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This paper introduces a new problem called the capacitated plant location problem with

customer and supplier matching (CLCSM). The product distribution from plants to custom-

ers and the material supply from suppliers to plants are considered together. We merge a

distribution trip and a supply trip into one triangular trip for saving allocation cost. Vehi-

cles from plants visit a customer and a supplier for each trip. We provide a heuristic solu-

tion procedure based on Lagrangian relaxation. Computational results indicate that the

proposed heuristic solution procedure is shown to be efficient yielding optimal or near-

optimal solutions for randomly generated instances.

1. Introduction

A supply chain consists of suppliers, manufacturers, customers, the flow of material, information, and finances between

them. The management of a supply chain system is divided into three levels: strategic, tactical, and operational, an efficient

coordination of which can significantly reduce the total cost. Supply chain network design usually begins with the selection

of the potential sites and the required capacity of the plants. Opening new plants requires a great deal of investment and the

plants are expected to operate for a long time, as mentioned by Melo et al. (2009). The location of plants has a long-term

effect on the operation of an entire supply chain and is one of the most important strategic decisions in the design of the

supply chain network.

The plant location problem and its extensions have been widely studied. The early location problems studied include

p-median problem, the set covering problem, the minimax problem amongst others. The first one involves selecting p plants

in a finite set to minimize the total weighted distances between the customers and the plants which satisfy the demand

(Hakimi, 1964). The second one finds the minimum number of plants needed to cover all demands with a maximum

acceptable service distance (Toregas et al., 1971). The third one which is p-center problem in this context addresses the

problem of minimizing the maximum distance between any given customer and their nearest plants, for details about these

three problems please see Owen and Daskin (1998). In addition, there are other kinds of plant location problems such as the
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capacitated plant location problem (CPLP), the uncapacitated plant location problem (UPLP), the single and multi source

location problem, two-echelon location problem, the location-routing problem (LRP) and so on. Details of these problems

are given in the following.

CPLP aims to find the set of open plants with limited capacity which satisfy the demands of all customers and whose

objective is to minimize the total cost, including the opening cost of plants and the allocation cost of assigning products

to customers (Balinski, 1965). Ignoring the capacity limitation of the plant, it is just the UPLP. If each customer is served

by only a single plant, the problem is the single source capacitated plant location problem (SSCPLP). Two heuristic methods:

greedy heuristic and interchange heuristic are used to solve a large scale SSCPLP in early research by Jacobsen (1983). An-

other heuristic method usually used to solve SSCPLP is the Lagrangian heuristic method proposed by Cornuejols et al. (1991).

Depending on the number of facility layers in which location decisions are made, the location problem is divided into

single-echelon, two-echelon and multiple-echelons. The process of two-echelon facility location problem is to locate facili-

ties, deliver products from plants to warehouses (hubs), then to customers. The objective is to minimize the opening cost of

the facilities and the allocation cost in order to satisfy the demands of the customers. It includes capacitated and uncapac-

itated two-echelon facility location problem. Many researchers have studied the two-echelon uncapacitated facility location

problem and developed algorithms to solve it, such as Marín (2007), Gao and Robinson (1992), Ro and Tcha (1984). Tragan-

talerngsak et al. (1997) have studied two-echelon capacitated facility location problem. In their model, each facility in the

second echelon which has limited capacity can be delivered by only one facility in the first echelon, and each customer is

served by only one facility in the second echelon. They proposed six heuristic methods based on Lagrangian relaxation

and compared these methods. Amiri (2006) has studied a special two-echelon capacitated location problem which allows

for multiple levels of capacities available to the warehouses and plants. Hinojosa et al. (2000) dealt with a multi-period mul-

ti-commodity two-echelon capacitated plant location problem in their paper. They developed a heuristic algorithm based on

Lagrangian relaxation.

The location-routing problem (LRP) is a research direction combining a classic location problem with a vehicle routing

problem. Generally LRP minimizes the opening cost of plants and routing cost to satisfy the demand of the customers by

limited vehicle and plant capacities in a potential set of facilities. Webb (1968), Eilon et al. (1971) and Laporte (1989) in-

volved this field early. Recently, Aksen and Altinkemer (2008) have studied a location-routing problem from the perspective

of distribution logistics. An augmented Lagrangian relaxation method is used to solve the problem. Caballero et al. (2007)

have presented a multi-objective location-routing problem, proposed a metaheuristic method based on tabu search and gi-

ven a practical application from real life. For more details see the survey by Nagy and Salhi (2007) and Min et al. (1998).

The location problems introduced above have a common feature that empty runs exist during the backhaul from custom-

ers to facilities. In a supply chain, a large manufacturing company usually has upstream material/parts suppliers (suppliers),

intermediate manufacturing/assembly plants, and downstream distribution centers (customers). The plants need to serve

customers to satisfy their demand while also needing a mass of material/parts supply to manufacture/assemble products.

The material/parts from suppliers to plants and the products from plants to customers are transported by vehicles. So the

transportation process is divided into two parts in this system: the supply trip and the distribution trip. Generally the

two trips are independent and there is a empty run for each trip. However, if the empty run can be used effectively, great

cost-savings can be made. It means merging a supply trip with a distribution trip into one trigonal trip. This is possible if

suppliers and customers are located and mixed in the same supply chain network. In the vehicle routing problem, Imai

et al. (2007) has described a similar case in which empty runs are used efficiently. As an important variant of vehicle routing

problems, the vehicle routing problem with backhauls (VRPB) contains both deliveries and pickups. The problem is to find a

good set of routes by which vehicles make deliveries and pickups after leaving the unique depot and any pickup loads are

carried on the backhaul after all deliveries have been made. Literature on the related vehicle routing problem with backhauls

is very numerous such as Gendreau et al. (1997), Osman and Wassan (2002). Exact branch and bound method, tabu search

algorithm, greedy heuristic method and so on are used to solve this kind of problem. The significant interest of combining the

plant location problem with VRP is self-evident. Considering customer and supplier matching in the same trip as part of the

plant location decision process will significantly influence the total location cost and future operational cost in a supply

chain.

In this paper, we study an extension of the plant location problem: the capacity plant location problemwith customer and

supplier matching (CLCSM). To the best of our knowledge, the most closely related research on matching customers and sup-

pliers is the uncapacitated facility location problem with client matching (LCM), is proposed by Gourdin et al. (2000) where

two clients allocated to a facility can be matched. In the LCM, the allocation cost includes two aspects: the cost of a return

trip between the facility and the client, and the cost of a trip containing the facility and two clients. A greedy heuristic and a

branch and cut algorithm are developed to solve the problem. However, the limitation of facility capacity and material sup-

ply are not considered in this problem. In the CLCSM, customers, suppliers and a set of potential plants are mixed in a same

network and each open plant holds its fleet of homogenous vehicles. It is assumed that the vehicles serve customers from a

plant, the same vehicles visit suppliers from customers, and then the vehicles transport material/parts from suppliers back to

the plant.

The remainder of the paper is organized as follows: Section 2 describes the characteristics of the problem. Section 3 pre-

sents the problem formulation. Lagrangian relaxation method and solution approaches to construct feasible solutions based

on an optimal solution of the relaxation problem are described in Section 4. Computational results are reported in Section 5.

Section 6 concludes the paper and gives the future research direction.
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2. Problem description

In general, in plant location problems with customers like situation 1 in Fig. 1, the plants send vehicles loaded with

products to serve customers and the empty vehicles come back from customers to plants. If we consider the transportation

process from the point of view of plants and ignore the difference in cost between loaded runs and empty runs, the allocation

cost of type 1 is proportional to the distances between customers and plants and is made up of two parts: the loaded

Fig. 1. The location problems.

Fig. 2. Trigonal customer and supplier.
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allocation runs and the empty backhaul runs. Yang et al. (2007) have described a location problem with suppliers like sit-

uation 2 in Fig. 1, where the upstream network suppliers are assigned to plants, and the allocation cost is proportional to

the distances between plants and suppliers, this also consists of two parts like the situation 1. We can see that the products

allocation to customers from plants or the material/parts transportation from the upstream suppliers to plants need two

runs: a loaded run and an empty run.

The plant location problem considering customers and suppliers similar to situations 1 and 2 is presented as situation 3 in

Fig. 1. The total allocation cost is proportional to the sums of the distances between plants and customers and the distances

between plants and suppliers. Besides, if the product assignment and material/parts transportation are matched, the total

cost will obviously decrease according to the geometric property that the sum of the length of two edges is longer than

the third one in a triangle, as shown in Fig. 2 based on the one by Imai et al. (2007). That is to say, vehicles with products

leave plants to satisfy the customers, unload the products there, visit proper suppliers empty (instead of going back to the

plants directly), then load material/parts there, transport the material/parts back to the plant. This is the capacitated plant

location problem with customer and supplier matching (CLCSM) described in situation 4 in Fig. 1. The total allocation cost of

this situation is proportional to the distance from plants to customers, from customers to suppliers and from suppliers to

plants.

The problem discussed here is the location of intermediate plants which need mass supplies of material/parts and prod-

ucts distribution, so full truckloads become necessary to the transportation process in this strategy and each vehicle visits a

customer and a supplier in each trip.

3. Problem formulation

In this section, a directed network GðN; EÞ comprised of a set of nodes N and a set of directed arcs E is considered. The set

of nodes N is composed of three categories: a set of potential plants H, a set of customers I, a set of potential suppliers J and

N ¼ H [ I [ J. The trigonal distance dhij is equal to dhi þ dij þ djh. That means the distance from the plant h visiting customer i,

from customer i to supplier j, from supplier j back to plant h. Each potential plant h 2 H with a limited capacity bh has a fixed

cost fh. The limited capacity of supplier j iswj. The demand of customer i is v i. We assume v i 6 wj for all i and j, v i 6 bh for all i

and h. As mentioned in Section 2, supplies of material/parts and products distribution are mass. Full truckloads are consid-

ered in the transportation process, so the demand and other abilities are multiple of truck capacity which means that the

unit of v i;wj and bh is measured by the quantity corresponding to the number of vehicles. For example, v i ¼ 5 means that

customer i needs five vehicles of products. c is the cost per unit distance per unit demand (vehicle). Klose and Drexl (2005)

mentioned a model similar to this. However, the allocation variable is not binary and the authors did not give an approach to

solve it. The problem can be formulated as a zero-one integer linear program as follows:

Model P:

Zp ¼ min
X

h

fhyh þ c
X

h

X

i

X

j

v idhijxhij ð1Þ

s.t.
X

h

X

j

xhij ¼ 1; 8i 2 I ð2Þ

X

i

X

j

v ixhij 6 bhyh; 8h 2 H ð3Þ

X

h

X

i

v ixhij 6 wj; 8j 2 J ð4Þ

xhij 2 f0;1g; 8h 2 H; 8i 2 I; 8j 2 J ð5Þ

yh 2 f0;1g; 8h 2 H ð6Þ

The objective function (1) is to minimize the total opening cost of plants and allocation cost. Constraints (2) ensure each cus-

tomer is served by one plant and matched with one supplier. Constraints (3) guarantee that each open plant does not supply

more than its capacity. Constraints (4) mean that suppliers’ capacity must be respected, and a selected supplier can be asso-

ciated with one or several customers. Constraints (5) and (6) are binary constraints. yh is equal to 1 if and only if a plant is

opened at site h, xhij is equal to 1 if and only if customer i and supplier j are assigned to open plant h, which means that cus-

tomer i, supplier j, and plant h are in the same trigonal trip.

To explain the model clearly, we give the following example. Input v1 ¼ 8;v2 ¼ 9;w1 ¼ 25;w2 ¼ 30; b1 ¼ 50, output

y1 ¼ 1; x111 ¼ 1; x121 ¼ 1, which means that the plant 1 transports eight vehicles of products to customer 1, unloads products

there, then eight empty vehicles travel to supplier 1, loads eight vehicles of material there, then travel to plant 1. The demand

of customer 2 is satisfied by plant 1 and supplier 1 in a similar way. So the supplier 1 is visited 8+9=17 times, the quantity of

material transported from supplier 1 to plant 1 is 17 which keep the flow equilibrium of plant 1.

The CLCSM is NP-hard, which is easily proved. When there is only one supplier with enough capacity, the CLCSM corre-

sponds to the particular case, the single source capacitated plant location problem (SSCPLP), which is known to be NP-hard

mentioned by Cortinhal and Captivo (2003). So the CLCSM is NP-hard.
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4. Solution approaches

4.1. The lower bound

As shown above, the problem is NP-hard. Commercial optimization software-packages can only solve small instances ex-

actly, and the solving process is time-consuming with large scale size of instances (see Section 5 below). Besides, basic relax-

ations such as the linear relaxation usually provide a weak lower bound. So we are seeking an effective heuristic algorithm

based on Lagrangian relaxation to solve this problem. Relaxing constraints (2) and (4) of problem P with multipliers ki and

lj; ki unrestricted, lj P 0;8i 2 I;8j 2 J, the relaxed problem is presented as follows:

PLR:

ZLRðk;lÞ ¼ min
X

h

fhyh þ c
X

h

X

i

X

j

v idhijxhij þ
X

i

ki
X

h

X

j

xhij � 1

!

þ
X

j

lj

X

h

X

i

v ixhij �wj

!

¼ min
X

h

fhyh þ
X

h

X

i

X

j

ðcv idhij þ ki þ ljv iÞxhij �
X

i

ki �
X

j

ljwj

subject to (3), (5) and (6).

We can decompose this problem into jHj subproblems, one for each plant h:

Ph
LR:

Zh
LRðk;lÞ ¼ min fhyh þ

X

i

X

j

ðcv idhij þ ki þ ljv iÞxhij

subject to
P

i

P

j

v ixhij 6 bhyh

xhij 2 f0;1g; 8i 2 I; 8j 2 J

yh 2 f0;1g

For each subproblem Ph
LR; yh is 0 or 1. If yh is equal to 0, xhij is equal to 0 for all i, j and the objective function is equal to 0 too

because of constraint
P

i

P

jv ixhij 6 bhyh. If yh is equal to 1, the subproblem Ph
LR with yh ¼ 1 can be formulated in the following

way.

min
X

i

X

j

ðcv idhij þ ki þ ljv iÞxhij

subject to
P

i

P

j

v ixhij 6 bh

xhij 2 f0;1g; 8i 2 I; 8j 2 J:

For each given plant h, each above subproblem can be transformed into a 0–1 knapsack problem. The transformed process is

shown in Algorithm 1. We solve it with the minknap algorithm proposed by Pisinger (1997). So the optimal solution of

PLR; ZLRðk;lÞ ¼
P

hZ
h
LRðk;lÞ �

P

iki �
P

jljwj, is a lower bound on the optimal value of the original problem P. The algorithm

which gives this lower bound is Algorithm 1.

Algorithm 1.

Fixed values for the multipliers and plant h are given.
Step 1 : For a given h 2 H, list all ðcv idhij þ ki þ ljv iÞ; i 2 I; j 2 J, and set hhij ¼ �ðcv idhij þ ki þ ljv iÞ. For

ðcv idhij þ ki þ ljv iÞP 0 which means hhij 6 0, we set x�hij ¼ 0, because the profit ðhhijÞ of those items of the

knapsack problem below are non-positive.

Step 2 : For each plant h listed, solve the following 0–1 knapsack problem using minknap and get the solution x�hij:

max
P

i

P

j

hhijxhij

subjectto
P

i

P

j

v ixhij 6 bh

xhij 2 f0;1g;8i 2 I;8j 2 J

Step 3 : Calculate the objective function value of the subproblem for each plant site h with x�hij:

Zh
LRðk;lÞ ¼ minffh þ

P

i

P

jðcv idhij þ ki þ ljv iÞx
�
hij;0g and if fh þ

P

i

P

jðcv idhij þ ki þ ljv iÞx
�
hij < 0; y�h ¼ 1, other-

wise y�h ¼ 0.

Step 4 : The function value of the relaxation problem is calculated by
P

hZ
h
LRðki;ljÞ �

P

iki �
P

jljwj
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4.2. The upper bound computation

We construct a feasible solution of CLCSM according to the optimal solution of the Lagrangian relaxation problem. There

may be some customers that are not served by any plants at all or matched with many plants and suppliers which violate

constraints (2) for the solutions of PLR. The solutions are repaired to satisfy constraints (2) in the first three steps of the fol-

lowing algorithm. For the solutions which violate constraints (4), we deal with them in the following way. J0 is the set of

suppliers the capacities of which are violated. Ij is the set of customers that are matched with j 2 J0. For each supplier

j 2 J0, we solve a subset–sum problem (SSP) described by Martello and Toth (1990) to obtain a subset I0j of Ij the total demand

of which is closest to and does not exceed the capacity of the supplier j 2 J0. The customers i 2 Ij=I
0
jare ordered by decreasing

order of their demand and assigned to other suppliers with enough (residual) capacity according to the lowest assignment

cost. For details see the Algorithm 2.

The algorithm used to construct a feasible solution is as follows.

Algorithm 2.

Step 1: For any y�h ¼ 0;h 2 H, set x�hij ¼ 0, for all i 2 I; j 2 J.

Step 2: For any i 2 I, if
P

h

P

jx
�
hij > 1, then assign the customer i to the plant hðy�h ¼ 1Þ and the supplier j with the

lowest cost (cv idhijÞ, and set x�hij ¼ 1, the others x�hij ¼ 0 (other matches are removed).

Step 3: For any i 2 I, if
P

h

P

jx
�
hij ¼ 0, order the customers i, by decreasing order of their demand v i; we denote the

residual capacity of h with rh. In this order, assign i to the open plant h which has the enough capacity

ðrh � v i P 0Þ, choose the plant h and supplier j which satisfies minrh�viP0
cv idhij, and set x�hij ¼ 1. We denote the

set of open plants with H0. If there is no open plant h 2 H0 satisfying the condition rh � v i P 0, a new plant

h 2 H n H0 ðy�h ¼ 0Þ must be open. The one with the least total cost ðminðfh þ cv idhijÞÞ relative to the customer i is

chosen and set y�h ¼ 1.

Step 4: For any j 2 J0; J0 ¼ fjj
P

h

P

iv ix
�
hij > wj;8j 2 Jg; J0 is the set of suppliers the capacities of which are violated,

i 2 Ij ¼ fijx�hij ¼ 1g, solving the following special case of knapsack problem called the subset–sum problem. It is

to find a subset of Ij; Ij ¼ fijx�hij ¼ 1, for a given j 2 J0;8h 2 Hg , which is the set of customers that are assigned to

a supplier j 2 J0:

(SSP)max
P

iv izi

subject to
P

i

v izi 6 wj;8j 2 J0

zi 2 f0;1g;8i 2 Ij

where

zi ¼ 1, customer i 2 Ij is assigned to supplier j 2 J0 again, we denote the set with I0j. zi ¼ 0 otherwise. SSP can be

solved with Pisinger’s algorithm.

For any customer i 2 Ij n I
0
j which means zi ¼ 0, order customer i by decreasing order of v i and assign customer i to

other suppliers ~j 2 J n fjg and ~h 2 H0 which have capacities with the lowest cv idhij and set x�hij ¼ 0, x�~hi~j ¼ 1.

Step 5: The value of the feasible solution (FS) can be obtained with the formula:
P

hfhy
�
h þ

P

h

P

i

P

jcv idhijx
�

hð~hÞijð~jÞ
.

4.3. The overall algorithm

In this section, a subgradient optimization method is adapted to solve the Lagrangian dual problem ZLRðc�Þ ¼ MaxcðZLRðcÞÞ
to find the optimal multiplier vector c�. This subgradient method is introduced by Fisher (1981) and applied widely in plant

Table 1

Notation used in numerical results.

CTL Computation time of the Lagrangian heuristic algorithm (s)

CTopt Computation time of small instances by the commercial solver Lingo 9.0 (s)

CTLN Computation time of linear relaxation (s)

NOpt Number of optimal solutions found by the Lagrangian heuristic algorithm

U_gap 100*(the upper bound–the optimal value )/the optimal value

L_gap 100*(the lower bound obtained by Lagrangian relaxation – the lower bound obtained by linear relaxation)/the lower bound obtained by

linear relaxation

Gap 100*(the upper bound–the lower bound obtained by Lagrangian relaxation)/the lower bound obtained by

Lagrangian relaxation

jIj Number of customers

jJj Number of suppliers

jHj Number of potential plants
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location problems such as Nozick (2001) and Li et al. (2009). In each iteration, for a given Lagrangian vector c ¼ fki;ljg, the

corresponding problem PLR is solved with Algorithm 1, then a lower bound of the original problem ZLRðk;lÞ can be obtained.

Based on the solution of problem PLR, a feasible solution is given by the Algorithm 2. The Lagrangian multipliers ki;lj are

updated with (7) and (8) in the Algorithm 3. In order to prevent constraints (4) dominating the calculation of the updates

Table 2

Comparison of heuristic feasible solutions to optimal solutions in small instances.

jIj jJj jHj U_gap (%) Gap (%) NOpt CTL CTopt

20 5 5 0.68 4.03 3 33 1

20 10 5 0.25 7.57 4 31 2

30 10 5 0.35 4.97 2 35 6

40 10 5 0.23 3.97 1 35 4

50 15 15 0.47 4.32 0 107 43

80 20 20 1.85 6.74 0 160 970

Table 3

Comparison of Lagrangian relaxation and linear relaxation.

jIj jJj jHj L_gap (%) Gap (%) CTL CTLN

100 15 10 3.22 6.24 103 11

100 20 10 1.81 5.39 102 17

100 50 10 3.82 5.44 134 47

100 50 15 0.65 8.27 193 93

200 50 20 2.75 4.79 429 758

Table 4

Performance of the overall solution procedure.

jIj jJj jHj Gapavg (%) Gapmin (%) Gapmax (%) CTL

100 20 10 5.39 3.24 7.13 102

100 25 10 4.25 0.98 6.16 97

100 30 10 5.78 2.52 9.49 110

100 35 10 4.82 3.22 6.47 111

100 40 10 4.67 2.92 7.35 115

100 45 10 5.04 1.87 8.18 124

100 50 10 4.93 1.59 8.86 131

100 55 10 4.69 3.38 6.39 138

100 60 10 7.10 4.48 8.49 144

100 65 10 4.28 2.77 5.88 154

100 30 15 6.55 5.39 8.18 155

100 40 15 6.42 3.57 8.86 182

100 50 15 6.87 4.16 8.75 197

100 60 15 6.91 5.07 8.71 214

100 70 15 6.65 5.08 7.85 272

200 30 20 6.10 3.75 8.08 323

200 40 20 6.18 4.65 9.33 374

200 50 20 4.79 2.96 5.66 430

200 60 20 5.86 5.09 8.07 496

200 70 20 7.16 5.58 9.68 563

200 100 20 6.22 4.95 8.69 740

200 30 30 7.09 5.58 9.32 499

200 40 30 5.95 4.34 7.77 538

200 50 30 6.77 4.32 8.34 621

200 60 30 7.19 5.02 9.13 718

200 70 30 6.84 4.42 9.79 812

300 40 30 6.76 3.11 8.74 775

300 50 30 6.78 4.98 7.70 1020

300 60 30 5.92 4.02 7.57 1061

300 70 30 5.94 4.39 6.93 1201

300 100 30 7.25 6.25 9.79 1650

300 40 45 6.78 5.20 8.38 1474

300 50 45 7.17 5.61 9.46 1579

300 60 45 7.12 5.07 8.93 1575

300 70 45 6.33 5.20 6.98 2052

400 60 40 6.06 4.75 7.38 1842
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of the multipliers we also deal with constraints (4) by dividing the equation by wj just like Nozick (2001) did in his paper,

because the updates are based on the sum of the square of the differences between the both sides of the relaxed constraints.

In Algorithm 3, two termination criteria are set. One is Maxit which means the maximum number of iterations, the other is �
which denotes the allowable gap between the best upper bound UB and the best lower bound LB. We set Maxit ¼ 700 and

� ¼ 0:001. If one of the termination criteria is met, Algorithm 3 stops. a is a positive parameter with 0 6 a 6 2. We set a ¼ 2

initially and halved its value when the best lower bound did not improve over 50 consecutive iterations. We also initialize LB,

UB, and multipliers.

The overall algorithm is presented as follows:

Algorithm 3.

Initialization

Set the current iteration (k) to 0.

Set the Lagrangian multipliers kk ¼ k� ¼ 0, lk ¼ l� ¼ 0.

Set the lower and upper bound, LB ¼ 0;UB ¼ 108.

Set the step length a ¼ 2.

Set the maximum number of iterations to be Maxit=700.

While not (termination criterion)

Solve Zk
LRðk

k;lkÞ with Algorithm 1 and denote the optimal function value as Zk
LRðk

k;lkÞ.

If ðZk
LRðk

k;lkÞ > LBÞ, set LB ¼ Zk
LRðk

k;lkÞ; k� :¼ kk;l� :¼ lk.

Find a feasible solution to the original problem and get FS with Algorithm 2.

If ðFS < UBÞ, set UB :¼ FS.

Update the multipliers:

Table 5

Performance of the overall solution c ¼ 0:005;wj 2 ½200;500�.

jIj jJj jHj Gapavg (%) Gapmin (%) Gapmax (%) CTL

100 20 10 5.31 3.11 9.46 115

100 25 10 5.56 3.24 9.77 120

100 30 10 4.61 1.78 7.63 131

100 35 10 6.09 3.52 7.97 148

100 40 10 4.42 1.35 8.98 155

100 45 10 8.27 6.78 9.93 176

100 50 10 6.10 3.52 8.25 185

100 55 10 6.76 5.45 9.41 196

100 60 10 5.98 1.82 8.64 202

100 65 10 3.82 1.05 5.23 219

100 30 15 3.90 2.08 8.05 202

100 40 15 4.04 2.08 7.84 220

100 50 15 6.23 4.44 8.58 253

100 60 15 5.95 2.26 10.45 315

100 70 15 5.37 2.97 7.40 347

200 30 20 5.89 3.99 8.79 434

200 40 20 3.40 1.63 6.81 519

200 50 20 5.11 1.98 7.77 621

200 60 20 7.53 4.40 10.18 711

200 70 20 3.89 1.39 6.66 811

200 100 20 4.76 2.83 8.91 1166

200 30 30 5.19 3.17 8.03 620

200 40 30 6.53 3.13 9.78 776

200 50 30 4.15 2.82 6.02 920

200 60 30 4.58 3.75 5.49 1018

200 70 30 5.20 2.20 7.36 1239

300 40 30 6.51 2.86 9.23 1091

300 50 30 5.45 3.20 8.70 1346

300 60 30 5.25 3.04 7.36 1539

300 70 30 4.28 2.77 6.41 2015

300 100 30 3.77 1.87 6.18 2423

300 40 45 4.09 2.58 6.26 1649

300 50 45 5.01 3.70 6.51 1911

300 60 45 4.16 3.11 5.47 2267

300 70 45 4.21 2.86 6.04 2581

8



kkþ1
i ¼ kki þ
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P
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P

h

P
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k
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P
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P

h

P
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P

h

P

iv ix
k
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P

ið
P

h

P

jx
k
hij � 1Þ2 þ

P

jð
P

h

P

iv ixkhij=wj � 1Þ2
ð8Þ

If (there is no improvement in the best lower bound over 50 consecutive iterations)

Half the step length a :¼ a=2, reset the multipliers k :¼ k�;l :¼ l�.

Set k:=k+1.

End While

5. Numerical experiments

In this section the performance of the proposed algorithm is evaluated by using randomly generated instances with dif-

ferent problem sizes and other parameters. The basic parameters in the following way: the coordinates of locations are gen-

erated as Uð10;60Þ. Here the notation U(a,b) means a uniform distribution in the interval [a,b]. The demand v i is generated

randomly from Uð10;50Þ. The capacities bh of the plant range from 200 to 600 and the fixed costs range from 300 to 700,

which were based on paper presented by Holmberg et al. (1999). The cost per unit distance per unit demand c is set to

0.1. Thirty-six problem sets and five instances for each set are generated in order to evaluate the performance of the algo-

Table 6

Performance of the overall solution for procedure with c ¼ 0:1;wj 2 ½100;400�.

jIj jJj jHj Gapavg (%) Gapmin (%) Gapmax (%) CTL

100 20 10 4.57 1.69 7.73 96

100 25 10 5.90 5.05 7.82 104

100 30 10 4.67 2.53 7.69 107

100 35 10 4.46 1.93 7.31 114

100 40 10 7.14 4.93 10.59 125

100 45 10 4.48 2.68 7.85 140

100 50 10 6.63 2.92 9.46 135

100 55 10 4.37 3.72 5.02 137

100 60 10 6.11 3.61 7.91 144

100 65 10 6.78 4.26 10.41 157

100 30 15 6.21 4.85 8.43 148

100 40 15 6.09 5.12 7.36 169

100 50 15 6.87 4.16 8.75 197

100 60 15 8.01 6.44 9.35 217

100 70 15 6.06 3.06 8.24 239

200 30 20 4.96 3.80 6.45 319

200 40 20 4.23 3.13 5.86 374

200 50 20 5.52 3.94 7.33 431

200 60 20 5.53 3.33 9.39 529

200 70 20 5.27 2.85 8.22 559

200 100 20 5.79 3.69 7.45 768

200 30 30 6.60 5.55 7.91 461

200 40 30 7.31 6.00 8.77 532

200 50 30 7.68 6.07 8.96 617

200 60 30 7.18 6.32 7.95 698

200 70 30 7.16 5.53 9.22 792

300 40 30 6.74 5.89 8.49 774

300 50 30 6.49 4.73 7.62 937

300 60 30 6.51 4.69 8.01 1085

300 70 30 6.04 4.92 7.97 1218

300 100 30 5.73 4.53 6.92 1696

300 40 45 8.33 7.21 10.65 1108

300 50 45 7.32 5.94 8.49 1417

300 60 45 8.50 6.17 10.18 1636

300 70 45 7.72 6.27 9.40 1789
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rithm. So a total of 180 problem instances are tested for basic parameters. We divide the instances into two kinds: small scale

(less than 100 customers), medium and large scale (more than 100 customers).

The algorithm is coded in Visual C++ and has been performed on a CPU of 1.66 GHZ and Windows XP. jIj is the number of

customers, jJj is the number of suppliers, and jHj is the number of potential plants. Gap reflects the quality of our proposed

heuristic algorithm. Gapavg;Gapmin and Gapmax are corresponding to the average value, minimum andmaximum of Gap for

each problem set, respectively. U gap denotes the gap between the best upper bound of the heuristic algorithm and the opti-

mal objective value solved by Lingo 9.0 in small scale instances. By comparing Gap with U gap we can find where the main

part of Gap exists: the lower bound or the upper bound in small scale instances, which may provide significant implications

for the quality of our proposed heuristic algorithm in large scale instances. The CTL and CTopt are computation times of the

heuristic algorithm and Lingo 9.0 in seconds, respectively. With the notations in Table 1, the results of the instances are given

in Tables 2–7.

First, we compare the upper bound of the proposed heuristic algorithm with the optimal solution of the commercial soft-

ware Lingo 9.0 in small scale instances. Table 2 shows that our proposed heuristic provides very good feasible solutions.

U gap changes from 0.23% to 1.85% and most best feasible solutions are very near to optimal solutions. In addition, the best

feasible solutions obtained from our proposed heuristic algorithm are the optimal solutions in 10 out of all over 30 instances.

The Gap varies from 3.97% to 7.57%. So the Gaps are mainly caused by the relative weak lower bound. From Table 2 we can

also see that in very small instances the proposed heuristics algorithm needs more time than lingo 9.0. However, with the

increase of problem size the computation time of Lingo 9.0 increases more quickly. Large scale instances, such as 200 cus-

tomers, 40 suppliers and 20 plants, could not be solved optimally by using Lingo 9.0 software after 72,000 s of computation.

The lower bounds obtained by the Lagrangian relaxation in this paper and these obtained by the linear relaxation are

compared as shown in Table 3. The average value of Lgap for all instances is 2.45% which means that the Lagrangian relaxation

generates tighter lower bounds than linear relaxation. We can also find that in relative small size of instances the compu-

tational time required by Lagrangian relaxation is more than that of linear relaxation. However, in larger instances, the linear

relaxation needs more time. With the increase of the size of the instances the bounds of linear relaxation may not be ob-

tained because of the enormous consumption of memory size and CPU time. For example, the Lingo runs out of memory

Table 7

Performance of the overall solution c ¼ 0:005;wj 2 ½100;400�.

jIj jJj jHj Gapavg (%) Gapmin (%) Gapmax (%) CTL

100 20 10 5.66 2.34 9.52 121

100 25 10 6.52 4.15 9.84 138

100 30 10 4.33 1.82 6.88 153

100 35 10 7.46 5.12 10.56 153

100 40 10 6.31 2.84 9.67 169

100 45 10 8.34 5.75 10.71 182

100 50 10 5.55 2.91 8.86 194

100 55 10 5.59 2.50 9.02 209

100 60 10 5.34 3.88 7.85 226

100 65 10 7.79 4.73 10.58 230

100 30 15 6.06 2.66 9.07 217

100 40 15 6.65 1.89 9.12 232

100 50 15 5.91 3.54 9.29 282

100 60 15 4.41 1.78 6.15 315

100 70 15 5.20 4.31 6.36 362

200 30 20 8.12 5.49 9.58 454

200 40 20 6.13 4.01 8.15 577

200 50 20 6.17 3.45 9.92 631

200 60 20 5.64 3.63 8.92 741

200 70 20 5.84 4.45 9.54 857

200 100 20 6.30 3.90 9.41 1159

200 30 30 6.15 5.58 6.99 758

200 40 30 4.12 3.70 5.10 955

200 50 30 5.42 3.97 8.11 1160

200 60 30 4.01 2.16 5.99 1243

200 70 30 5.65 3.58 7.46 1285

300 40 30 5.59 3.43 8.62 1128

300 50 30 5.64 3.38 7.45 1514

300 60 30 5.66 2.89 9.16 1578

300 70 30 6.19 3.61 8.27 1883

300 100 30 4.78 3.07 7.12 2605

300 40 45 5.36 2.55 9.78 1718

300 50 45 4.44 2.83 6.46 2240

300 60 45 4.11 3.42 5.57 2327

300 70 45 3.78 2.58 5.32 2677
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on the instance (400 customers, 60 suppliers, and 40 plants). So it is necessary to propose a heuristic algorithm to solve the

large size instances of the problem.

Table 4 gives the computation results for medium and large scale instances. The Gapavg for each set changes from 4.25%

to 7.25% and the largest Gapmax is 9.79%. The average value of Gapavg and computation time for all 36 sets in Table 3 are

6.13% and 627 s, respectively. From Table 4, we can also see that the number of customers, suppliers and plants has little

influence on the computation result of the proposed heuristic algorithm.

To test the stability of the proposed heuristic algorithm, parameter c and wj are changed based on basic parameters

c ¼ 0:1 and wj 2 ½200;500� keeping other parameters unchanged. Three other types of instances are evaluated. We tested

35 sets for each of them. The numerical results for c ¼ 0:005;wj 2 ½200;500�; c ¼ 0:1;wj 2 ½100;400� and c ¼ 0:005;wj 2

½100;400�, are presented in Tables 5–7.

The average values of Gapavg for all instances in Tables 5–7 are 5.18%, 6.26% and 5.72%, respectively. The average value of

Gapavg for all instances of these four types is 5.82%. The scopes of Gapavg are 3.40–8.27%, 4.23–8.50% and 3.78–8.34%,

respectively. The comparison of the Gapavg in all types of instances is shown in Fig. 3. Type 1–4 are corresponding to Tables

4–7, respectively. We can find that the Gaps vary little with changes of the problem parameters and problem size, so the

heuristic approach is not only efficient but also robust. The computation time of all instances is reasonable. Even for a

large-scale instance with 400 customers, 60 suppliers, 40 plants the time is within (less than) 1900 s.

6. Conclusion

In this research, a new type of plant location problem: the capacitated plant location problem with customer and supplier

matching (CLCSM) is studied. By matching a customer and a supplier in a triangle trip, transportation costs can be signifi-

cantly reduced which also influence the location of the plants. The contributions of the paper to the literature are not only

considering the matching in the plant location but also integrating the limitation of facility capacity and material supply pro-

cess in the problem. An integer linear programming model is proposed first and a heuristic algorithm based on Lagrangian

relaxation is developed. The Lagrangian relaxation problem which provides a lower bound is decomposed into series of 0–1

knapsack problems and the solutions obtained from the relaxed problem is used to construct a feasible solution of (CLCSM)

where series of subset–sum problems are solved. The proposed algorithm was tested on different size of random instances

and demonstrated that it is very efficient in solving the problems with the average gap about 6% in reasonable computation

times, even for large problems with up to 400 customers, 60 suppliers and 40 potential plant sites. The algorithm is prom-

ising for practical applications to the location problem.

In future research, another kind of matching in the plant location problemwill be studied. Each potential plant has a max-

imal matching distance based on travel time limitation of the vehicles which is a criterion to match a customer and a sup-

plier. It is not necessary for every customer to be matched. Whether customers and suppliers are matched depends on the

optimization process. Those which are not matched are transported separately. Besides, the ratio of loading of the vehicles

will also be concerned.
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