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Sharp large deviations for the non-stationary Ornstein-Uhlenbeck
process

Bernard Bercu ∗ Laure Coutin † Nicolas Savy ‡

Abstract

For the Ornstein-Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of
the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding of
this trichotomy, we investigate sharp large deviation principles for this estimator in the three situations.
In the explosive case, we exhibit a very unusual rate function with a shaped flat valley and an abrupt
discontinuity point at its minimum.

A.M.S. Classification: 60F10, 60G15, 62A10.
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1 Introduction.

Consider the Ornstein-Uhlenbeck process observed over the time interval [0, T ]

dXt = θXtdt+ dBt (1.1)

where (Bt) is a standard Brownian motion and the drift θ is an unknown real parameter. For the sake of
simplicity, we choose the initial state X0 = 0. The process is said to be stable if θ < 0, unstable if θ = 0,
and explosive if θ > 0. The maximum likelihood estimator of θ is given by

θ̂T =

∫ T
0 XtdXt
∫ T
0 X2

t dt
=

X2
T − T

2
∫ T
0 X2

t dt
. (1.2)

It is well-known (see e.g. [11] page 234) that in the stable, unstable, and explosive cases

lim
T→∞

θ̂T = θ a.s.

However, the asymptotic normality is totally different in the three situations. As a matter of fact, if θ < 0,
the process (XT ) is positive recurrent and Brown and Hewitt [4] have shown the asymptotic normality

√
T (θ̂T − θ)

L−→ N (0,−2θ).

Moreover, if θ = 0, the process (XT ) is null recurrent and it was proved by Feigin [8] that

T (θ̂T − θ)
L−→

∫ 1
0 WtdWt
∫ 1
0 W 2

t dt
=

W 2
1 − 1

2
∫ 1
0 W 2

t dt

where (Wt) is a standard Brownian motion. Furthermore, if θ > 0, the process (XT ) is transient and we
know from Feigin [7], (see also [10] page 304), that

exp(θT )(θ̂T − θ)
L−→ 2θ

(Y
Z

)
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where Y, Z are two independent Gaussian N (0, 1) random variables which implies that the limiting ratio
Y/Z has a Cauchy distribution. Notwithstanding of this trichotomy, our goal is to establish the large

deviation properties for (θ̂T ) in the stable, unstable, and explosives cases. We refer the reader to the
excellent book by Dembo and Zeitouni [6] on the theory of large deviations. First of all, in the stable

case, Florens-Landais and Pham [9] proved the following large deviation principle (LDP) for (θ̂T ).

Lemma 1.1. If θ < 0, then (θ̂T ) satisfies an LDP with speed T and good rate function

I(c) =





− (c− θ)2

4c
if c <

θ

3
,

2c− θ otherwise.
(1.3)

This result was extended by the following sharp large deviation principle (SLDP) for (θ̂T ) established
by Bercu and Rouault [3].

Theorem 1.2. Consider the Ornstein-Uhlenbeck process given by (1.1) where the drift parameter θ < 0.
a) For all c < θ, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
− exp(−TI(c) +H(ac))

acσc
√
2πT

[
1 +

p∑

k=1

bc,k
T k

+O
( 1

T p+1

)]
(1.4)

where

ac =
c2 − θ2

2c
and σ2c = − 1

2c
(1.5)

H(ac) = −1

2
log

(
(c+ θ)(3c− θ)

4c2

)
(1.6)

while, for all θ < c < θ/3,

P(θ̂T ≥ c) =
exp(−TI(c) +H(ac))

acσc
√
2πT

[
1 +

p∑

k=1

bc,k
T k

+O
( 1

T p+1

)]
. (1.7)

b) For all c > θ/3 with c &= 0, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c) +K(c))

acσc
√
2πT

[
1 +

p∑

k=1

dc,k
T k

+O
( 1

T p+1

)]
(1.8)

where

ac = 2(c− θ) and σ2c =
c2

2(2c− θ)3
(1.9)

K(c) = −1

2
log

(
(c− θ)(3c− θ)

4c2

)
. (1.10)

c) For c = θ/3, there exists a sequence (ek) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c))

2πT 1/4

Γ(1/4)

a3/4θ σθ

[
1 +

2p∑

k=1

ek

(
√
T )k

+O
( 1

T p
√
T

)]
(1.11)

where

aθ = −4θ

3
and σ2θ = − 3

2θ
. (1.12)

d) Finally, for c = 0, p > 0 and for T large enough

P(θ̂T ≥ 0) = 2
exp(−TI(c))√
2πT

√
−2θ

[
1 +

p∑

k=1

(2k)!

22kθkT kk!
+O

( 1

T p+1

)]
. (1.13)

Our purpose is to extend this investigation by establishing SLDP for (θ̂T ) in the explosive and unstable
cases. Similar results in discrete time for the Gaussian autoregressive process may be found in [1]. We
also refer the reader to [2] where SLDP for the maximum likelihood estimator of θ is proved for the
stable Ornstein-Uhlenbeck process driven by a fractional Brownian motion. We wish to mention here
that it could be possible to extend the previous work of Zani [12] to generalized squared radial Ornstein-
Uhlenbeck processes with parameter θ > 0.
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2 A keystone lemma.

The sharp large deviations properties of (θ̂T ) are closely related with the ones of

ZT (c) =

∫ T

0
XtdXt − c

∫ T

0
X2

t dt

with c ∈ R since P(θ̂T ≥ c) = P(ZT (c) ≥ 0). One has to keep in mind that the threshold c for θ̂T appears
like a parameter for ZT . Denote by LT the normalized cumulant generating function of ZT (c)

LT (a) =
1

T
logE

[
exp(aZT (c))

]

where the parameter c is omitted in order to simplify the notation. All our analysis relies on the following
keystone lemma which is true as soon as the drift parameter θ ≥ 0.

Lemma 2.1. Let ∆c = {a ∈ R, θ2 + 2ac > 0, a+ θ <
√
θ2 + 2ac} be the effective domain of the limit L

of LT and set ϕ(a) = −
√
θ2 + 2ac, τ(a) = a+ θ − ϕ(a) and h(a) = (a+ θ)/ϕ(a).

a) For all a ∈ ∆c, we have

LT (a) = L(a) + 1

T
H(a) +

1

T
RT (a) (2.1)

where

L(a) = −1

2

(
a+ θ +

√
θ2 + 2ac

)
, (2.2)

H(a) = −1

2
log

(
1

2
(1 + h(a))

)
, (2.3)

RT (a) = −1

2
log

(
1 +

1− h(a)

1 + h(a)
exp(2ϕ(a)T )

)
. (2.4)

b) Moreover, the remainder RT (a) goes to zero exponentially fast as

RT (a) = O
(
exp(2ϕ(a)T )

)
. (2.5)

Proof. The proof of Lemma 2.1 is given in Appendix A.

3 Sharp Large deviations results.

We shall now focus our attention on the explosive case θ > 0. It immediately follows from (1.1) that

XT = exp(θT )

∫ T

0
exp(−θt)dBt (3.1)

leading to exp(−θT )XT = YT where

YT =

∫ T

0
exp(−θt)dBt.

The Gaussian process (YT ) converges almost surely and in mean square to the Gaussian nondegenerate
random variable

Y =

∫ ∞

0
exp(−θt)dBt.

Hence, via Toeplitz’s lemma

lim
T→∞

1

exp(2θT )

∫ T

0
X2

t dt =
Y 2

2θ
a.s.

Consequently, one can expect for (θ̂T ) an LDP with speed exp(2θT ). However, (θ̂T ) is a sequence of

self-normalized random variables and we shall show that (θ̂T ) satisfies an LDP similar to that of Lemma
1.1 with speed T .
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Lemma 3.1. If θ > 0, then (θ̂T ) satisfies an LDP with speed T and good rate function

I(c) =






− (c− θ)2

4c
if c ≤ −θ,

θ if |c| < θ,

0 if c = θ,

2c− θ if c > θ.

(3.2)

Remark 3.2 As for the Gaussian autoregressive process [1], one can observe that the rate function I
in the explosive case is really unusual with a shaped flat valley and an abrupt discontinuity point at its
minimum. It is possible to give some intuition on the size of the discontinuity jump. As a matter of fact,
we already saw in the introduction that, if θ > 0,

exp(θT )(θ̂T − θ)
L−→ 2θ

(Y
Z

)

where Y, Z are two independent Gaussian N (0, 1) random variables. The size of the jump is precisely
given by the logarithm of the rate exp(θT ) properly normalized,

1

T
log(exp(θT )) = θ.

The SLDP for (θ̂T ), quite similar to the one established in the stable case, is as follows.

Theorem 3.3. Consider the Ornstein-Uhlenbeck process given by (1.1) where the drift parameter θ > 0.
a) For all c < −θ, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
− exp(−TI(c) +H(ac))

acσc
√
2πT

[
1 +

p∑

k=1

bc,k
T k

+O
( 1

T p+1

)]
(3.3)

where

ac =
c2 − θ2

2c
and σ2c = − 1

2c
(3.4)

H(ac) = −1

2
log

(
(c+ θ)(3c− θ)

4c2

)
. (3.5)

b) For all c > θ, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c) +K(c))

acσc
√
2πT

[
1 +

p∑

k=1

dc,k
T k

+O
( 1

T p+1

)]
(3.6)

where

ac = 2(c− θ) and σ2c =
c2

2(2c− θ)3
(3.7)

K(c) = −1

2
log

(
(c− θ)(3c− θ)

4c2

)
. (3.8)

c) For all |c| < θ with c &= 0, there exists a sequence (ec,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
exp(−TI(c) + J(c))

acσc
√
2πT

[
1 +

p∑

k=1

ec,k
T k

+O
( 1

T p+1

)]
(3.9)

where

ac =
θ

c+ θ
and σ2c =

c2

2θ3
(3.10)

J(c) = −1

2
log

(
(θ − c)(θ + c)

4c2

)
. (3.11)
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d) For c = −θ, there exists a sequence (fk) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
exp(−TI(c))

2πT 1/4

Γ(1/4)

a3/4θ σθ

[
1 +

2p∑

k=1

fk

(
√
T )k

+O
( 1

T p
√
T

)]
(3.12)

where

aθ =
√
θ and σ2θ =

1

2θ
. (3.13)

e) Finally, for c = 0, p > 0 and for T large enough

P(θ̂T ≤ 0) = 2
exp(−TI(c))

√
2θT√

2π

[
1 +

p∑

k=1

(−1)k(θTe−2θT )k

(2k + 1)k!
+O

(
(Te−2θT )p+1

)]
. (3.14)

Remark 3.4. One can observe that all the sequences (bc,k) (dc,k), (ec,k) may be explicitly calculated as
in Theorem 4.1 of [3].

Proof. The proofs are given in Section 4.

The unstable case θ = 0 can be handled exactly as the explosive case θ > 0 since Lemma 2.1 is
also true in the unstable situation. Consequently, we directly obtain the LDP and SLDP for (θ̂T ) in the
unstable case by replacing θ by 0 in the previous results.

Lemma 3.5. If θ = 0, then (θ̂T ) satisfies an LDP with speed T and good rate function

I(c) =





− c

4
if c ≤ 0,

2c otherwise.
(3.15)

Theorem 3.6. Consider the Ornstein-Uhlenbeck process given by (1.1) where the drift parameter θ = 0.
a) For all c < 0, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
−2 exp(−TI(c))

acσc
√
6πT

[
1 +

p∑

k=1

bc,k
T k

+O
( 1

T p+1

)]
(3.16)

where ac = c/2 and σ2c = −1/(2c).
b) For all c > 0, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
2 exp(−TI(c))

acσc
√
6πT

[
1 +

p∑

k=1

dc,k
T k

+O
( 1

T p+1

)]
(3.17)

where ac = 2c and σ2c = 1/(16c).

4 Proofs of the main results.

4.1 Proof of Theorem 3.3 a).

We first focus our attention on the easy case c < −θ. One can observe that ac, given by (3.4), belongs to
the effective domain ∆c =]−∞, 0[ whenever c < −θ. Consider the usual change of probability

dPT

dP = exp
(
acZT (c)− TLT (ac)

)
(4.1)

and denote by ET the expectation associated with PT . We clearly have

P(θ̂T ≤ c) = P(ZT (c) ≤ 0) = E[1IZT (c)≤0],

= ET

[
exp(−acZT (c) + TLT (ac))1IZT (c)≤0

]
,

= exp
(
TLT (ac)

)
ET

[
exp(−acZT (c))1IZT (c)≤0

]
.
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Consequently, we can split P(θ̂T ≤ c) into two terms, P(θ̂T ≤ c) = ATBT with

AT = exp(TLT (ac)), (4.2)

BT = ET [exp(−acZT (c))1IZT (c)≤0]. (4.3)

On the one hand, we can deduce from (2.1) and (2.5) together with the definition (3.2) of I that

AT = exp
(
TL(ac) +H(ac) +RT (ac)

)
,

AT = exp
(
−TI(c) +H(ac)

) (
1 +O

(
e2Tc

))
. (4.4)

It only remains to provide the expansion for BT .

Lemma 4.1. For all c < −θ, there exists a sequence (βk) such that, for any p > 0 and T large enough,

BT =
β0√
T

[
1 +

p∑

k=1

βk
T k

+O
( 1

T p+1

)]
. (4.5)

The sequence (βk) only depends on the derivatives of L and H evaluated at point ac. For example,

β0 = − 1

acσc
√
2π

.

Proof. The proof of Lemma 4.1 is given in Appendix C.

Proof of Theorem 3.3 a). The expansion (3.3) immediately follows from (4.4) and (4.5).

4.2 Proof of Theorem 3.3 b).

In the more complicated case c > θ, the effective domain ∆c =]0, 2(c−θ)[ and the function L is decreasing
over the interval ]0, 2(c− θ)[ as

L′(a) = −1

2

(
1 +

c√
θ2 + 2ac

)
.

Consequently, L reaches its minimum at the value ac = 2(c− θ) given by (3.7). Therefore, it is necessary
to make use of a slight modification of the strategy of time varying change of probability proposed by
Bryc and Dembo [5]. The key point is that there exists a unique aT , which belongs to the interior of ∆c

and converges to its border ac = 2(c−θ) as T goes to infinity, solution of some suitable implicit equation.
Hereafter, we introduce the new probability measure

dPT

dP = exp
(
aTZT (c)− TLT (aT )

)
(4.6)

and we denote by ET the expectation under PT . It leads to the decomposition P(θ̂T ≥ c) = ATBT where

AT = exp (TLT (aT )) , (4.7)

BT = ET

[
exp(−aTZT (c))1IZT (c)≥0

]
. (4.8)

The proof now splits into two parts, the first one is devoted to the expansion of AT while the second one
gives the expansion for BT .

Lemma 4.2. For all c > θ, there exists a unique aT , which belongs to the interior of ∆c and converges
to its border ac = 2(c− θ) as T goes to infinity, solution of the implicit equation

L′(a) +
1

T
H′(a) = 0 (4.9)

6



where the functions L and H are given by (2.2) and (2.3). Moreover, there exists a sequence (γk) such
that, for any p > 0 and T large enough,

AT = exp (−TI(c) + P (c))
√
eT

[
1 +

p∑

k=1

γk
T k

+O
( 1

T p+1

)]
(4.10)

where

P (c) = −1

2
log

(
(c− θ)

2(2c− θ)(3c− θ)

)
. (4.11)

The sequence (γk) only depends on the Taylor expansion of aT at the neighborhood of ac together with
the derivatives of L and H at point ac. For example,

γ1 =
c(c2 − 3θc+ θ2)

2(c− θ)(θ − 2c)(3c− θ)2
.

Proof. The proof of Lemma 4.2 is given in Appendix B.

It now remains to give the expansion for BT .

Lemma 4.3. For all c > θ, there exists a sequence (δk) such that, for any p > 0 and T large enough,

BT =
p∑

k=1

δk
T k

+O
( 1

T p+1

)
. (4.12)

The sequence (δk) only depends on the Taylor expansion of aT at the neighborhood of ac together with the
derivatives of L and H at point ac. For example,

δ1 =
1

acδ
√
2πe

where δ = −L′(ac) =
(3c− θ)

2(2c− θ)
.

Proof. The proof of Lemma 4.3 is given in Appendix C.

Proof of Theorem 3.3 b). The expansions (4.10) and (4.12) immediately imply (3.6).

4.3 Proof of Theorem 3.3 c).

In the case |c| < θ and c &= 0, one can easily see that the effective domain is

∆c =






]−∞, 0[ if − θ < c < 0,

]− θ2

2c
, 0[ if 0 < c ≤ θ

2
,

]2(c− θ), 0[ if
θ

2
≤ c < θ.

In addition, the function L is always decreasing over ∆c and L reaches its minimum at the origin.
Consequently, the proof follows essentially the same lines as the one for c > θ with ac = 0. In fact, with
the new probability measure given by (4.6), we have the decomposition P(θ̂T ≤ c) = ATBT where

AT = exp (TLT (aT )) , (4.13)

BT = ET

[
exp(−aTZT (c))1IZT (c)≤0

]
. (4.14)

The proof is also divided into two parts, the first one is devoted to the expansion of AT while the second
one gives the expansion for BT .
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Lemma 4.4 For all |c| < θ and c &= 0, there exists a unique aT , which belongs to the interior of ∆c and
converges to the origin as T goes to infinity, solution of the implicit equation

L′(a) +
1

T
H′(a) = 0 (4.15)

where the functions L and H are given by (2.2) and (2.3). Moreover, there exists a sequence (γk) such
that, for any p > 0 and T large enough,

AT = exp (−TI(c) + P (c))
√
eT

[
1 +

p∑

k=1

γk
T k

+O
( 1

T p+1

)]
(4.16)

where

P (c) = −1

2
log

(
(θ − c)

2θ(c+ θ)

)
. (4.17)

The sequence (γk) only depends on the Taylor expansion of aT at the neighborhood of the origin together
with the derivatives of L and H at 0. For example,

γ1 = − c(c2 + θc− θ2)

2θ(c− θ)(c+ θ)2
.

Proof. The proof of Lemma 4.4 is given in Appendix B.

The expansion of BT is as follows.

Lemma 4.5. For all |c| < θ and c &= 0, there exists a sequence (δk) such that, for any p > 0 and T large
enough,

BT =
p∑

k=1

δk
T k

+O
( 1

T p+1

)
. (4.18)

The sequence (δk) only depends on the Taylor expansion of aT at the neighborhood of the origin together
with the derivatives of L and H at 0. For example,

δ1 =
1

acδ
√
2πe

where δ = −L′(0) = − (c+ θ)

2θ
.

Proof. The proof of Lemma 4.5 is given in Appendix C.

Proof of Theorem 3.3 c). The expansion (3.9) immediately follows from (4.16) and (4.18).

4.4 Proof of Theorem 3.3 d).

In the particular case c = −θ, ∆c =]−∞, 0[ and we find a new regime in the asymptotic expansions of
aT , AT , BT .

Lemma 4.6 For c = −θ, there exists a unique aT , which belongs to the interior of ∆c and converges to
the origin as T goes to infinity, solution of the implicit equation

L′(a) +
1

T
H′(a) = 0 (4.19)

where the functions L and H are given by (2.2) and (2.3). Moreover, there exists a sequence (γk) such
that, for any p > 0 and T large enough,

AT = exp (−TI(c)) (eθT )1/4
[
1 +

2p∑

k=1

γk

(
√
T )k

+O
( 1

T p
√
T

)]
. (4.20)

The sequence (γk) only depends on the Taylor expansion of aT at the neighborhood of the origin together
with the derivatives of L and H at 0. For example,

γ1 =
3

8
√
θ
.
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Proof. The proof of Lemma 4.6 is given in Appendix B.

It now remains to give the expansion for BT .

Lemma 4.7. For c = −θ, there exists a sequence (δk) such that, for any p > 0 and T large enough,

BT =
2p∑

k=1

δk

(
√
T )k

+O
( 1

T p
√
T

)
. (4.21)

The sequence (δk) only depends on the Taylor expansion of aT at the neighborhood of the origin together
with the derivatives of L and H at 0. For example,

δ1 =
1

2π
e−1/4Γ

(
1

4

)
.

Proof. The proof of Lemma 4.7 is given in Appendix C.

Proof of Theorem 3.3 d). We immediately deduce (3.12) from (4.20) together with (4.21).

4.5 Proof of Theorem 3.3 e).

We obtain from (3.1) that XT is Gaussian with N (0,σ2T ) distribution where

σ2T =
1

2θ

(
exp(2θT )− 1

)
.

Moreover, we clearly have

P(θ̂T ≤ 0) = P(X2
T ≤ T ) = P(|XT | ≤

√
T ) = 2P(0 ≤ XT ≤

√
T )

= 2P(0 ≤ Z ≤ dT ) (4.22)

where Z is an N (0, 1) random variable and the sequence (dT ) satisfies

dT =
√
2θT exp(−2θT )

[
1 +O(exp(−2θT ))

]
.

For all x > 0, denote

F (x) =

∫ x

0
f(t) dt

where f stands for the probability density function of the N (0, 1) distribution. It is well-known that for
all n ≥ 1, the Gaussian derivatives

f (n)(x) =
(−1)n

2n/2
Hn

( x√
2

)
f(x)

where (Hn) is the sequence of Hermite polynomials. For example, we have H0(x) = 1, H1(x) = 2x,
H2(x) = −2 + 4x2, etc. Hence,

f (n)(0) =
(−1)n√
2π2n/2

Hn

where Hn = Hn(0) are the Hermite numbers given by the recurrence relation Hn = −2(n− 1)Hn−2 with
H0 = 1 and H1 = 0 which implies that

Hn =






0 if n is odd,

(−1)n/2n!

(n/2)!
if n is even.

Consequently, at the neighborhood of the origin, we have for all x > 0 the Taylor expansion

F (x) =
x√
2π

[
1 +

p∑

k=1

(−1)kx2k

(2k + 1)2kk!
+O(xp+1)

]
. (4.23)
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Therefore, we deduce from the identity P(θ̂T ≤ 0) = 2F (dT ) together with (4.23) that

P(θ̂T ≤ 0) = 2
exp(−θT )

√
2θT√

2π

[
1 +

p∑

k=1

(−1)k(θTe−2θT )k

(2k + 1)k!
+O

(
(Te−2θT )p+1

)]
,

which immediately leads to (3.14).

A Appendix A: Proof of the keystone Lemma 2.1.

Our goal is to prove the asymptotic expansion (2.1) associated to the normalized cumulant generating
function LT . Via the same approach as in Section 17.3 of Liptser and Shiryaev [11], we have

LT (a) =
1

T
logE

[
exp

(
a

∫ T

0
XtdXt − ac

∫ T

0
X2

t dt
)]

,

=
1

T
logEϕ

[
exp

(
(a+ θ − ϕ)

∫ T

0
XtdXt +

1

2
(−2ac− θ2 + ϕ2)

∫ T

0
X2

t dt
)]

for all ϕ ∈ R, where Eϕ stands for the expectation after the change of measures

dPϕ

dP = exp
(
(ϕ− θ)

∫ T

0
XtdXt −

1

2
(ϕ2 − θ2)

∫ T

0
X2

t dt
)
.

Hereafter, consider a ∈ ∆c = {a ∈ R, θ2+2ac > 0, a+ θ <
√
θ2 + 2ac} so that we can choose ϕ = ϕ(a)

where ϕ(a) = −
√
θ2 + 2ac. Then, if we denote τ(a) = a+ θ − ϕ(a), we obtain that

LT (a) =
1

T
logEϕ

[
exp

(
τ(a)

∫ T

0
XtdXt

)]
. (A.1)

However, we have from Itô’s formula that
∫ T

0
XtdXt =

1

2

(
X2

T − T
)
.

Consequently, we obtain from (A.1) that

LT (a) = −τ(a)
2

+
1

T
logEϕ

[
exp

(τ(a)
2

X2
T

)]
. (A.2)

Under the measure Pϕ, XT is a Gaussian random variable with zero mean and variance σ2T (a) given by

σ2T (a) = −1− exp(2ϕ(a)T )

2ϕ(a)
.

This variance, together with (A.2), leads to

LT (a) = −τ(a)
2

− 1

2T
log

(
1 +

τ(a)

2ϕ(a)

(
1− exp(2ϕ(a)T )

))
. (A.3)

Finally, if

h(a) =
a+ θ

ϕ(a)
=
τ(a)

ϕ(a)
+ 1,

we find from (A.3) the decomposition

LT (a) = −τ(a)
2

− 1

2T
log

(
1 +

1

2
(h(a)− 1)

(
1− exp(2ϕ(a)T )

))
,

= −τ(a)
2

− 1

2T
log

(
1

2
(1 + h(a)) +

1

2
(1− h(a)) exp(2ϕ(a)T )

)
,

= −τ(a)
2

− 1

2T
log

(
1

2
(1 + h(a))

)
− 1

2T
log

(
1 +

1− h(a)

1 + h(a)
exp(2ϕ(a)T )

)
,

= L(a) + 1

T
H(a) +

1

T
RT (a).
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One can observe that the remainder RT (a) goes to zero exponentially fast as RT (a) = O(exp(2ϕ(a)T )),
which completes the proof of Lemma 2.1.

B Appendix B: On the expansions of AT .

All asymptotic expansions associated with AT are related on the fact that there exists a unique aT , which
belongs to the interior of ∆c and converges to its border ac = 2(c−θ) if c > θ, and to the origin if [c| < θ,
solution of the implicit equation

L′(a) +
1

T
H′(a) = 0 (B.1)

where the functions L and H are given by (2.2) and (2.3). After some straightforward calculation, (B.1)
can be rewritten as

Tϕ(a)(ϕ(a)− c)(ϕ(a) + a+ θ) = c(a+ θ)− ϕ2(a). (B.2)

One can observe that (B.2) may be rewritten as

Tϕ(a)(ϕ(a) − c)(ϕ(a) + θ)(ϕ(a) + 2c− θ) = − c

2
(ϕ2(a) + θ2 − 2θc)

which ensures that ϕ(aT ) converges to θ − 2c, while aT < 2(c − θ) and converges to ac. Moreover, it
follows from (2.1) that

AT = exp
(
TL(aT ) +H(aT ) +RT (aT )

)
,

= exp
(
TL(aT )

)
exp

(
H(aT )

)
exp

(
RT (aT )

)
. (B.3)

Therefore, the proofs of the expansions of AT are divided into four steps. The first one is devoted to the
asymptotic expansions of aT and ϕ(aT ). The last three one deal with the asymptotic expansions of all
terms in (B.3).

B.1 Proof of Lemma 4.2.

Step 1. One can find two sequences (ak) and (ϕk) such that, for any p > 0 and T large enough,

aT =
p∑

k=0

ak
T k

+O
( 1

T p+1

)

where a0 = 2(c− θ),

a1 =
θ − 2c

3c− θ
and a2 = −c(c2 − 5θc+ 2θ2)

2(c− θ)(3c− θ)3
,

ϕ(aT ) =
p∑

k=0

ϕk

T k
+O

( 1

T p+1

)

where ϕ0 = θ − 2c,

ϕ1 =
c

3c− θ
and ϕ2 =

c2(4c2 − 9θc+ 3θ2)

2(c− θ)(2c− θ)(3c− θ)3
.

Proof. We are in the situation where c > θ, ac = 2(c − θ) and ϕ(ac) = θ − 2c. Consequently,
ϕ(ac)− c = θ − 3c &= 0 while ϕ(ac) + ac + θ = 0. One can easily deduce from (B.2) that

lim
T→∞

T (ϕ(aT ) + aT + θ) =
c− θ

θ − 3c
. (B.4)

Therefore, the conjunction of (B.2) and (B.4) leads to the asymptotic expansions of aT and ϕ(aT ). Let
us show how to calculate the first terms of the expansions. On the one hand, as

ϕ(aT ) = −
√
θ2 + 2aT c,
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we have

a0 =
ϕ2
0 − θ2

2c
, a1 =

ϕ0ϕ1

c
, a2 =

2ϕ0ϕ2 + ϕ2
1

2c
. (B.5)

On the other hand, it follows from (B.2) that

ϕ1 + a1 =
c(a0 + θ)− ϕ2

0

ϕ0(ϕ0 − c)
,

ϕ2 + a2 =
ca1 − 2ϕ0ϕ1 − (ϕ1 + a1)ϕ1(2ϕ0 − c)

ϕ0(ϕ0 − c)
.

Finally, in order to calculate a1, a2,ϕ1, and ϕ2, it is only necessary to solve very simple linear systems.
The rest of the proof is left to the reader.

Step 2. One can find a sequence (αk) such that, for any p > 0 and T large enough,

exp (TL(aT )) = exp

(
−TI(c) +

1

2

)[
1 +

p∑

k=1

αk

T k
+O

( 1

T p+1

)]
. (B.6)

The sequence (αk) only depends on (ak) together with the derivatives of L at point ac. For example,

α1 =
c(c2 − 3θc+ θ2)

2(c− θ)(2c− θ)(3c− θ)2
.

Proof. By the Taylor expansion of L at the neighborhood of ac, we have the existence of a sequence
(*k) such that, for any p > 0 and T large enough,

TL(aT ) = TL(ac) + a1L′(ac) +
p∑

k=1

*k
T k

+O
( 1

T p+1

)
. (B.7)

On the one hand,

a1L′(ac) =
1

2
.

On the other hand,

*1 = a2L′(ac) +
1

2
a21L′′(ac) =

c(c2 − 3θc+ θ2)

2(c− θ)(2c− θ)(3c− θ)2
.

Therefore, (B.6) clearly follows from (B.7).

Step 3. One can find a sequence (βk) such that, for any p > 0 and T large enough,

exp (H(aT )) =

√
2ϕ0T

ϕ1 + a1

[
1 +

p∑

k=1

βk
T k

+O
( 1

T p+1

)]
. (B.8)

The sequence (βk) only depends on (ak) together with the derivatives of H at point ac. For example,

β1 =
c(c2 − 3θc+ θ2)

(c− θ)(θ − 2c)(3c− θ)2
.

Proof. By the very definition of H, we have

exp (H(aT )) =

√
2ϕ(aT )T

T (ϕ(aT ) + aT + θ)
.

Consequently, the expansion of the square root together with those of aT and ϕ(aT ) ensure the existence
of a sequence (βk) such that (B.8) is true. Moreover, as for (αk), the sequence (βk) can be explicitly
calculated. For example

β1 =
1

2

(
ϕ1

ϕ0
− ϕ2 + a2
ϕ1 + a1

)
=

c(c2 − 3θc+ θ2)

(c− θ)(θ − 2c)(3c− θ)2
.
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Step 4. The remainder RT (aT ) goes to zero exponentially fast

RT (aT ) = O
(
T exp(2ϕ0T )

)
. (B.9)

Proof. The result follows from (2.4) together with the fact that ϕ0 < −θ < 0. More precisely, we have

1− h(aT )

1 + h(aT )
=

T (ϕ(aT )− aT − θ)

T (ϕ(aT ) + aT + θ)

which implies via (B.4) that

lim
T→∞

1

T

(1− h(aT )

1 + h(aT )

)
=
ϕ0 − a0 − θ

ϕ1 + a1
=

2(2c− θ)(3c− θ)

c− θ
. (B.10)

Consequently, we immediately deduce (B.9) from (2.4) and (B.10).

Proof of Lemma 4.2. It follows from the conjunction of (B.3), (B.6), (B.8) and (B.9) that there exists
a sequence (γk) such that, for any p > 0 and T large enough,

AT = exp

(
−TI(c) +

1

2

)√
2ϕ0T

ϕ1 + a1

[
1 +

p∑

k=1

γk
T k

+O
( 1

T p+1

)]
,

= exp (−TI(c) + P (c))
√
eT

[
1 +

p∑

k=1

γk
T k

+O
( 1

T p+1

)]
, (B.11)

where P (c) is given by (4.11). Finally, the sequence (γk) can be explicitly calculated by use of (ak)
together with the derivatives of L and H at point ac. For example,

γ1 = α1 + β1 =
c(c2 − 3θc+ θ2)

2(c− θ)(θ − 2c)(3c− θ)2
.

B.2 Proof of Lemma 4.4.

We are in the situation where |c| < θ and c &= 0 which means that ac = 0 and ϕ(ac) = −θ. Consequently,
ϕ(ac) − c = −(θ + c) &= 0 while ϕ(ac) + ac + θ = 0. The proof of Lemma 4.4 follows exactly the same
lines as those of Lemma 4.2. The only notable thing to mention is that

aT =
p∑

k=0

ak
T k

+O
( 1

T p+1

)

where a0 = 0,

a1 = − θ

c+ θ
and a2 = −c(c2 + 3θc− 2θ2)

2(c− θ)(c+ θ)3
,

ϕ(aT ) =
p∑

k=0

ϕk

T k
+O

( 1

T p+1

)

where ϕ0 = −θ,

ϕ1 =
c

c+ θ
and ϕ2 =

c2(2c2 + 3θc− 3θ2)

2θ(c− θ)(c+ θ)3
.

Therefore, the rest of the proof of the Lemma 4.4 is left to the reader.
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B.3 Proof of Lemma 4.6.

The proof of Lemma 4.6 is slightly different from the one of Lemma 4.2. More precisely, there is a change
of regime in the asymptotic expansions of aT and ϕ(aT ).

Step 1. One can find two sequences (ak) and (ϕk) such that, for any p > 0 and T large enough,

aT =
2p∑

k=0

ak

(
√
T )k

+O
( 1

T p
√
T

)

where a0 = 0, a1 = −
√
θ, and a2 = −1/8,

ϕ(aT ) =
2p∑

k=0

ϕk

(
√
T )k

+O
( 1

T p
√
T

)

where ϕ0 = −θ, ϕ1 = −
√
θ, and ϕ2 = 3/8.

Proof. We are in the situation where c = −θ, ac = 0 and ϕ(ac) = −θ which clearly implies that
ϕ(ac)− c = −(θ + c) = 0 and ϕ(ac) + ac + θ = 0. It leads to a change of regime in the expansions of aT
and ϕ(aT ) comparing to the expansions of aT and ϕ(aT ) in Lemma 4.2. As a matter of fact, we obtain
from (B.2) that

lim
T→∞

T (ϕ(aT ) + θ)(ϕ(aT ) + aT + θ) = 2θ. (B.12)

Therefore, one can easily deduce the expansions of aT and ϕ(aT ) from (B.2) and (B.12). The calculation
of the first terms is straightforward. For example, as

ϕ(aT ) = −
√
θ2 − 2θaT ,

we obtain that a0 = 0, ϕ0 = −θ,

ϕ1 = a1 and ϕ2 = a2 +
1

2
.

In addition, we infer from (B.2) that

ϕ1(a1 + ϕ1) = 2θ and a2 + 3ϕ2 = 1.

Consequently, we immediately obtain that a21 = θ which implies that a1 = −
√
θ as aT belongs to the

interior of ∆c =]−∞, 0[. It remains to solve the simple linear system

{
2a2 − 2ϕ2 = −1,

a2 + 3ϕ2 = 1

which solution is a2 = −1/8 and ϕ2 = 3/8.

Step 2. One can find a sequence (αk) such that, for any p > 0 and T large enough,

exp (TL(aT )) = exp

(
−TI(c) +

1

4

)[
1 +

2p∑

k=1

αk

(
√
T )k

+O
( 1

T p
√
T

)]
. (B.13)

The sequence (αk) only depends on (ak) together with the derivatives of L at the origin. For example,

α1 = − 3

16
√
θ
.

Proof. By the Taylor expansion of L at the neighborhood of the origin, as L′(0) = 0, we have the
existence of a sequence (*k) such that, for any p > 0 and T large enough,

TL(aT ) = TL(0) + a21
2
L(2)(0) +

2p∑

k=1

*k

(
√
T )k

+O
( 1

T p
√
T

)
. (B.14)
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On the one hand, L(2)(0) = 1/(2θ) which implies that

a21
2
L(2)(0) =

1

4
.

On the other hand, as L(3)(0) = 3/(2θ2), we also have

*1 = a1a2L(2)(0) +
a31
6
L(3)(0) = − 3

16
√
θ
.

Therefore, we deduce (B.13) from (B.14).

Step 3. One can find a sequence (βk) such that, for any p > 0 and T large enough,

exp (H(aT )) = (θT )1/4
[
1 +

2p∑

k=1

βk

(
√
T )k

+O
( 1

T p
√
T

)]
. (B.15)

The sequence (βk) only depends on (ak) together with the derivatives of H at the origin. For example,

β1 =
9

16
√
θ
.

Proof. By the very definition of H, we have

exp (H(aT )) =

√
2ϕ(aT )

√
T√

T (ϕ(aT ) + aT + θ)
.

Hence, the expansion of the square root together with those of aT and ϕ(aT ) ensure the existence of a
sequence (βk) such that (B.15) is true. As before, the sequence (βk) can be explicitly calculated. For
example,

β1 =
1

2

(
ϕ1

ϕ0
− ϕ2 + a2
ϕ1 + a1

)
=

9

16
√
θ
.

Step 4. The remainder RT (aT ) goes to zero exponentially fast

RT (aT ) = O
(√

T exp(−2θT )
)
. (B.16)

Proof. We have
1− h(aT )

1 + h(aT )
=

√
T (ϕ(aT )− aT − θ)√
T (ϕ(aT ) + aT + θ)

,

which implies that

lim
T→∞

1√
T

(1− h(aT )

1 + h(aT )

)
=

√
θ. (B.17)

Consequently, we immediately deduce (B.16) from (2.4) and (B.17).

Proof of Lemma 4.6. It follows from (B.3) together with (B.13), (B.15) and (B.16) that there exists
a sequence (γk) such that, for any p > 0 and T large enough,

exp (−TI(c)) (eθT )1/4
[
1 +

2p∑

k=1

γk

(
√
T )k

+O
( 1

T p
√
T

)]

where the sequence (γk) can be explicitly calculated by use of (ak) together with the derivatives of L and
H at the origin. For example,

γ1 = α1 + β1 =
3

8
√
θ
.
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C Appendix C: On the expansions of BT .

C.1 General considerations.

In order to unify the notations, let αT = ac if c < −θ and αT = aT otherwise. In addition, denote

βT =






σc
√
T if c < −θ,

√
T if c = −θ,
T if |c| < θ,

−T if c > θ.

One can observe that we always have αTβT < 0. Then, in all different cases,

BT = ET

[
exp(−αTβTUT )1IUT≤0

]
(C.1)

where

UT =
ZT (c)

βT
.

Denote by ΦT the characteristic function of UT under PT and assume in all the sequel that c &= 0.

Lemma C.1 For T large enough, ΦT belongs to L2(R) and, for all u ∈ R,

ΦT (u) = exp

(
TLT

(
αT +

iu

βT

)
− TLT (αT )

)
. (C.2)

Moreover, we can split BT into two terms, BT = CT +DT where

CT = − 1

2παTβT

∫

|u|≤sT

(
1 +

iu

αTβT

)−1

ΦT (u)du, (C.3)

DT = − 1

2παTβT

∫

|u|>sT

(
1 +

iu

αTβT

)−1

ΦT (u)du. (C.4)

where sT is chosen in such a way that there are positive constants C and 0 < ν < 1 satisfying

min

(
Ts2T
β2
T

,
T
√
sT√

|βT |

)
≥ CT ν (C.5)

and there exist two positive constants d and D such that

|DT | ≤ d T exp(−DT ν). (C.6)

We choose sT large enough to satisfy (C.5) and small enough to enable us to intervene integral and
summation into (C.3). The expansion of CT thus follows from that of ΦT and some tedious calculations.
Finally, (C.6) tells us that the expansion of BT is nothing but that of CT .

Proof of Lemma C.1. For all u ∈ R, we have

ΦT (u) = ET

[
exp(iuUT )

]
,

= E
[
exp

(
iu

ZT (c)

βT

)
exp (αTZT (c)− TLTαT ))

]
,

= E
[
exp

((
αT +

iu

βT

)
ZT (c)

)]
exp (−TLT (αT )) ,

= exp

(
TLT

(
αT +

iu

βT

)
− TLT (αT )

)
.
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We shall see in Appendix D that for T large enough, ΦT ∈ L2(R). Then, it follows from Parseval formula
that

BT = ET

[
exp(−αTβTUT )1IUT ≤0

]
,

= − 1

2π

∫

R

1

αTβT + iu
ΦT (u)du,

= − 1

2παTβT

∫

R

(
1 +

iu

αTβT

)−1

ΦT (u)du

which implies that BT = CT +DT where CT and DT are given by (C.3) and (C.4). It remains to show
that DT goes exponentially fast to zero. We deduce from Cauchy-Schwarz inequality that

|DT |2 ≤ 1

4π2α2
Tβ

2
T

∫

|u|>sT

(
1 +

u2

(αTβT )2

)−1

du

∫

|u|>sT

|ΦT (u)|2 du. (C.7)

On the one hand,

∫

|u|>sT

(
1 +

u2

(αTβT )2

)−1

du ≤ |αTβT |
∫

R

1

1 + v2
dv ≤ |αTβT |π. (C.8)

On the other hand, we deduce from (C.2) together with inequality (D.1) that for T large enough,

|ΦT (u)|2 ≤ 4*(αT , c, θ)
(
1 + γ2Tu

2
)1/4

exp

(
TϕT

8
γ2Tu

2
(
1 + γ2Tu

2
)−3/4

)

where ϕT = ϕ(αT ) and

γT =
2|c|

|βT |ϕ2(αT )
.

It is not hard to see that we can find a positive constant C$ such that, for T large enough, *(αT , c, θ) ≤ C$T.
Consequently, if δT = γT sT , we obtain that

∫

|u|>sT

|ΦT (u)|2 du ≤ 8C$T

∫ ∞

sT

(
1 + γ2Tu

2
)1/4

exp

(
TϕT

8
γ2Tu

2
(
1 + γ2Tu

2
)−3/4

)
du,

≤ 8C$T

γT

∫ ∞

δT

(
1 + v2

)1/4
exp

(
TϕT

8
v2
(
1 + v2

)−3/4
)

dv. (C.9)

Let g and h be the two functions defined on R+ by

g(v) =
v2

(1 + v2)3/4
and h(v) =

v3/2

(1 + v2)3/4
.

One can observe that g and h are both increasing functions on R+. Moreover, as soon as v > δT ,
g(v) =

√
vh(v) >

√
vh(δT ). In addition, for all v ∈ R+, we also have

23/4g(v) ≥ min
(
v2,

√
v
)
.

Therefore, we obtain from (C.9) that

∫

|u|>sT

|ΦT (u)|2 du ≤ 8C$T

γT
exp

(TϕT

16
g(δT )

)∫ ∞

δT

21/4max(1,
√
v) exp(eT

√
v) dv (C.10)

where

eT =
TϕT

16
h(δT ).
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The fact that ϕT < 0 leads to

TϕT

8
g(δT ) ≤ TϕT

16
23/4g(δT ),

≤ TϕT

16
min

(
δ2T ,

√
δT
)
,

≤ TϕT

16
min

(
4c2

ϕ4
T

s2T
β2
T

,

√
2|c|
ϕ2
T

√
sT
|βT |

)
,

≤ max

(
c2

4ϕ3
T

,−
√
2|c|
16

)
min

(
T
s2T
β2
T

, T

√
sT
|βT |

)
,

≤ −µCT ν

where the positive constant µ in the last inequality is due to the boundeness of the terms in the max and
the power T ν follows from assumption (C.5). Furthermore, for T large enough, the integral in (C.10) is
bounded by 1. As a matter of fact, we have via straightforward calculation on the Gamma function that

∫ ∞

0
max(1,

√
v) exp(eT

√
v) dv ≤ 1

eT
max

(
1,− 2

eT

)
.

It is not hard to see from assumption (C.5) that eT goes to −∞ as T tends to infinity, which clearly
implies that this integral is as small as one wishes. Then, we infer from (C.10) that for T large enough

∫

|u|>sT

|ΦT (u)|2 du ≤ 8C$T

γT
exp(−µCT ν) ≤ 8C$T |βT |ϕ2

T

2|c| exp(−µCT ν). (C.11)

Finally, we deduce from (C.7), (C.8) and (C.11) that for T large enough

|DT |2 ≤ 8C$Tϕ2
T

8π|αT c|
exp(−µCT ν)

which clearly implies that, for two positive constants d and D,

|DT | ≤ d T exp(−DT ν)

and completes the proof of Lemma C.1.

C.2 Proof of Lemma 4.1.

Lemma C.2 For c < −θ, the distribution of UT under PT converges, as T goes to infinity, to an N (0, 1)
distribution which means that ΦT converges to Φ given by

Φ(u) = exp
(
−u2

2

)
.

Moreover, for any p > 0, there exist integers q(p), r(p) and a sequence (ϕk,l) independent of p, such that,
for T large enough

ΦT (u) = Φ(u)



1 + 1√
T

2p∑

k=0

q(p)∑

l=k+1

ϕk,lul

(
√
T )k

+O
(max(1, |u|r(p))

T p+1

)


 (C.12)

where σ2c is given by (3.4) and the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.

Proof of Lemma C.2. It follows from (2.1) that for all k ∈ N,

L(k)
T (ac) = L(k)(ac) +

1

T
H(k)(ac) +

1

T
R(k)

T (ac). (C.13)
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Moreover, it is rather easy to see that for all k ∈ N,

R(k)
T (ac) = O(T k exp(2Tc)). (C.14)

One can observe that L(1)(ac) = 0 and L(2)(ac) = σ2c with σ2c given by (3.4). In addition, taking
βT = σc

√
T , we also have

T

(
iu

βT

)2L(2)(ac)

2
= −u2

2
.

Hence, by a Taylor expansion, we find from (C.2), (C.13) and (C.14) that for any p > 0

logΦT (u) = −u2

2
+ T

2p+3∑

k=3

(
iu

σc
√
T

)kL(k)(ac)

k!
+

2p+1∑

k=1

(
iu

σc
√
T

)kH(k)(ac)

k!
+O

(max(1, u2p+4)

T p+1

)
.

Finally, we deduce the asymptotic expansion (C.12) by taking the exponential on both sides, remarking
that, as soon as |u| ≤ sT 1/6 with s > 0, the quantity ul/(

√
T )k remains bounded in (C.12).

Proof of Lemma 4.1. In order to achieve the proof of the Lemma 4.1, let sT = sT 1/6 with s > 0 and
βT = σc

√
T . As

min

(
Ts2T
β2
T

,
T
√
sT√

|βT |

)
≥ CT 1/3,

the assumption (C.5) of Lemma C.1 is clearly satisfied. Consequently, there exist two positive constants
d and D such that

|DT | ≤ d exp(−DT 1/3).

Finally, we obtain (4.5) from (C.3) and (C.12) together with standard calculations on the N (0, 1) distri-
bution.

C.3 Proof of Lemma 4.3.

Lemma C.3 For c > θ, the distribution of UT under PT converges, as T goes to infinity, to the distri-
bution of γ(N2 − 1), where N is an N (0, 1) random variable and

γ = L′(2(c− θ)) =
(3c− θ)

2(θ − 2c)

which means that ΦT converges to Φ given by

Φ(u) =
exp(−iγu)√
1− 2iγu

.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m) independent of p,
such that, for T large enough

ΦT (u) = Φ(u) exp

(
−σ

2
cu

2

2T

)

1 +
p∑

k=1

q(p)∑

l=k+1

r(p)∑

m=0

ϕk,l,mul

T k(1− 2iγu)m
+O

(max(1, |u|s(p))
T p+1

)


 (C.15)

where σ2c is given by (3.7) and the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Proof of Lemma C.3. It follows from (2.1) and (C.2) that

ΦT (u) = exp

(
T

(
L
(
aT +

iu

βT

)
−L(aT )

)
+H

(
aT +

iu

βT

)
−H(aT ) +R

(
aT +

iu

βT

)
−R(aT )

)
(C.16)

where βT = −T . We shall focus our attention on each term of (C.16). First, by virtue of Lemma ??, the
term involving the remainder R does not contribute to the asymptotic expansion of ΦT . Next, by the
very definition (2.2) of L, the first term of (C.16) can be rewritten as

T

(
L
(
aT +

iu

βT

)
− L(aT )

)
= −T

2

(
iu

βT
− ϕT

((
1 +

iubT
βT

)1/2

− 1

))
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where ϕT = −
√
θ2 + 2aT c and bT = 2c/ϕ2

T . Consequently, as bT /βT tends to 0, we have for all p ≥ 2,

exp

(
T

(
L
(
aT +

iu

βT

)
− L(aT )

))
= exp

(
− iuT

2βT
+

TϕT

2

p∑

k=1

lk
( iubT
βT

)k
+O

( |u|p+1

T p+1

))

where lk = (−1)k−1(2k)!/((2k − 1)(2kk!)2) which leads to

exp

(
T

(
L(aT +

iu

βT
)− L(aT )

))

= exp

(
−iucT − dTu2

2T

)
exp

(
TϕT

2

p∑

k=3

lk
( iubT
βT

)k
+O

( |u|p+1

T p+1

))
(C.17)

where

cT =
c− ϕT

2ϕT
and dT = −ϕT b2T

8
.

For the second term of (C.16), we also have by the very definition (2.3) of H

exp

(
H
(
aT +

iu

βT

)
−H(aT )

)
=

(
ϕT + aT + θ

ϕT +
(
aT + iuβ−1

T + θ
) (

1 + iubTβ
−1
T

)−1/2

)1/2

.

Hence, we have for all p ≥ 2,

exp

(
H
(
aT +

iu

βT

)
−H(aT )

)

=
1√
fT (u)

(
1 + gT (u)u

2 + hT (u)

(
p∑

k=2

hk

( iubT
−T

)k
+O

( |u|p+1

T p+1

)))−1/2

(C.18)

where hk = (2k)!/(2kk!)2 and

fT (u) = 1− iu

eT
+

(aT + θ)iubT
2eT

,

gT (u) =
bT

2TeTfT (u)
,

hT (u) =
T (aT + θ)− iu

eT fT (u)
,

with eT = T (ϕT + aT + θ). One can easily check that, as T goes to infinity, the limits of bT , cT , dT , and
eT are respectively given by 2c/(θ− 2c)2, γ, σ2c , and (θ− c)/(3c− θ) which implies that fT (u) converges
to 1− 2iγu. Finally, we find via (C.17) and (C.18) the pointwise convergence

lim
T→∞

ΦT (u) = Φ(u) =
exp(−iγu)√
1− 2iγu

while (C.15) follows from the Taylor expansion of the exponential in (C.17) together with the Taylor
expansion of the square root in (C.18).

Proof of Lemma 4.3. In order to complete the proof of the Lemma 4.3, let sT = sT 2/3 with s > 0 and
βT = −T . It is not hard to see that

min

(
Ts2T
β2
T

,
T
√
sT√

|βT |

)
≥ CT 1/3,

which means that the assumption (C.5) of Lemma C.1 is satisfied. Therefore, there exist two positive
constants d and D such that

|DT | ≤ d T exp(−DT 1/3).

Finally, we deduce (4.12) from (C.3) and (C.15) via a careful use of the contour integral lemma for the
Gamma function given in Lemma 7.3 of [3].
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C.4 Proof of Lemma 4.5.

Lemma C.4 For |c| < θ with c &= 0, the distribution of UT under PT converges, as T goes to infinity, to
the distribution of γ(N2 − 1), where N is an N (0, 1) random variable and

γ = −L′(0) =
(θ + c)

2θ

which means that ΦT converges to Φ given by

Φ(u) =
exp(−iγu)√
1− 2iγu

.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m) independent of p,
such that, for T large enough

ΦT (u) = Φ(u) exp

(
−σ

2
cu

2

2T

)

1 +
p∑

k=1

q(p)∑

l=k+1

r(p)∑

m=0

ϕk,l,mul

T k(1− 2iγu)m
+O

(max(1, |u|s(p))
T p+1

)


 (C.19)

where σ2c is given by (3.10) and the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Proof of Lemma C.4. The proof is left to the reader inasmuch as it follows essentially the same lines
as those in the proof of Lemma C.3.

Proof of Lemma 4.5. The proof of Lemma 4.5 follows exactly the same arguments as those in the proof
of Lemma 4.3. The only notable thing to mention is that we have to take in account twice the asymptotic
behavior of aT because aT goes to zero as T tends to infinity and aT is also in the denominator of CT .

C.5 Proof of Lemma 4.7.

Lemma C.5 For c = −θ, the distribution of UT under PT converges, as T goes to infinity, to the
distribution of σθN + γθ(M2 − 1), where σ2θ is given by (3.13), N and M are two independent N (0, 1)
random variables and

γθ =
1

2
√
θ

which means that ΦT converges to Φ given by

Φ(u) =
exp (−iγθu)√
1− 2iγθu

exp

(
−σ

2
θu

2

2

)
.

Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m) independent of p,
such that, for T large enough

ΦT (u) = Φ(u)



1 + 1√
T

2p∑

k=0

q(p)∑

l=k+1

r(p)∑

m=0

ϕk,l,mul

(
√
T )k(1− 2iγθu)m

+O
(max(1, |u|s(p))

T p+1

)


 (C.20)

where the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.

Proof of Lemma C.5. The proof is left to the reader inasmuch as it follows essentially the same lines
as those in the proof of Lemma C.3.

Proof of Lemma 4.7. The proof of Lemma 4.7 follows exactly the same arguments as those in the
proof of Lemma 4.3 with a careful use of the contour integral lemma for the Gamma function given in
Lemma 7.3 of [3].
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D Appendix D: Technical Lemmas.

D.1 Statement of the results.

The effective domain ∆T,c of the normalized cumulant generating function LT was previously calculated

in Lemma 4.1 of [9]. It is an open interval such that ∆̃T,c ⊂ ∆T,c ⊂ ∆T,c where

∆̃T,c =
{
a ∈ R, θ2 + 2ac > 0, a+ θ <

√
θ2 + 2ac coth(T

√
θ2 + 2ac)

}

and

∆T,c =
{
a ∈ R, θ2 + 2ac+

π2

T 2
> 0, a+ θ <

√
θ2 + 2ac coth(T

√
θ2 + 2ac)

}
.

Denote DT,c = {z ∈ C,Re(z) ∈ ∆T,c} and Dc = {z ∈ C,Re(z) ∈ ∆c}.

Lemma D.1 For T large enough, ΦT belongs to L2(R). More precisely, for T large enough and for any
(a, u) ∈ R2 such that (a+ iu) ∈ DT,c,

∣∣∣exp (T (LT (a+ iu)− LT (a)))
∣∣∣
2
≤ 4*(a, c, θ)

(
1 +

4c2u2

ϕ4(a)

)1/4
exp

(
T

c2u2

2ϕ3(a)

(
1 +

4c2u2

ϕ4(a)

)−3/4
)

(D.1)

where

*(a, c, θ) = max

(
1,

|ϕ(a) + θ|
|ϕ(a)|

)
max

(
1,

|ϕ(a) + 2c− θ|
|ϕ(a)|

)
. (D.2)

D.2 Proof of Lemma D.1.

The key point is to make use of a complex counterpart of the main decomposition (2.1), which means

LT (z) = L(z) + 1

T
H(z) +

1

T
RT (z) (D.3)

where L, H and RT are respectively given by (2.2), (2.3) and (2.4). In order to make these expressions
meaningful, we have to take care about the definitions. We shall denote the principal determination of
the logarithm defined on C\]−∞, 0] by

log [z] = log |z|+ iArg(z),

where

Arg(z) =






arcsin
(

Im(z)
|z|

)
if Re(z) ≥ 0,

arccos
(

Re(z)
|z|

)
if Re(z) < 0, Im(z) > 0,

− arccos
(

Re(z)
|z|

)
if Re(z) < 0, Im(z) < 0.

We also introduce the analytic function defined for all z ∈ C with Re(z) > 0, by

√
1 + z =

√
|1 + z| exp

( i

2
Arg(1 + z)

)
.

It is not hard to see that

Re(
√
1 + z) =

1√
2

√
|1 + z|+ 1 + Re(z). (D.4)

The proof of Lemma D.1 follows from the conjunction of three lemmas, each one involving the functions
L, H and RT .

Lemma D.2 The function L given, for all z ∈ C, by

L(z) = −1

2

(
z + θ − ϕ(z)

)
where ϕ(z) = −

√
θ2 + 2zc

is differentiable on the domain Dc. Moreover, for all a ∈ ∆c and u ∈ R, we have

∣∣∣exp (T (L(a+ iu)− L(a)))
∣∣∣
2
≤ exp

(
T

c2u2

4ϕ3(a)

(
1 +

4c2u2

ϕ4(a)

)−3/4
)
. (D.5)
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Proof of Lemma D.2. For all z ∈ C such that Re(z) ∈ ∆c, ϕ(z) is well defined. Hence, ϕ is differentiable
on Dc and the same is also true for L. In addition, we have

L(a+ iu)− L(a) = −1

2
(iu− ϕ(a+ iu) + ϕ(a))

which clearly implies that

∣∣∣exp (T (L(a+ iu)− L(a)))
∣∣∣ ≤ exp

(
T

2
(Re(ϕ(a+ iu)− ϕ(a)))

)
. (D.6)

Moreover, we also have

ϕ(a+ iu)− ϕ(a) = ϕ(a)

(√

1 +
2icu

ϕ2(a)
− 1

)
.

We deduce from (D.4) with z = 2icu/ϕ2(a), that

Re (ϕ(a+ iu)− ϕ(a)) =
ϕ(a)√

2





√√√√
√

1 +
4c2u2

ϕ4(a)
+ 1−

√
2



 .

Keeping in mind that ϕ(a) < 0, we infer from the elementary inequality

√√
1 + x+ 1−

√
2 ≥ x

4
√
2(1 + x)3/4

which is true as soon as x ≥ 0, that

Re (ϕ(a+ iu)− ϕ(a)) ≤ c2u2

2ϕ3(a)

(
1 +

4c2u2

ϕ4(a)

)−3/4

.

Finally, it ensures via (D.6) that for all a ∈ ∆c and u ∈ R,
∣∣∣exp (T (L(a+ iu)− L(a)))

∣∣∣
2
≤ exp

(
T

c2u2

4ϕ3(a)

(
1 +

4c2u2

ϕ4(a)

)−3/4
)
.

which ends the proof of Lemma D.2.

Lemma D.3 The function H given, for all z ∈ C, by

H(z) = −1

2
log

(
1

2
(1 + h(z))

)
where h(z) =

(z + θ)

ϕ(z)

is differentiable on the domain Dc. Moreover, for all a ∈ ∆c and u ∈ R, we have

∣∣∣exp(H(a+ iu)−H(a))
∣∣∣
2
≤ *(a, c, θ)

(
1 +

4c2u2

ϕ4(a)

)1/4

. (D.7)

Proof of Lemma D.3. First of all, it follows from (2.3) that

∣∣∣exp (H(a+ iu)−H(a))
∣∣∣
2
=

∣∣∣∣
1 + h(a)

1 + h(a+ iu)

∣∣∣∣ . (D.8)

We claim that for z ∈ C such that Re(z) ∈ ∆c, 1 + h(z) ∈ C\] −∞, 0]. Assume by contradiction that
this is not true, which means that one can find λ ∈ [0,+∞[ such that

1 + h(z) = −λ.

Since, ϕ2(z) = θ2 + 2cz, ϕ(z) is a root of the quadratic equation

ϕ2(z) + 2c(1 + λ)ϕ(z)− θ2 + 2cθ = 0.
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Its discriminant is non-negative as

4(c− θ)2 + 4c2λ2 + 8c2λ ≥ 0.

One can observe that c, θ and λ are reals numbers which implies that ϕ(z) is also a real number as
well as z. Consequently, z belongs to ∆c and 1 + h(z) > 0 which contradicts the assumption. This
allows us to say that H is differentiable on Dc. We are now in position to prove inequality (D.7). Since
ϕ2(z) = θ2 + 2cz, for z ∈ C such that Re(z) ∈ ∆c, we have

1 + h(z) =
(ϕ(z) + θ)(ϕ(z) + 2c− θ)

2cϕ(z)
. (D.9)

For all z ∈ C such that Re(z) ∈ ∆c, and for all α ∈ R, we clearly have

|ϕ(z) + α|2 = |ϕ(z)|2 + α2 + 2αRe(ϕ(z)).

Assume that a belongs to ∆c and let u ∈ R. We already saw that

ϕ(a+ iu) = ϕ(a)

√

1 +
2icu

ϕ2(a)

which leads to

|ϕ(a+ iu)|2 = ϕ2(a)

∣∣∣∣1 +
2icu

ϕ2(a)

∣∣∣∣ = ϕ2(a)

(
1 +

4c2u2

ϕ4(a)

)1/4

. (D.10)

On the other hand, it also follows from (D.4) that

Re(ϕ(a+ iu)) =
ϕ(a)√

2

√

1 +

∣∣∣∣1 +
2icu

ϕ2(a)

∣∣∣∣ =
ϕ(a)√

2

√√√√1 +

√

1 +
4c2u2

ϕ4(a)
. (D.11)

Consequently, |ϕ(a+ iu)|2 = 2(Re(ϕ(a+ iu)))2 − ϕ2(a) which implies that

∣∣∣ϕ(a+ iu) + α
∣∣∣
2
= ϕ2(a)

(
2(Re(ϕ(a+ iu)))2

ϕ2(a)
− 1 +

α2

ϕ2(a)
+

2α

ϕ(a)

Re(ϕ(a+ iu))

ϕ(a)

)
. (D.12)

By introducing the function

gα(x) =

(
x+

α√
2

)2

+
α2

2
− 1,

we deduce from (D.11) together (D.12) with β = α/ϕ(a), that

∣∣∣ϕ(a+ iu) + α
∣∣∣
2
= ϕ2(a) gβ





√√√√1 +

√

1 +
4c2u2

ϕ4(a)



 . (D.13)

Furthermore, one can easily check from straighforward calculations that for all x ≥
√
2,

gβ(x) ≥
{

(β + 1)2 if β ∈ [−2, 0],

1 otherwise.
(D.14)

Therefore, we infer from (D.13) and (D.14) that for all a ∈ ∆c and for all u ∈ R,

|ϕ(a+ iu) + α
∣∣∣ ≥

{
|ϕ(a)||β + 1| if β ∈ [−2, 0],

|ϕ(a)| otherwise

which clearly implies that

1

|ϕ(a+ iu) + α| ≤
1

|ϕ(a)| max

(
1,

|ϕ(a)|
|ϕ(a) + α|

)
. (D.15)
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We shall make use of inequality (D.15) with α = θ and α = 2c − θ. One can observe that, as long as
a ∈ ∆c, the value of ϕ(a) + α &= 0. Finally, it follows from the conjunction of (D.8), (D.9), (D.10), and
(D.15) that for all a ∈ ∆c and for all u ∈ R,

∣∣∣exp (H(a+ iu)−H(a))
∣∣∣
2

≤ |ϕ(a+ iu)|
|ϕ(a)| max

(
1,

|ϕ(a) + θ|
|ϕ(a)|

)
max

(
1,

|ϕ(a) + 2c− θ|
|ϕ(a)|

)
,

≤ *(a, c, θ)

(
1 +

4c2u2

ϕ4(a)

)1/4

which completes the proof of Lemma D.3.

Lemma D.4 For T large enough, the function RT given, for all z ∈ C, by

RT (z) = −1

2
log

(
1 +

1− h(z)

1 + h(z)
exp(2ϕ(z)T )

)

is differentiable on the domain DT,c. Moreover, for all (a, u) ∈ R2 such that a+ iu ∈ DT,c, we have
∣∣∣exp(RT (a+ iu)−RT (a))

∣∣∣
2
≤ 4. (D.16)

Proof of Lemma D.4. First of all, we deduce from (2.4) that
∣∣∣exp (RT (a+ iu)−RT (a))

∣∣∣
2
=

∣∣∣∣
1 + r(a) exp(2ϕ(a)T )

1 + r(a + iu) exp(2ϕ(a+ iu)T )

∣∣∣∣ (D.17)

where the function r given, for all z ∈ C, by

r(z) =
1− h(z)

1 + h(z)
.

We already saw from (D.9) that

1 + h(z) =
(ϕ(z) + θ)(ϕ(z) + 2c− θ)

2cϕ(z)
.

Hence,

1− h(z) =
(θ − ϕ(z))(ϕ(z)− 2c+ θ)

2cϕ(z)

which implies that

|r(z)| =
∣∣∣∣
ϕ(z)− θ

ϕ(z) + θ

∣∣∣∣

∣∣∣∣
ϕ(z)− 2c+ θ

ϕ(z) + 2c− θ

∣∣∣∣ . (D.18)

Moreover, for all (a, u) ∈ R2 such that a+ iu ∈ DT,c,
∣∣∣r(a+ iu) exp(2ϕ(a+ iu)T )

∣∣∣
2
= |r(a+ iu)|2 exp(4Re(ϕ(a+ iu))T ).

We recall from (D.11) that

Re(ϕ(a+ iu)) =
ϕ(a)√

2

√√√√1 +

√

1 +
4c2u2

ϕ4(a)
.

The key point here is that Re(ϕ(a + iu)) is always negative. Consequently, via the same lines as in the
proof of Lemma D.3, we obtain that for T large enough and for all (a, u) ∈ R2 such that a+ iu ∈ DT,c,

∣∣∣r(a + iu) exp(2ϕ(a+ iu)T )
∣∣∣ ≤

1

2
. (D.19)

Finally, (D.16) follows from (D.17) and (D.19).

Proof of Lemma D.1. Lemma D.1 immediately follows from (D.3) together with the conjunction of
Lemmas D.2, D.3 and D.4.
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