n̄}. (38)

As we have P
(
A j(k)

)
= F̄(k) and the events A1(k), · · · ,An0(k)

are independent then ∑
n̄0
j=1 1A j(k) ∼B(n̄0, F̄(k)):

P(T̄ (n̄:n̄0) ≤ k) =
n̄0

∑
i=n̄

(n̄0
i

)(
F̄(k)

)i(1− F̄(k)
)n̄0−i

. (39)

Finally, it is clear that NTCP at time k is given by
NTCPk = P(Ln̄,n̄0 ≤ k). (40)

4.3 Determination of a suited number of dose fractions

The main task in radiotherapy is to choose the treatment sched-
ule that permits to eliminate the tumor without causing signifi-
cant damage on the adjacent normal tissue. This question may
be reformulated as the choice of the appropriate treatment du-
ration. To help the radiotherapeutist to answer this question, we
propose a new diagram, entitled ECT (Efficiency Complication
Trade-off) which is inspired from the ROC (Receiver Operating
Characteristic) / DET (Detection Error Trade-off) curves used
in biometrics. The ECT diagram allows to compute both NCTP
(x-axis) and the treatment non-efficiency probability (1-TCP)
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Fig. 5. ECT diagram (Efficiency Complication Trade-off)

on y-axis for different values of k (number of treatment days).
In this diagram, the ideal therapeutic goal is the origin point O
(0,0) since it corresponds to a 100% efficient treatment and a
null risk of complication. Note that k→ TCPk and k→ NTCPk
are increasing.

Figure 5 shows the ECT curve for m = m̄ = 3, q = 0.7, q̄ = 0.6,
r = 0.3, r̄ = 0.2, n0 = 104, and n̄ = n̄0 = 103. We propose three
strategies to select a suitable treatment duration:

• A first choice consists in limiting the probability of com-
plication on normal tissues with a threshold fixed in this
example at 0.05 (dotted vertical line). Beyond this level,
the risk of complication is not acceptable. Subsequently,
the most appropriate number of dose fractions to be ap-
plied is given by k = 13 dose fractions with a treatment
non-efficiency probability estimated at 1−TCP≈ 0.3.
• A second choice is to give priority to the therapeutic

efficiency by using an non-efficiency threshold fixed in
this example to 0.05 (dotted horizontal line). This choice
leads to choose at least k = 16 days of treatment with a
risk of complication estimated at NTCP≈ 0.3.
• A third possibility is a trade-off choice which consists in

selecting the nearest point of the curve from the ideal point
O (0,0). In this case, the choice leads to select k = 14 days
of treatment with a non-efficiency probability lower than
0.2 and a complication probability NTCP≈ 0.05.

4.4 Limits

The current multinomial model used to calculate the tumor
lifespan, TCP and NTCP has two main limitations:

• it does not take by-standing effects into account in the cell
mortality process;
• and numerical errors occur during Matlab computations

when n0 > 1014. In other terms, this numerical problem
currently limits the application of our model to avascular
tumors (< 1mm3).

Nevertheless, studies are currently in progress to overcome
these two computational limits.

5. CONCLUSION

We have proposed an original approach that expresses the prob-
ability distribution of the cancer and normal cells lifespans in
terms of the treatment duration (or number of dose fractions)
in radiotherapy. Our approach relies on a multinomial model,
which is itself based on a discrete-time Markov chain. This
model takes into account (i) the variety of cell responses ac-
cording to their biological states and (ii) the repair mechanisms
that occur between dose fractions. The main contribution is the
introduction of two new response variables : the cancer cell
and tumor lifespans, T and Ln0 respectively. A new expression
of the TCP is proposed based on the cumulative distribution
function of Ln0 . The (1− α) confidence intervals of T and
Ln0 were also determined. We have also introduced the normal
tissue lifespan Ln̄,n̄0 and provided an original formulation of the
NTCP in terms of its cumulative distribution function G of T .
Finally, we have proposed a new representation, called ECT
(Efficiency-Complication Trade-off) which allows to optimize
both efficiency and complication of the treatment. This charac-
teristic could help the radiotherapeutist to choose the number of
dose fractions suited to control the tumor while preserving the
adjacent normal tissue.
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