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ABSTRACT

Context. To form metre-sized pre-planetesimals in protoplanetégsi growing grains have to decouple from the gas befoxeaie
accreted onto the central star during their phase of faglredgration and thus overcome the so-called “radialtdyérrier” (often
inaccurately referred to as the “metre-size barrier”).

Aims. To predict the outcome of the radial motion of dust grainsrot@planetary discs whose surface density and temperatioe
power-law profiles, with exponent and g respectively. We investigate both the Epstein and the Stdkag regimes which govern
the motion of the dust.

Methods. We analytically integrate the equations of motion obtaiffeth perturbation analysis. We compare these results Withet
from direct numerical integration of the equations of moti®hen, using data from observed discs, we predict the fatagi grains
in real discs.

Results. When a dust grain reaches the inner regions of the disc, ttedamation due to the increase of the pressure gradient is
counterbalanced by the increase of the gas drag. We find th&ttgrains in the Epstein (resp. the Stokes) regime surkizie tadial
migration if—p + g+ 3 < 0 (resp. ifq < §). The majority of observed discs satisfies beth+ g+ 3 < 0 andq < £: a large fraction
of both their small and large grains remain in the disc, fenttthe radial drift barrier does not exist.

Key words. planetary systems: protoplanetary discs — methods: acallyt

1. Introduction This migration motion depends strongly on the grain size,
which sets the magnitude of the drag, as well as the natuheof t

Much of the information about the gas structure of protoplfandrag regime. Specifically, as shown by W77 and NSH86, grains

tary discs is inferred from the emission by the dust compbmﬂ a critical size pass through the disc in a fraction of theedi
and an assumed dust-to-gas ratio. Interpretations of reten !'€time. This catastrophic outcome is called the *radiaft
servations in the (sub)millimetre domain (Andrews & Wittia barrier” of plangt _fqrmatmn. I\‘/‘Iore. preqlsely, V.Ve,,W'” a.ddpe.
2005, 2007; Lommen et al. 2007) show that observed discs t _bseqqent def|r_1|t|on for the “radial-drift barrier” in $rstudy:
ically have masses betweentCand 10! M, and a spatial ‘the ability of grains of be accreted onto the central/stepleted

extent of a few hundred AU. Their radial surface density arfiem .the disc_ Wit.hin its. Ii_fetime”. Historically, this prass
temperature profiles are approximated by power laws ¢—°, Was first studied in a Minimum Mass Solar Nebula (MMSN,
7 « r-9), whose respective exponengsand q have positive S€€ Weidenschilling 1977b; Hayashi 1981; Desch 2007; Crida
values ty[;ically of order unity 2009), in which the critical size corresponds to metreestzed-

' ies and thus was called the “metre-size barrier”. Howevan{

Seminal studies describe the dust motion in protoplafts are frequently observed (besides the 8 planets in oar sol
etary discs, which depends strongly on the gas structuf¥stem, more than 700 extra-solar planets have been discbve
Weidenschilling (1977a, hereafter W77) and Nakagawa et gg_dqté): some solid material must therefore have overcome this
(1986, hereafter NSH86) demonstrated that dust grainstnem Parrier and stayed in the disc to form larger bodies. Morgove
cron sizes to pre-planetesimals (a few metres in size) expék the small grains of every disc were submitted to the radial
ence a radial motion through protoplanetary discs. Thisanot drift barrier, we would barely detect them since their einiss
is called radial drift or migration. Due to its pressure dead, Via opticalIR scattering and IR thermal radiation is due to small
the gas orbits the central star at a sub-Keplerian veld@itgins 9rains. As discs are frequently observed, the grains froftwh
therefore have a fierential velocity with respect to the gas. Théhe emission is detected cannot be strongly depleted foba su
ensuing drag transfers linear and angular momentum from gi@ntial fraction of discs.
dust to the gas. Thus, dust particles can not sustain theeKepl
motion they would have without the presence of gas and as a
result migrate toward the central star. 1 httpy/exoplanet.eu
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From a theoretical point of view, such a discrepancy bé&en equations assuming a weak pressure gradient in Seetl 3 a

tween the observations and the theoretical predictionjithpt

detall the two diferent modes of migration which grains may

the seminal theory has to be extended (some physical elemexperience in Sects. 3.1 and 3.2. This allows us to derivenan a
is lacking) or that it has not been fully exploited. This sedo alytic criterion which determines the asymptotic dust tvédnar
option has been investigated by Youdin & Shu (2002, hereafia the Epstein regime in Sect. 3.3. We transpose these tieriga

YSO02). They highlight the fact that, contrary to the primagy

for the Stokes regime at low Reynolds number in Sect. 4 and ob-

pothesis of W77, observed dusty discs are drasticalfgidint tain a similar criterion for this regime. We also discussghans
from the MMSN prototype. As the radial surface density andutcome for large Reynolds numbers. In Sect. 5, we disciss th
temperature profiles fix both the radial pressure gradiethtla® relevance of these criteria and study their implicationsdio-
magnitude of the gas drag,fiirent values for the power-law served protoplanetary discs and planet formation in SeQué
exponentg andq affect the optimal grain size of migration andconclusions are presented in Sect. 7.

thus induce dterent radial motions for the dust through the disc.
Specifically, YS02 showed that for steep surface densitfilpso
and smooth temperature profiles, the grains radial velatgty
creases when the grains reach the inner discs regions.sGnain

2. Dynamics of dust grains

such discs therefore experience a “pile-up”. However, avini-  To reduce the parameter space for this study, we assumelthe fo
portant, the work of YSO02 does not provide a precise conafusilowing:

on the outcome of the grains nor any quantitative critermn f
the “pile-up” process to befiécient enough to avoid the radial-
drift barrier. Furthermore, YSO02 restricts their studyhe spe-

cial case of a gas phase with a low density (e.g. the grain size

smaller than the gas mean free path, called the Epstein e@gim
This hypothesis is not valid anymore when considering td&afa
drift of pre-planetesimals, whose grain sizes are largen the

gas mean free path and are submitted to the Stokes drag regime

Although the radial drift of pre-planetesimals has alrebdgn

studied in diferent situations with numerical or semi-analyticalz'

methods — see e.g. Haghighipour & Boss (2003); Birnstiel.et a
(2009); Youdin (2011) — its rigorous theory for the standard
case of a simple disc has not yet been derived.

Within this context, we see that (i) the seminal theory de-

scribing the radial motion of dust grains has been developed

within the limits of the Epstein regime but does not treat the
Stokes regime ; (ii) here exists no clear theoretical dateto
predict the impact of the “pile-upfiect” on the outcome of
the dust radial motion ; (iii) there exists no criterion tegict
whether a given disc will be submitted to the “radial-driéirb
rier” phenomenon. To answer these three points, we re-nisit

this study the work of W77 and NSH86 and extend the devel-
opments of YSO02 for both the Epstein and the Stokes regime.

Performing rigorous perturbative expansions, we find twe th
oretical criteria (one for each regime) which predict whia t
“pile-up” effect is suficient for the grains not to be accreted onto
the central star. We then test when these theoretical ieritan
be applied in real discs.

Additionally, our work is motivated by the recent observa-
tional results of Ricci et al. (2010a,b). From their obséores
they claim that “a mechanism halting or slowing down the in-
ward radial drift of solid particles is required to expldietdata”.

In this work we aim to show that contrary to what is usually in-
voked, local pressure maxima due to turbulent vortices malsp

density waves may help but are not necessarily required-to ex

plain the observations. Ricci et al. (2010a) also mentiah‘tthe
observed flux of the fainter discs are instead typically pxer

dicted even by more than an order of magnitude”. Here, we also

aim to provide a quantitative criterion to determine whidscd
are faint and which one are not. Thus, revisiting the sentivel
ory of the radial drift is timely, all the more so than an impor
tant quantity of new data is soon to be provided by ALMA, the
Atacama Large Millimetgsubmillimeter Array.

In this paper, we first recall some general properties ofhgrai
motion in protoplanetary discs for both the Epstein and &tok

regime in Sect. 2. We then focus on the radial motion of non-

growing grains in the Epstein regime. We expand the radial mo

1. The disc is a thin, non-magnetic, non-self-gravitingjsn

cid perfect gas disc which is vertically isothermal. Itsighd
surface density and temperature are described by power-law
profiles. Notations are described in Appendix A. The flow is
laminar and in stationary equilibrium. Consequently, the g
velocity and density are described by well-known relatjons
which we present in Appendix B.

The grains are compact homogeneous spheres of fixed ra-
dius. The collisions between grains and the collectifieats

due to large dust concentrations are neglected. When the
grains are small compared to the mean free path of the gas
(dg > 4s/9, wheresis the grain size), their interactions with
the gas are treated by the Epstein drag force for diluted me-
dia (Epstein 1924; Baines et al. 1965; Stepinski & Valageas
1996). This drag is caused by the transfer of momentum by
individual collisions with gas molecules at the grains sur-
face. Assuming specular reflections on the grain and when
the diferential velocity with the gas is negligible compared
to the gas sound speed, the now common expression of the
drag force is

FD = —t@ AV
S
t = PdS @)
S pgcs7

wheremy is the dust grain’s mast,the stopping timepg the

gas densitycs the local gas sound speegd,the intrinsic dust
density, and\v = v-vg the diferential velocity between dust
and the mean gas motion. In classical T Tauri star (CTTS)
protoplanetary discs, drag forces for particles smallanth

~ 10 m are well described by the Epstein regime (Garaud
et al. 2004, see also Sect. 6.1). Small grains which produce
the emission of observed protoplanetary discs satisfictitis
terion.

The interactions between large dust particlgs< 4s/9) and

the gas are treated by the Stokes drag force (Whipple 1972;
Stepinski & Valageas 1996). In this case, the gas mean free
path is small and the dust particle is locally surrounded by
a viscous fluid. Depending on the local Reynolds number
of the flow around the grainB, = 24 wherev is the
microscopic kinematic viscosity of the gas, the drag force
takes the following expression:

1
Fo=-3

Zchsng |AV| Av,

)
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where the drag cdicientCp is given by With Eq. (1) and noting2x the Keplerian angular velocity, this
ratio can be written as
24Rt forRy<1
L_ s _ S _g @)
Cp = 24R§°'6 for 1 < Ry < 800 3) ty (%) Sopt ’
Pd32k
0.44  for800<Ry. wherespt = F’jdg—gsk. This timescale ratio therefore correspondsto a
: : 2

If Ry < 1, the drag force remains linear v. dimensionless siz8 = SoRpezré_*q for the grain. IfS <« 1 (resp.

In this work, the physical relations are written in cylinchi S>> 1), the dfects of drag will occur much faster (resp. slower)

coordinatesr|, 9, Z). The related unit vector system is given b);han gravitational fects. IfS = 1, bo_th gravity an_d drag ‘.N'”
(e, &, €). As the system is invariant by rotation around the veﬁc.t on the sz_a[)ne timescale. Interestlr]gm varies in the disc
tical axise,, the physical quantities depend onlyioandz. The midplane as ”, as does surface density. .
physical quantities of the gas, designated by subscriptedirat Then. using Egs. (8), (B.2) and (C.1), we obtain for
determined in a general way. Then, the limit 0 is taken to (&, €, &):

study the restricted radial motion. W R § . R

Dust dynamics depends on both the magnitude of the drag A Y + ﬁg(m%)e*zpfs——q +— =0
(driven by the dfferential velocity) and on its relative contri- | dT R~ So (R2 + ¢oZ2)*/?
bution with respect to the gravity of the central star. Sehin | dVp V¥,
studies of dust dynamics were conducted by Whipple (1972),| dT * R
W77, Weidenschilling (1980) and NSH86, and extended by oth- o |1 ma [;_ L J (10)
ers (YS02; Takeuchi & Lin 2002; Haghighipour & Boss 2003; TR G \R22 ~(p+2) _ 2
Garaud et al. 2004; Youdin & Chiang 2004). Here we recall the R RPle =3 = 0
major points of those studies. We consider two forces aaing ?z 1dz , 2 7
the grain: the gravity of the central star and gas drag. (We as — + — —ER(P3)g a4 ——— =
sume that the momentum transferred by drag from a single grai dr? = SedT (R? + ¢oZ2) /

on the gas phase is negligible.) Thus These equations depend on five control parameters: thaliniti

dv dimensionless grain siz&, the radial surface density and tem-
Mo = —Fp +mag, (4)  perature exponentg and g, the square of the disc aspect ra-
ti?, #o = (Ho/ro)?, and the subkeplerian parametgy, given by

wherefyp is the drag force. As shown by Egs. (1)-(2). a genergq_ (C.2). The equations can be simplified in some casesfe.g.

expression of the ratié% is of the form the vertical motion is considered to occur faster than thiafa
~ motion,R~ 1 and% simplifies to the damped harmonic oscil-
Fo = —MIV — vyt (v _ vg), (5) lator equation. If we consider only the radial motion (for[a 2
my 4 disc), we hav& = 0, and
theiﬁ thSet qltjantitie_é, y_an'&j/l ared(_jegned for both the Epstein v ARV e (o+3) 1
and the Stokes regime in Appendix C. T "R S, =7 .
. L . . v oy (\79— \/% —TloRq) (11)
3. Radial motion in the Epstein regime: Qg _ VeV _ R(p+3)
perturbation analysis at small pressure gradients dr R So
Considering the Epstein (small grains) regime, Eg. (4) cedu Even for discs in two dimensions, Eq. (11) is not analyti-
to: cally tractable. However, as some of the parameters indolve
v my in the equation are small, approximations of the solution ca
—_——(v—v)+mdg (6) . : ;
dt ts 9 ‘ be found by performing perturbative expansions. Some of the

classical results detailed below have been studied in Wd7 an
NSH86, but are here properly justified. The principle of #hos
expansions is described on Fig. 1.tAt O,r = ro which implies

Writing Eqg. (6) in(r, 8, 2) coordinates leads to

dve ¥ (v-ve)  gmr

—r_ 20, =0 thatR(T = 0) = 1. Because of gas drag, a grain dissipates both
dat v ts (2 +12)%2 its energy and angular momentum and therefore, experiences
ave  Vive (V(.; — Vg ” radial inward motion, i.eR < 1. The first parameter with respect
3 + - + - 0 (") towhicha perturbative expansion can be performeyq {inked
N to the pressure gradient by Eq. (C.3)) as it takes valueswbap
av; (V2 — vge) L_GMz imately 103-1072in real protoplanetary discs (see NSH86), and
dt ts (22 +r2)%2 ' thusny < 1. We consider that this inequality also implies that

To highlight the important parameters involved in the gsaig-
namics, we introduce dimensionless quantities (see Append
C). It is crucial to note that the ratiék of the two timescales
related to the physical processes acting on the grain isdgiye

1
noR %< B (12)

This inequality is always verified whesp < 1 and thus ap-
plies to observed discs (see Sect. 6). for 1, there is a region
ts  tso where this inequality is not verified. However, in this cabe,

72 72
t = %Rpem = SoRPez1. (8) pressure gradient has the same order of magnitude as thigygrav
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3.1. A-mode (Radial differential migration)

S RP<<1 Ts << Tk

Equations If p=0: W77 small grains The A-mode corresponds to the regifReSy; < 1 (or equiva-
of motion Tk << Ts lently ts/ty < 1). In the A-mode, Eq. (16) reduces to

If p=0: W77llarge grains \7 B dr B dR

fTodt T dT

or equivalently

m, R << 1 rc2dInP tg
Vp= ——— =, 19
Vi dr oty (19)

§yRP>>1

= —noSoRP 42, (18)

M, R4 << 1 M, R << 1

where theO (RPSy) has been neglected. In this mode of migra-
tion, the stopping time is much smaller than the Kepleriareti
SoRP <t @ scale. Considering one grain’s orbit around the centrglitar-
NSH bital velocity is forced by the gas drag to become sub-Kégater
86 in just a few stopping times, i.e. almost instantaneousihysl
S, RP o> 1 B-mode the centrifugal acceleration is noffieient enough to counter-
balance the gravitational attraction of the central stad the
Fig. 1. Principle of the various perturbative expansions for thergra-  grain feels an inward radial filerential acceleration. The gas
dial motion. Expanding first with respect to the small presgyradient drag counterbalances this radial motion and the grain esagh
(moR ! < 1) leads to NSH86 equations. Expanding first with respetacal limit velocity in a few stopping times. We call the phys
to the grain sizes3pRP < 1 or SoRP > 1) leads to W77 expressionsical process of the A-mode of migration “Radial f2rential
for the particular cas@ = 0. Combining both leads to the A- and B-Migration”.
mode, respectively for small and large grains. The A-mode of migration originates first from a perturba-
tive expansion fory, < 1 (rigorously fornoR %! <« 1) and
of the central star and the model of a power-law profile forghe Second from a perturbative expansion &y < 1 (rigorously
dial temperature is not accurate enough to model realigtzsd for SoR® < 1). Formally, we have performed: lirtim [...J
We thus consider that for real discs Eq. (12) is always jestifi Historically, Y=l

; X X the A-mode had been derived by W77 to explain
Then, following NSH86, we consider the system of equatioge radial motion of small grains. In his study, he neglected
given by Eq. (11). We set

radial dependence of the stopping time and assuSieek 1

o 3 : S - 2T pa?
{Vr = Vo + 7o%1 + 0(’73) a3 I(At\gse?]%pi);olzx)lmanon also implies thR#PS3 < 1, asR < 1, see

~ ~ ~ 2 .

Uy = Yho + oV + O (1) It is straightforward to integrate the fiérential equation
and look at the order® (1), O (),... of the expansion — seeEd: (18) by separating th& and T variables. Noting that
Appendix E. We find that: R(T = 0) = 1, we have:

, ZSORpf%(l_W) . —If-p+gq+3=20:
Vr=)70Vr1+O()7)=— ]_+R2PS§ +O(7]O). L ﬁ
(14) R= [1—(—p+q+ E)UOSOT]
The pressure gradient term has been retained to keep the gen- piqh L (20)
erality, however since we assume that< 1, we equivalently T= 1-R -
have (—p+CI+ %)Tloso
[1 1 70 o g4l
R q_ = — _ Mo+ 2
R moR° \/; 2R 2+O(n°)' (15) —If-p+g+3=0:
Thus, to orde0O (7o), R = g SaT
~ T]oSoRp7q+% 2 { In (R) (21)
Vh=-—+ , 16 T=- .
=1 e () (16) —
or equivalently, using Egs. (C.4) and (C.1), The outcome of the dust radial motion comes from a com-

5 — petition between twoféects. As the grain reaches smaller radii,
= EMM (17) (1) gas drag increases, which slows down the radial drifd, an
Vi dro1 4 (ts/t)? (2) the diferential acceleration due to the pressure gradient in-
SoR” is the dimensionless expression of the ragie,. Eq. (16) Créases which enhances the migratificency. Point (1) is re-
shows thatR?PS2 <« 1 or R?PS2 > 1, and thusRPS, < 1 lated toSopt, which scales as the surfacg dengty pr_oflle,whllethe
or RPSy > 1, reosulting in asymoptotic behaviours for the radigfcceleration due.to the pressure gradient in (2) is re!aiekiet
grain motion. These asymptotic regimes were first desciilyed leMPerature profile (see Eq. (C.1)). Depending on whichgssc
W77 for the particular casp = 0. They correspond physically 'S dominant, the grain’s dynamics can lead to two regimes:
to two limiting cases: where the gas drag dominates, which we
call the A-mode, and where gravity dominates, which we call’
the B-mode. In the next sections, we study and describe these
two so-called “regimes of migration” or “modes of migration TR ~
before treating the global evolution of grains given by Bd)( (-p+a+3)noSo

If -p+q+ 3 <0:thenas

_RPta+3

=O(R™%3),  (22)
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the time it takes the grain to reach smaller and smaller radi If p+qg+ % # 0:
increases drastically, according to the diverging powser-|

Importantly, this behaviour constitutes our definition loé t 1\ 7o @
grain “pile-up”. Mathematically speaking, accretion otfie R= [1 - (D +0+ 5) S_OT]
central star occurs in an infinite time, i.e. . Sy 1 RPHOH (28)
[ = “mo(p+g+d)
Jim R=0 (23) (p+a+3)
—lfp+qg+i=0:
- If-p+q+ % > 0: the grain is accreted onto the central star pra+z
in a finite migration time given by R_g&T
1 T= —Eln(R). (29)
noSo(—p+CI+§) . .
As for the A-mode, two kinds of behaviours appear, depend-
which increases &8y andr decrease, so that ing on thep andgq exponents:
im R=0 @25 If p+q+ % < 0: The grain migrates inwards, piles-up in the
ToTw disc’s inner regions and falls onto the star in an infinitestim
The presence or absence of a physical grain pile-up is threref T'LTOC R=0. (30)
demonstrated considering the asymptotic behaviolR(@f) at ) ) i _
large times. It is important to realise that the pile-up isiena- However, the negative exponents required to be in this
lative efect that can not arise from velocities only (which how- fegime do not correspond to physical discs. Therefore, the
ever provide qualitative information on the grain’s modidmuit grain dynamics in the B-mode in real discs belong to the

can only be found by integrating the equation of motion. This Second case. o ,
rigorously allows us to distinguish twoféérent behaviours for — If p+0d+3 > 0: The grain is accreted onto the central star in
the outcome of the grain’s radial motion, and thus two clasge @ finite time So

discs with respect to the A-mode. Th=——"F (31)
no(p+a+3)

3.2. B-mode (Drift forced by a resistive torque) which increases &Sy increases angp decreases and so that

Returning to Eq. (16), the B-mode corresponds to the other lim R=0. (32)

asymptotic regime, wheiRPS, > 1 (or equivalentlyts/t, > 1). T=Tm

In this case, 4R As for the A-mode, considering the limit ¢¥(T) at large
U= — = _I0 pp-a+3 (26) times also proves the existence of two classes of discs with r

dT So spect to the B-mode of migration. The radial motion of a grain

in the B-mode of migration is also driven by a competition be-
_ tween the increase of both the drag and the accelerationodue t
_ ﬁdl_nPt_k 27) the pressure gradient. However, for real digzs; 0 andq > 0,
TTowe dro s and thereforep+q+% > 0. Grains migrating in B-mode in such

) o o discs fall in a finite time onto the central star.
In this mode of migration, the stopping time is much larganth

the Keplerian time scale. Hence, the orbital velocity of aigr ) ) _ _ )
around the central star is almost the Keplerian velocityveleer, 3.3. Radial evolution and asymptotic behaviour of single
because of the pressure gradient, the gas orbits arounerhalc grains

star at a sub-Keplerian velocity. Thus, _the ammuthﬁbdentlfal As we have seen, the grains behaviour is divided into two gsym
velocity between the gas and the grain generates an azimu Bﬂc regimes, called the A-mode and the B-mode, which come
drag force whose torque extracts angular momentum from g\ «vo diferent physical origins. However, the two criteria

gr.ain. G.iven that the K_eplerian angular_ momentum inc.reasé’étermining if the grains are accreted onto the centralobijea
with radius { o ), this torque results in the inward MIgrainite or infinite time difer for the A- and the B-mode. It is thus

tion °f_the“9r6_"”- We call the phy_su?al process:’of this B-motie il to determine in which mode a dust grain ends its nmotio
migration “Drift Forced by a Resistive Torq_ue . to predict if the grain is ultimately accreted or not. Retomn
As for the A-mode, the B-mode of migration can also bﬁgain to Eq. (16), we have
derived first from an expansion i8,R?)~? and then from an '
expansion ingg. Historically, W77 found an expression while drR _nosoRp-qu%
only assuming tha8y > 1 since he considered a flat density aT =~ 1iRSZ
profile. To find the expression derived by W77 for large grains + 0
we must assume th&yRP > 1. It is crucial to see that this
expression does not imply thg8g > 1 whenp > 0 andR — 0.
It is straightforward to integrate the ftBrential equation

Eq. (26) by separating th® and T variables. Noting that 1
R(T = 0) = 1, we have: T= - [TA (R + T (R, (34)

or equivalently

(33)

We can separate tieandT variables and integrate to obtain an
expression foll (R):
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Fig. 2. Radial evolution of grains in theR(S,) plane showing that a
grain in the Epstein drag regime ends its radial motion inAbmode.
The solid curves represe® P for various values op, they separate
the A-mode (below) from the B-mode (above) regions. Thezontal
dashed lines show trajectories of grains as they migratarisvfrom
R = 1. The shaded area is a forbidden zone.

Fig. 3. Radial motionR(T) of dust grains in the Epstein regime fgy =
10°2. Sy varies from 10* to 1¢*. Top:p=0,q = £, here-p+qg+3 > 0
and the grain is accreted onto the central star in a finite. tBogom:
3 S .
=3,g= 3 here-p+q+ 1 < 0and the grain piles up and is
consequently accreted onto the central star in an infimite.ti

where radial-drift process is long for small and large grains Isut i
o qptirr_]al for grains withS = S, = 1.f0r which the accretion
1-RP2 p+q+l£0 time is T = 1.6/770, or Ty = 160 withro = 1072
TA(R =2 -p+q+ % 2 (35) — The bottom panel of Fig. 3 shows the results fpr£ g
-In(R) if —p+q+ % =0. g= %): In this case, the radial density profile is steep enough
to ensure that the grains are not accreted onto the ceratral st
and To reach a given radius (for examg®e = 0.1), the optimal
,1- RP+A+3 " 1.0 size isSpm ~ 2.9 =0(1) (see Eq. (G.1)). Hence, in this case
Te(R) =0 D+q+ % p+Q+3# (36) grains ghiciently reach the disc inner regions v_\/l_thout ever
) ) 1 being accreted onto the central star. The transition freen th
-Sin(R) ifp+q+3=0. B-mode to the A-mode (for whicR « T~ in this case) for

Eq. (34) provides the asymptotic behaviour of the grainarae the large grains is visible in this plot.
times. Interestingly, ap > 0O for realistic discs, the contribution
of the B-mode becomes negligible whén< S,*®. Hence,
grains initially migrating in the A-mode stay in the A-modeit
grains initially migrating in the B-mode end their radial moRadial migration of large particles occurs in the Stokegydra
tion in the A-mode. This behaviour is summarized on Fig. &gime, which depends on the dynamical viscogitf the gas.
and detailed in Appendix G. This result was not predicted Bor hydrogen molecules:
W77, as he neglected the radial dependence of the stoppirg ti
Mathematically speaking, it comes from the fact that theyser 5myr [KeT
bative expansion of W77 has been performed with respect to 1= a1 m
powers ofSy and not powers 0ByRP. s
To illustrate the radial motion of dust grains in protoplan(;Nhere m =
tary discs, we numerically integrate the equations of nmofoy
different values of the parametegs So, p, 0. We setjo = 1072

4. Radial motion in the Stokes regime

(37)

2my = 3.347446922x 10?7 kg and os =
2.367x 10719 m? is the molecular cross section of the molecule

7 e ; (Chapman & Cowling 1970). The kinematic viscositys then
to mimic a realistic disc and vary the order of magnitud&ef defined byu = pgv and the gas collisional mean free path is

from 10 to 1@ for two sets of p,q) values. First, we choose iven b

(p=0,9= %); according to the NSH86 expansion, the grain% y

are accreted by the central star in a tifig. Second, we set A= \/E 4 (38)

(p = % q= %); the grains fall onto the central star in an in- g 2Cs

finite time from the same approximation. This set pfof) val- . . .

ues is taken to mimic discs profiles that are commonly used and We now generalise _the procedure outh_ned in Sects. 2 and 3
for which —p + g + % can take a positive or a negative value®© the_three Stoke_s regimes of Eq. (3). Using the dimensssnle
Consequently, we interpret the radial motR(T) of dust grains c0Ordinates described above, we have

plotted in Fig. 3.

-
p=poR2, (39)
— The top panel of Fig. 3 shows the results fpr<{ 0, q = 3):
Grains fall onto the central star, initially in the A-mode fo 5m+/r
the small grains and in the B-mode for the large ones. The Ho = 60 Cso, (40)
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gq< % i.e. a shallow enough temperature profile, large grains in
the Stokes regime at small Reynolds numbers remain in tiee dis
Such a criterion is applicable for real protoplanetary slisc
R3ays Second, ifRy > 800, the drag force is quadratic ¥n— vy.
Assuming that the radial motion is decoupled from the verti-
cal motion, we perform the NSH expansion at small pressure
q=3 gradient (cf. Eq. (13)). We find that whatever the integer

(moR°P)! (v - vg) — 0 at the limityo — 0. This means that both

v, andvy — v1/Rare flat functions as their Taylor series expan-
sion equals zero at each order. Consequently, they can wig-be
termined by perturbation analysis. This property comesfiioe
guadratic dependency of the drag with respect to tierdintial
velocity and thus is not related to the grain size. Consetfjyen
in this drag regime, the drag force is extremefiyadent and the
R  corrections to the Keplerian motion are negligible at evsder
e/ v\ and T\ of the perturbative expansion. The particles are very wali-c
pled to the gas and do not migrate significantly.
Fig. 4. Radial evolution of grains in theR(Sy) plane showing that a  Third, for the intermediate case, we could not manage to per-
grain in the linear Stokes drag rggime ends its radial mdtidhe B-  form the expansion at small pressure gradients. Howevezxwe
mode. The solid curves repres@e” for various values of, they sep- pect an intermediate behaviour between the two Stokes eegim
arate the A-mode (below) from the B-mode (above) regione. fAidri- gt small and large Reynolds numbers. Consequentiy if 1,
zontal dashed lines show trajectories of grains as theyat@gnwards e migration motion becomes lesigient as the drag force is
from R = 1. Shaded area: forbidden. no longer linear with respect to thefi#irential velocity between
the gas and the dust particles. Thus, the main constraitiéor
wherecg is given by Eq. (B.23). Thus, the expression of theadial-drift barrier due to the Stokes drag comes from the lo

kinematic viscosity is Reynolds number regime for which the migration motion is the
, most eficient. _ _ o B
v = yoR3 P9z (41) Finally, confusion often arises when defining the “radieftd
barrier” as the dficulty a grain has of “overcoming = Sopt”
Vo = Ho (42) (i.e.) reaching the B-mode. Indeed, as we have shown, grains
Pgo can survive their migration motion in the Epstein regime whe

they are in the A-mode whenevep + g+ 1/2 < 0, and grains

First, if Ry < 1, the drag force is linear i — vy and thus has A Y
the same structure as for the Epstein regime. Comparingthe §20 Start their migration motion in the B-mode but be accrete
a finite time if—p + g + 1/2 > 0. This study also shows for

ressions o€ (R, 0) for the Epstein and the linear Stokes regim ; : ; =) S
P (RO) b g %ﬂe Stokes regime that a grain ends its migration motionén th

(see Appendix C), all the results found for the radial moiion A .
the Epstein regime can therefore be directly transposedby S-mode. However, as demonstrated in this work, the ability o
the grain to overcome the radial drift barrier is only linkied

tingg = gandp’ = q;23 In this case, the grain radial motion he value of P
X g. If g > 2/3, the grain will be accreted onto the
does not depend opanymore and the NSH86 expansion of th entral star in a finite time, even if it has> sy Thus, we

radial motion for small pressure gradients provides (se¢3)) would argue that the definition of the radial-drift barriexshto

dR _UOSnggfl remain the ability of the grain to be accreted onto the céstaa

—_ = 43) or depleted from the disc within its lifetime.
dT  1+R¥3S% 43) P

These crucial results follow: 5. Limitations of the model

— Inthe A-mode §p <« Rs—Zq), grains experience a pile-up andVe have demonstrated that the time it takes for grains tchreac
migrate onto the central star in an infinite time-ify + ¢’ + smaller and smaller radii increases dramatically undetacer
% <0, i.e.ifg < —4 (which never occurs in real discs). con_ditions. Specifipally, i p+q4_r% < 0(respg< %), grains ex-
— In the B-mode 8, > R"), grains migrate onto the centralP€fi€nce apile-up in the Epstein (resp. Stokes) regime ekery
star in an infinite time ify + r, 1 fa 2 the model developed for the radial evolution of dust grairthis
q+3<0,ie.ifqg< 3. ) X . X .
paper remains simple in that we neglect several importaygiph
Thus, similar to the Epstein regime, we derived one critericcal processes: turbulence, grain growth, collective nmagicdust
for each mode and need to determine in which mode the grairains, dust feedback on the gas surface density and tetupera
ends its motion. For observed disgs; 3 < 0 (see Sect. 6), and profiles. We now discuss how those processes can modify the

. . . = riteri riv ve.
as the particle migrates inwar& becomes smaller thag;* criteria derived above

and grains end their radial motion in the B-mode (see Fig. 41. The local pressure maxima created by turbulence (Cuzzi
This result is fundamentally fierent to the one we obtained for et al. 2001, 2008) and the collectivéferts due to the dust
the Epstein regime. Indeed, for grains migrating in the Admo  drag onto the gas phase (Youdin & Goodman 2005) are
in the Stokes regime at low Reynolds numbers, the criteribn 0 known to slow down the dust particles. However, tlii-e
tained for a pile-up in the A-mode is never satisfied for résdsl ciency of these processes — such as the non linearity of the
However, after migrating inside a critical radius, graimstsh streaming instability in global disc models and the lifedim

to the B-mode, for which the pile-up can potentially occia; d  of the pressure maxima — in real discs remairidilt to
pending on the value af. The corollary is that in discs having  quantify. Omitting these phenomena constitutes therefore
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upper limit for the grain migrationféciency, which will be 15[
slowed by these additional processes. HE
2. In this study, we assume that changing the dust distdbuti 17 ¢
does not change the thermal profile of the disc. We also netosr
glect the viscous evolution of the disc, assuming that te vi 107
cous timescales are larger than the characteristic tinfessca 100
of the initial dust evolution. It implies that we assume that 1o ¢
p is constant during the whole grains evolution. We can eaé-lo—li 2
pect that for long term evolution, the surface density peofif, 10- |
will flatten, leading to a smaller value @f This makes the g ¢
Epstein criterion harder to be met, while the Stokes cateri 95
is not dfected. 10%
3. We have shown that even if the velocity of the grain’s in- 'r
ward motion depends on their sizes, their outcome only deo ¢
pends on the surface density and temperature profiles. Thusy ¢
if we now consider growing (or fragmenting) grains, we ex- 1ot e
pect that {) the intensity of the inward motion depends on "*10% 10~ Uy 1O 102
the growth diciency (this point will be discussed in detalil
in a forthcoming paper), but thaii the grains outcome re- Fig. 5. Transition between the Epstein and the Stokes regimes io-a pr

mains determined by our criteria, regardless of the growigplanetary disc oMgisc = 10-*M, extending fromri, = 102 AU to
regime. ot = 10° AU for several values op andg. Grains with sizes below

(res_p. above) than the curve experience the Epstein (résies§ drag
Following this discussion, our simple model deals with prgegime.
cesses that are optimized for the grains to be depleted aethe
tral object. Consequently, our Epstein and Stokes criferithe
radial-drift barrier constitute the least favourable lifioir grain with finite inner radii and finite lifetimes. The analytic aws-

survival. Thus, we are confident when claiming that the fadia_; X . - . .
ons of the previous sections have been derived using dimen

. . . . |
gg\ffv :\gp:{( dg cisthnaﬁtrr?gfg rd:g CSSO;?: rﬂ?;ﬁ?ns C;Lgi'rscféigggumz’%nless guantities. We now provide the physical timescafe
P 9 9 the radial dust motion estimating the parameters involaedal

the complementary processes mentioned above. . A )
P . protoplanetary discs. We consider in this section a tyfidal' S
It should be noted that the criterierp + q + 1/2 quantifies disc, of masMge. = 102 M, around a 1M, star, extending

the outcome of the radial-drift motion of the grains, but thatir from rn = 1072 AU 10 roy = 10° AU. The disc inner edge is

kinematics (which depends on the grain size, the grain tignsi S .
etc...). Thus, we provide predictions for which discs wéitain thosen to correspond to the dust sublimation radius foh& 1

the largest mass of solid particles, but do not predict foictvh Stt‘;’"’ Whﬁrg_as 'tsl toutert.bolundtar% IS re?Les';ntatr;ve_ of t‘%ehfa
discs the radial migration to the inner disc regions is thstefst. Oefaetrt\free sézlces.vfevtzal'ecéi zﬁ)erl '15550eK ya te ?C;'(\:lzﬁe s
Full simulations like those developed in Brauer et al. (aoogained by Andrews & Williams (2007 in their)éﬁ)sc et
are required to make predictions of the dust kinetics, everem The %/ransition trom the Epstein (0 the Stokes regime oecurs
so when the grain size evolution is driven by a complex mode P 9

. . Whenly = %, or

of growth and fragmentation. However, this study suggésts t 97 9
while complex simulations are useful to study the detailthef 9 4508 mH?
dust dynamics, they are not required to determine the gaoaitis S= ), = ’ 0 (p-3+3
come. 4797 256 oo ’

As a conclusion of this section, we have mentioned that the , N , .
physics treated by our model is not exhaustive. In real dibes @Nd is represented in the, ¢) plane in Fig. 5 for this typical
limits —p+q+2 = 0 andg = 2 may be softened by thfects of disc for diferent values of the surface density and temperature
additional physical phenorr?ena. However, these negleated pPOWer-law exponengsandg. The Stokes regime is seen to apply

cesses (such as turbulence and grain growth) tend to decrdg@d@rge bodies in the disc inner regions and for large vaties

the dficiency of the dust radial motion. Our predictions of wheROth P anda. .
the “radial-draft barrier” does not occur therefore remaitid. Disc lifetimes are generally thought to be a few Myr (Haisch

Our model represents a powerful indicator for predictirgdbst €t @l- 2001; Carpenter etal. 2005), and thus we take- 1yr.
behaviour in discs with given power law profiles: we expeat th7Or & grain starting at a distanggfrom a 1M star, the dimen-
(i) discs satisfying-p+q+ 3 < O retain their small grain popu- SIONI€ss valudisc is therefore

soud o ol ol ond vl vl vl vl

2
Il
I~

I<
T
L

1

oo sl sl ol ol s ol o

Q9
E
(<

-
OA»P
3 [

(44)

lation and that (ii) discs satisfying <  keep their large solids. tgi VGM t 6x 10
On the contrary, discs for whichp + q + 3 > 0 (resp.q > 2) Tdise= ~— = e~ : (45)
: > 4->3 tko ro/? [ro (AU)]%/2

likely lose their small (resp. large) particles.

The dimensionless value of the dust disc inner radiys {

6. Application to observed discs and planet 0.01 AU) for a grain starting ab is

formation R, _ 1072
6.1. Validity of the criteria in real protoplanetary discs "Tro 1o (AU)’

(46)

We now study how the criteria we derived can be applied whéie link between dimensionless and real grain sizes is made
considering the physical evolution of grains in observestsli through the optimal size for radial migration. Considerfingt
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Fig. 6. Values ofS, as a function of grain size and initial positionrg
for a disc of masdVlgisc = 0.01 M,, extending fromr;, = 102 AU to
rout = 10° AU, with grains of intrinsic densityy = 1000 kg m® and
no = 1072, for p = 0 andq = 2 (top) andp = £ andq = 2 (bottom). vy
The thick line shows the limit between grains that are aecrento the 10 101 1 10 102 10° 101 1 10 100
star €, < tgiso) and those that survive in the disg, (> tgiso), i.€. the r, (AU)
survival limit, in the Epstein regime.
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Fig. 7. Survival limits of grains for dferent values ofp and g. Left:
Epstein regime, right: Stokes regime. Grains to the lefthef turves
(tin < tgisc) are accreted onto the star whereas those to the tight (

the Epstein regime, its midplane value has a radial depeedeltise) SUrvive in the disc.

given by

() _ %P
V2rnps  N2rpg
The dimensionless size of a particle of sistarting its migra-
tion at positiorrg is therefore

Sopt(r, 0) = (47)

For—p+q+ 1 > 0, illustrated by the casep(= 0,q = 2),
Fig. 6 shows as expected that most of the grains are lost dur-
ing the disc lifetime. However, small and large grains ailyi
in the outer disc survive, therefore even with this profile t

s N disc retains a fraction of its grain population before isiistes.
So=——= —,pd srg. (48) Moreover, one may expect growing grains that re8gh= 1 to
Sopto Zo be inevitably accreted onto the star (unless the growthga®c

Values ofS, are plotted in therg, s) plane in Fig. 6 for a disc 'S fast enough for grains to outgrow the fast migrating stxes
of total magstiscp: 0.01 M, ex?en)dip;]g fronT;, E 102 AU to fore they leave the dlsc,_ see La_ul:_)e et al. 2008). Such dl_sgls ma
Fout = 10° AU, with grains of intrinsic densityq = 1000 kg T3 not form planets, but their remaining dust content may stike
andro = 1@2: for bothp = 0 andp = 3. them observablei although they would likely be falsnt. .

The dmensioiess iy for s g o eack s gven 1 L= 0 e oY e e Lo B
by Eq. (34). In combination with Eq. (46), this gives an e)Gprethem reach the disc’s inner edge before it dissipates. Ocndh, e

sion of T, as a function ofSy andrg, whereas Eq. (45) gives . ; > : .
an expression ofgisc as a function ofo. Equating them yields trary, forrg > 350 AU, grains of all sizes remain in the disc. This

a second order equation 8y as a function ofo, which can be is also the case for all (sub)micron-sized grains, whattwer

solved to determine under which conditions a grain readhes {nitial location, as well as most of the grains up to 0.1 mmedé

disc inner edge at the end of its lifetime. Using Eq. (48) gitre grains likely make the disc bright and easy to observe, shmee

corresponding relationship between the grain size anditigli are the grains contributing most to th(_e disc e_mission at I& an
submm wavelengths. A large reservoir of grains is availadble

position: - . . ,
participate in the planet formation process, however a fiom c
p+q+ % A rap VGM tyisc1o clusion on their survival as th(_eir size evolves_ would re_qlilir-
= > Vor ! 32 corporating a treatment of grain grovvth,_as discussed ih Sec
pd 1 - (rr—o) : r It should be noted that the disc used in these examples repre-

sents a lower limit, as it is low mass and very extended. A more

ro\~PHO S r\PHO+ (49)  massive disc with a smaller outer radius would have a larger
GM 1 n3 (1 - (E) )(1_ (E) ) surface density, and the corresponding survival limit ig.
3 -4 1 1 would be shifted vertically towards larger sizes and moré an
0 (-p+a+3)(p+a+3) more grains of larger sizes would survive.

The left panels of Fig. 7 show the influence of the surface
which is plotted as a thick line in Fig. 6. It separates thed) density and temperature profiles on the location and shahe of
plane into regions in which grains reach and leave the disc survival limit curve in the Ko, s) plane in the Epstein regime.
before it dissipatedif < tgisc) Or survive in the disc throughout Increasingp from 0 to 2 shifts the curve towards smaller radii
its lifetime (tin > tgisc). We call this curve the survival limit. and larger grain sizes, as well as slightly tilts it clocksvi3he
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outer disc region in which grains of all sizes survive exteimd 10° g T
wards, as well as the surviving population of small grainthas ~ '° 5\_\\ N ‘
curve’s lower branch shifts upwards and becomes flatterh@n t N
contrary, the steepening of the curve’s upper branch, cogfin
the population of surviving large solids to the disc outgiioas,
is less dramatic. Increasingfrom ;11 to % also tilts the curve
clockwards, but shifts it towards larger radii and smalleiig
sizes. However, itsfect is more limited than that of changipg
A disc with a steeper surface density profile and a shallograr t
perature profile is therefore morieient at retaining a larger
quantity of small grains and up to larger sizes. Indeedelarg  10-
and smallq values are required to meet the + q + % <0 o
criterion introduced in Sect. 3.
An equation very similar to Eq. (49) can be obtained for the 13:2 i
linear Stokes regime by replacingandq by p’ = ‘Lzs and 10°
g = q (since the equation of motion has the same structure b
for both drag regimes, see Sect. 4), and using the expreskion
Sopto for that regime, given in Table C.1. Hesgyo o Ti: the
weak temperature dependence results in very little chaomge f
large range of temperatures below or above our adopted élue
T(1 AU) = 150 K. The right panels of Fig. 7 show the survival
limit in the Stokes regime for the fiierent values of| (note that

FETTTT R RTT & S W R R I I Lo
102 103 - 103

it no longer depends op). Whenq increases, the curve’s lower ro (A0)
bran?h slides towards_ larger radii, making the survival aftip Fig. 8.1socontours of the survival time (i.e. the time needed tohahe
cles in the Stokes regime less and less favourable. disc inner edge at, = 0.01 AU) of grains of sizesand initial position

Given the form of Eq. (49) and its fierent expressions for ro for g =  and diferent values op.
each drag regime, it is not possible to compute analyticaiy
survival limit for a grain transitioning from the Epstein toe
Stokes regime as it migrates inwards. However, large valfips ) _ ) ) _ o
andg, for which the Stokes region is the largest, are not observéts showing the radial evolution of grains with the sameahi
in protoplanetary discs (see Sect. 6.2), and in practicasthe Position but diferent sizes. This is shown in Fig. 9 fop & O,
Stokes regime only applies to a small area of theg) plane. 9= 7) and Fig. 10 for p = 3, q = 3). These plots make it easy
Small grains, which are detected in disc observations aniR al0 compare the radial evolution of any particle to any phaisic
sub-millimetre (submm) wavelengths, are mostly subje¢hé
Epstein drag. We therefore focus on that regime in the fotigw

Equation (49) can give quantitative information about the 0
outcome of the grain population. Replacifyg. by any timet L
gives the location in therg, s) plane of grains reaching the disc -
inner edge (at = ry,) in that timet, which is therefore the sur- 10~
vival time of those grains. Its isocontours are shown in Big. 13
for different values op and forq = %. Only one value ofg 10-
is shown as the dependence is moderate, as can be seen fromo-
the left panels of Fig. 7. The fate of particular dust graiae ¢ |
easily be obtained from these figures. For example, in the con 1
text of disc observations, 1 mm grains initially at 100 AUl fal | °
on the 18 yr contour forp = 0. Their survival time decreasesE io-
to a few 10 yr for p ~ 0.8, and increases again to values larget 1o
than 168 yr asp increases. At an initial position of a few hundred 1o
AU, 1 mm grains survive longer than 49r for any p, therefore  10-
long enough to contribute to the disc emission over its etiti- .
time. As noted above, such grains have longer survival times
higherp and lowerg values. As another example, in the context
of planetesimal formation, the survival time of a 1 m paiicii- 1o
tially at 1 AU is ~ 10° yr for p = 0, decreases te 10? yr for 10-
p ~ 1, and increases againtol0°~10* yr for p = 2. The ability . T
of such particles to remain for long enough in the disc to grow o ¢ Vb ‘ |
to larger sizes therefore strongly depends on the surfatgitle 0702 07 "0 10z 105 o0 1 1o 1oz 10v tor 1 o ior 1o
profile. As a general rule, the survival of pre-planetesgirathe (a0
inner disc is favoured by small values jof Fig. 9. Time evolution (in nine snapshots from= 1072 to 1¢° yr) of

Similarly, replacing nowr, with any radiusr in Eq. (49) isocontours of the i?itiakl‘ p(ljsg)ti(l)rf] ofgra;]nsinthe@ plage Lordthe dcisfc
gives the locus in ther, s) plane of grains reaching that radiugvith p = 0 andg = 3. The label for each contour can be deduced from
r at any timet. Alternatively, one can plot isocontours of thets abscissa in the upper left panetat 1072 yr.
initial positionrg of grains in the I, ) plane at various times,

yr

10
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s (m)

L uu i
10 10?2 10!

timescale of interest in the disc. In particular, they shoat the
disc still contains particles at all radii at the end of it®kesion
(t = 10° yr). No grains are found to the right of thg = 10° AU

contour, since this was the initial outer disc radius. In dise
with (p = 0,q = %), no grains betweer 0.06 and~ 0.2 mm
remain, and grains of other sizes still present were iytiil

the outer disc. Given that the grains of sizes which conteilboi

15 -

q=2/3

10 - b

ol L e e
0.4 0.5 0.6 0.7 0.8

q

Fig. 11. Histogramm of thegq parameters obtained from Andrews &
Williams (2005, 2007) data of 63 observed discs. The distidn
is roughly comprised between 0.4 and 0.8 and, centred aro.5%l
Approximately 90 % of the discs satisfy< 2/3.

ated disc with opacities from Beckwith et al. (1990), a gas-t
dust ratio of 100, a disc radius of 100 AU and zero disc incli-
nation. The temperature exponenis well constrained by the
observational data set: the histogram of most probabigues

is shown in Fig. 11. Howevep is not well constrained and is
usually assumed to b% Very flat profiles withp < % and very
steep profiles withp > g seem to be excluded (Dutrey et al.
1996; Wilner et al. 2000; Kitamura et al. 2002; Testi et aD20
Isella et al. 2009; Andrews & Williams 2007; Andrews et al.
2009). We represent the disc distribution modeled by Andi&w
Williams from observations in th@p, ) diagram of Fig. 12: the

IR and submm emission have come from a small fraction of théstogram of Fig. 11 is represented by the gray-shaded ata a

initial disc, this disc is likely faint. In the disc withp(= %,q =

%), only grains withs ~ 0.1 mm are absent from the very oute
regions, and the observable grains come from a larger portl&

of the disc, likely making the disc brighter than in the poas
case.

As a conclusion, the analytic criteria derived above app

even when taking into account the finite lifetime (or innetive)
of the disc. For most CTTS discs, the dust is in the Epsteig d
regime (except for some extreme values for the grains sizés
discs profiles). Therefore, the grain’s radial outcomevegiby

the value of-p + g + 3. However, the transition between discs

for which the radial-drift barrier occurs or not consistsrmof
a continuum around the valuep + q + % = 0 than in the sharp
transition predicted by the analytic model. Therefore,rddial

spread over a range pfvalues, taking into account that extreme
values ofpare less probable. The dashed lir@¢q+1/2= 0)
jepresents the border between migration in an infinite tinee a
accretion onto the central star for the A-mode of migration i
the Epstein regime, while the thick dotted liree£ 3/2) repre-
nts that same border for the B-mode of migration in thee3tok
gime at low Reynolds number. The two black circles indicat

dhe discs used as examples in Sect. 3.3. We have split the disc
istribution in four regions in thép, g) plane:

1. region 1:-p+q + % < 0andqg < %: both small and large
grains experience the pile-ufffect. Those discs are poten-
tially observable and may favour planet formation.

region 2.-p+ g+ 3 < 0 andg > %: only small grains
experience the pile-upfiect: even though such discs retain

2.

motion of the grains has to be studied on a case-by-case basisngjr small grains, the population of pre-planetesimatsia

for discs close to the transitionp + q + %
shown above in this section.

= 0, using the figures

6.2. Constraining physical systems

disc inner regions maytkciently be accreted onto the central
star (at least until they reach the higy-Stokes regime).

3. region 3-p+q+ 3 >0andq < %: if the pre-planetesimals
can form before the entire distribution of small grains has
been accreted onto the central object, they will remainén th

We now turn to observed discs and check if they meet our gisc and may constitute planet embryos.

Epstein and Stokes criteria to determine whether the raliil
barrier is constraining for planet formation. To estiméue val-

4. region 4:-p+q+ 3 > 0 andqg > 3: both small and large

grains are accreted onto the central star.

ues of thep andqg exponents for real discs, we use the results
of disc modeling obtained by Andrews & Williams (2005, 2007) The Epstein criterion indicates that fgvalues in the range
from data on 63 discs in Ophiuchi, Taurus and Aurigae. Usingconstrained by observations, discs which keep their smaihg

sub-millimetre fluxes measured at several wavelengthg,fthe
a range of disc parameters assuming a geometrically traditrr

population, and are therefore likely to be bright in the IRlan
submm, should havp values approximately in the [gj range.

11
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creased as the drag from the gas onto the planetesimalseslea

s an additional thermal contribution.

+4 rd
. 2 (A-mode, Epstein)
4

y 7. Conclusion and perspectives

1t ° //’ e - In this study, we have generalised the radial grain motiodiet
W | (Bmode stockesy 0T W77, NSH86 and YSO02 for both the Epstein and the Stokes
| B— B regimes, taking into account thé&ects of both the surface den-
sity and temperature profiles in the disc. As observationsalo
provide direct information about the three dimensionaldtire
’ of discs, radial profiles of surface density and temperatgef-
3] .’ o ten described by power laws:(r) = Zor~P and7 (r) = 74r™9,
z . . > Where bothp and g take positive values. The radial dust be-
0 1R 1 32 2 » haviour in those discs is governed by the competition betwee
’ gravity and gas drag. The final outcome of the radial motion
7 is set by two counterbalancingtects. First, the temperature
¥ SRl beeaton: increases when the radius decreases. Consequently, tlee dev
tion from the Keplerian velocity increases, which acceksa
Fig. 12. Location of the dfferent outcomes of radial migration in thethe dust’s radial inward motion. At the same time, the sw@fac
(p.0) plane. Dashed (resp. dotted) line: limit between accnetitth-  density also increases, which increases the gas dfaipacy
out or with grains pile-up resulting in a finite or infinite ®@min the and slows down the dust motion. The competition betweerethes
A-mode of the Epstein regime (resp. B-mode of the Stokesmegi v, effects fixes the ultimate mode of migration of the grain (A-
at small Reynolds numbers). Shaded area: location of obd@liecs. e \yhere the drag dominates or B-mode, where the gravity
Black dots: discs used as examples in Sect. 3.3. dominates) and thus the final outcome for the dust motioi#n t
work, we have shown that it can be represented by an andlytica
criterion which depends on the drag regime. For the Epstein d
regime (in which the ultimate radial motion is in the A-mogde)
This is indeed what is found in most disc surveys (Ricci et af. —-p + g+ 3 > 0, the dust particle is accreted onto the central
2010a,b). On the contrary, smallprvalues should correspondstar in a finite time, and it-p + q + % < 0, the grain pile-up

to discs which lose most of their small grains, and are thefsults in an infinite accretion time and small dust grainsaie
fore more dificult to detect. This is what is found by Andrewsp, the disc. We have shown that, as expected, these conttusio
et al. (2010), who pushed their previous observations of thee somewhat mitigated when taking into account the finge di
Ophiuchus star forming region (Andrews et al. 2009) down ietime and finite disc size. However, the outcomes stithagn
fainter discs, finding for this new sample a medianalue of ~similar: the bulk of the small grain population is lost to ttar
0.9, lower than for brighter discs. The criterion we derivétiis jn the first case, whereas in the second case the disc keeps mos
paper for small grains in the Epstein regime provides tleeef of its small grains. A similar criterion is found for the Stk
the correct behaviour for explaining the rangepafalues of ob- - regime at low Reynolds number:df < 2, the accretion time is
served discs. However, this result has to be considereéldigre infinite and large pre-planetesimals remain in the disc ard ¢
for two reasons. Firstly, the and theq exponents determined constitute the primary material for planet formation. Hoee
from the observations have to be considered with their @sfge the Stokes radial motion filers from the Epstein regime as the
errors. Given these uncertainties, one may not be able tio-dis yjtimate radial motion occurs in the B-mode.
guish between a strict negative or positive valuefpr+ q + 3. The observational consequence is that discs with a large pop
Second, the boundary between th&afent zones of thep(d)  ylation of small grains should be strong emitters in theairdd
plane consists more of a continuum rather than a strict liwé  ang sub-millimetre and should be easier to observe, and that
to the finite |ifetim¢inner radii of the discs. The outcome of thqhose having lost most of their small dust should be fainter a
grains may thus not be predicted when the valuepf- g+ 3 harder to detect. This is indeed what is found: a large foacti
is close to zero. of the observed discs have largesalues whereas fainter discs
Now turning to the Stokes criterion for large solids, Figk. 1tend to have lowep values (Andrews et al. 2010), in agreement
and 12 show that the vast majority of observed protoplapetawith this Epstein criterion. In addition, most of the obsv
discs have shallow temperature profiles £ %) and are thus discs havey < % allowing them to retain also their large pre-
able to retain their population of pre-planetesimals. €hgiscs planetesimals. As noted by Ricci et al. (2010a,b), exphajihe
are therefore relevant places to find evidence of planetderndata requires a mechanism halting or slowing down the radial
tion, provided small grains canffeiently grow to form pre- migration of dust grains. We show here that local pressupe ma
planetesimals. For the remainder of the disc populatianptit- ima need not be invoked, but rather that the combination ef ad
come of pre-planetesimals will likely depend on their @apito quate surface density and temperature profilesfiscgent. The
reach the high Reynolds number Stokes regime. However, th@andq exponents used to reach our conclusions are of course
case of a steep radial temperature profile can be encountestedngly dependent on the model used to fit the data. However,
in at least one particular situation: circumplanetary glishich even varying the fitting models, a large majority of disck séit-
typically have temperature profiles with= 1 (Ayliffe & Bate isfy both conditionsrp+q+% <0andq < % Consequently, the
2009). In this environment, we predict from our Stokes cidgte radial-drift barrier (or the so-called metre-size barvidgren con-
that planetesimals will be accreted onto the planet. Thed@ale sidering an MMSN disc) does not appear to constitute a pnoble
of the planet formation by the core-accretion process, whgu- for planet formation for the discs that we do observe.
ally corresponds to the time required to release the gitawital Our conclusions presented in this study assumed that the
energy of the accreted bodies (Pollack et al. 1996), is thus grain size remains constant during its motion. Howevereobs
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vations tell us that grains do grow (Testi et al. 2003; Wilner Symbol Meaning
et al. 2003; Apai et al. 2005; Lommen et al. 2007, 2009). Grain M Mass of the central star
g Gravity field of the central star

growth is studied in various theoretical studies (Schntithle

1997, Stepinski & Valageas 1997; Suttner et al. 1999; Tanaka fo
et al. 2005; Dullemond & Dominik 2005; Klahr & Bodenheimer L

Initial distance to the central star
Og Gas density
Py (r) Py (r’ Z= 0)

2006; Garaud 2007; Brauer et al. 2008; Laibe et al. 2008; c Gas sound speed

Birnstiel et al. 2009). In a forthcoming paper, we will gealése

Cs(r) Cs(r,z=0)

the formalism developed here to explain the radial and cegrti Ceo Gas sound speed &t
behaviour of growing dust grains. T Dimensionless time
T Gas temperaturer: value atrg)
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Appendix A: Notations

The notations and conventions used throughout this pager ar
summarized in Table A.1.

Appendix B: disc structure
B.1. Hydrostatic equilibrium

At stationary equilibrium £ = 0), gas velocitiesy, Vg, Vg
and the gas density; obey mass conservation and the Euler
equation:

1pg0Vy  PeVez _ o
rooor oz (B.1)
The solution of Eq. (B.1) requires:
Vgr =Vgz =0, (B.2)

which ensures mass conservation. Projecting the Eulettiequa
oney:

1 0P M
RN — . (B.3)
pg 0Z (22 +r2)¥
Assuming that:
P=c2(r,2 pg (B.4)
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and dividing both sides of Eq. (B.3) I, we have:

dn(cZpg) . Gmz (B.5)
0z 2+ '
Integrating Eqg. (B.5) between 0 aagrovides:
fz GMZdz
pg(r.2) = P(r) o (r2+ 2'2)3/2 c2(r,z2) . (B.6)
22

This expression can be simplified by the following approymﬂ Czd In(lﬂ QM

tions:

and:
1dp _ dln@ M, _GMr (B.16)
pg dr s dr r2 (2 + 12)32 '

Z
+c§g|v|farc;2—c§§ f ngaZ,c;Zdz).
0

Then, Eq. (B.10) becomes:

Y4
s% fo GM i, c?dZ —~C2GM fo, ;2.
(B.17)

S odr r2

— In the special vertically isothermal case, where the soungbting that :
speed depends only on the radial coordinate, Eq. (B.6) sim-

plifies to:
GM [ 1
o) =ppne EOLT V222l @7

— Further, assuming a thin diséfoz
expansion of Eq. (B.7) leads to:

pa(1.2) = py ()€ 7, (B.8)
with: )
H(r) = v:(r) : (B.9)

< 1), a Taylor series

— f fo,c5%dZ = f afaz, c;2dzZ + f fo,0,c5%dZ,

(B.18)
and integrating the last term of the right hand side of Eq1855.
by parts provides:

V4 Z
f faraz,cgzdz’ = farcgz - f Oz f&rcgzdz’ .
0 0

Therefore, Eq. (B.17) reduces to:

gMczf arfaz,

(B.19)

2
&:@ CzdInP

-2
===z - 0, 10,¢5%) dz,

(B.20)

which is the classical scale height for vertically isothatm which can be more elegantly written as:

thin discs.

B.2. Azimuthal velocity

The radial component of the Euler equations is given by:

V2
Yo __Lop__gwr (8.10)
r pg Or (2 +r2)%
wherepy is given by Eq. (B.6). Thus:
po(r. = 2O g (B.11)
(1.2
with:
Z
l1(r,2) = f GMc;2(r,2)d, 1 (r,2)dz,
(o2 - 10 1 (B.12)
Y e 2
To simplify Eq. (B.10), we first use the following identity:
1 0P ,0In(c2pq)
——=c— B.13
pgor 5 or (B.13)
which becomes with Eq. (B.11):
1P Ldin(P) 2011 (5.1
pg O “ar S o '

Noting thatf (r,z=0) =

11(r,2) = GMc2f (r,2) - fngf (r,Z)d,¢5%(r,Z)dZ,
° (B.15)

14

0 and integratingd; by parts provides:

Yu _GM

Z
Z-2 +c2d'”P GMc f[fovch].egdz. (B.21)

Thus, the expression of the azimuthal velocity of such achsc

be separated in three terms, called the Keplerian, the ymess
gradient and the baroclinic terms respectively. This lasntis
neglected in most studies. For a three dimensional discteéhin
rigorously cancels focs = constant. In this case, the flow is
inviscid and derives from a potential, and isobars and issite
surfaces coincide: thus, there is no source of vorticity tred
azimuthal velocity depends only on the radial coordinatésT
terms also cancels out for flat discs in two dimensions. If the
disc is vertically isothermal, Eg. (B.21) becomes:

V2
v _GM, csd'”P mlio 1 loincz (822)
r r2 dr ro e+

B.3. Radial profiles of surface density and temperature

In this section, we consider that the disc surface densitiyta@
temperature (and thus the sound speed) depend only on fak rad
coordinate and are given by the following power-law profiles

2(r) = (—0)_p = %P,

T =T (—) =T,

a/2

cs(r) = (E) = C;Or a/2,

For vertically isothermal thin discs, the vertical densityhere-

fore given by Eq. (B.8) with the scale height given by Eq. {B.9
which can be expressed as:

(B.23)

r\: , 3.9
H() =Ho( ] =Hor?, (B.24)
0



G. Laibe et al.: Revisiting the “radial-drift barrier” ofahet formation and its relevance in observed protoplayeliacs

with: The dimensionless parameigrgives the order of magnitude of
W = Cso (B.25) the relative discrepancy between the Keplerian motion aed t
0~ VGM' : gas azimuthal velocity. We note that:

The expression ofpy compatible with the vertical hydro-
static equilibrium and providing the power-law profile set b
Eq. (B.23) is written as:

2
Py = Pyt "€ F 0.

Indeed:
+00 2
f Pyl € i dz = ploV2rH (1) r, (B.27)
= P
Hence, withs;) = \/ZpéoH(’) andx=p-2+3,
X 943 —[—22%]
po=—2 061 @ ag
V2rH;

which gives the correct surface density profile when integra
with respect ta. With this expression gbg, P (r) is given by:

7’

P(r) = c2(r)pg(r,z=0) = c2—29 =(r+3+3)  (B.29
(r) =cs(r)pg( ) so@H(,) (B.29)
which ensures that:
dinP (p+3+%)
s ; , (B.30)
and, using Eg. (B.22), we find:
— gM 9 2 q_ 1‘ _ 1
Vge—\/ ; (p+2+ )Csr GMq ; T/
(B.31)

Appendix C: Dimensionless quantities and

equations of motion
To highlight the important physical parameters involved,set
VKO = A /% and introduce dimensionless quantities given by t
following expressions:

rcs dinP o
v dr / = R T (C.3)
(B.26) Then,we sety = V2 and define
o
tko
Vi _ dR_g
Vo dT
v do .
V_ké()) =Ry =W (C.4)
YA
Hy ~ z
v, dz
Ho/two — dT

Writing the codficientC (r, 2) of the drag force of Eq. (5) as:

C(r,2) =CoC(R2), (C.5)
and using dimensionless coordinates, we have:
Fo/my CRZ) o o (e o
=- —Vg|* (V= V). C.6
Vio/tko [ s | o ( g) (c.6)
(viteoCo)
We also introduce:
Sopt0 = (Vﬁotkoco)y , (C.7)
and
So= —— (C8)
so that Eq. (C.6) becomes:
I:D/md C (Ra Z) ~ A
= C.9
Vko/tko Sy V=Yl (V vg) (C9)

Hehysically,sopto corresponds to the grain size at which the drag

stopplng time equals to the Keplerian timergtin Table C.1,

we give the expressions §f 4, Sypo, C (R Z) for the Epstem

and the three Stokes drag regimes. The dimensionless eqsiati
of motion for a dust grain are then:

r'ro =R
T/T0 = RY,
¥/%0 = RP,
Vk/Viko = R3 :
H/Hp = R272,
2/Ho = Z. (C.1)
1 1 1
Vgo/Vko = = —1noR™ —Q(— ——],
9 J 3 R2 +¢Ozz
Pglpgo = R (p-3+3)e
with: )
3 3\ [ Cso
no = (p+ + 2)(Vk0) . (C.2)

A \73 N R
ey C(RZ)IV V' + ———55 =10
RS NG
Vo Vol
dT '~ R
S
R2+¢Z2 ~ ~

o = 0
dZZ 1dz Z
- 7 T
dT2 Sy dTC(R’ V=gl + (R2 + ¢pZ2)*/?

(C.10)
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Table C.1. Expressions of the cdiécientsy, A, Sypo andC (R, Z) for
different drag regimes.

Eq. (11) becomes

_R(p+3)
0= Vi1 + ZR_s/ V(.;l
Drag regime y 1 Sopto C(R2) 0
. 20 o3\ _ 72 - = = —ppRa
cpst — RO e VRN S (\/ R~ i)
petEin Vo T o= 5R - R(P+3).
(E.4)
Stokes 5 0 Atwotto . Solving the linear system Eq. (E.4) (i1, Vy1) provides
(Rg<1) 2p4
1 2SoRP% (1 - 1—noRo7)
& V1 =—-——
Stokes 18f0V 620 16 _(zi’+ﬂ+§) _2_ 72 1o 1+ RZPSZ
16 04 |—— R\51075/g 55:3d 0 E.5
(1 < Ry < 800) [\/%s \/_Zl,ﬁdeo) 1 R 3 (1_ J1— TIOR_q+1) (E.5)
V(.;l = —-— .
Stokes 1.32rp%g 09,3y 22 10 1+ RPPS]
(800< Ry) 11 T R(P3)e o
804 V2rHo In addition to the expression &f given in Sect. 3, we also note
that

Appendix D: Lemma for the different expansions

Lemma:Let x be either or 6 andi the order of the perturbative

expansion. If:

- Vo =0,and
— ¥y can be written as a function & (V; = f (R)) with f =
O (1) of the expansion iry,

~
then,— T is of orderO (o).
Proof

dUy d\7XI dR R 2 2

- dRd Ut (R) = no¥1 ' (R) +0(’70) =0 (o).

(D.1)

Appendix E: Epstein regime: perturbation analysis
— OrderO (1): At this order of expansiomR ™9 is negligible

compared t(%. Thus, substituting Eq. (13) into Eq. (11) pro-

vides
Qo _ Yo _Yop(prg) L
dT R So R? E.1)
~ _ l .
Qoo _ _ Voolo _ (VQO \/;) R-(p1)
dT R So '

At this stage, we do not know the order%ﬂ. We show in

the lemma of Appendix D tha‘-t% = O (no). Applying this
lemma, we see that at the ord@(1), takingV;p = 0 and

\/g (which ensures thal2 = O (o)) is a relevant

Voo =

solution for the equations of motion (which corresponds to

circular Keplerian motion). Thus,

|

Vo=0

o |
00 — R’

(E.2)

and noting that

= _ER—3/2\7r =

2

dVigo

T ~ZR 40 ().

(E.3)
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\/g + noVp1 + O (773)

\7(.; =
) \F RE(1- VIopoRer) o B9
- VR 1+ RepS2 +0(r5)-
which provides with Eq. (15)
g1
Ty = \/1 _ MR (E.7)
R 2(1+Rrs))

Appendix F: Link with W77’s original derivation

Following W77's historic reasoning for small grains (see
Sect. 3.1), we perform a perturbative expansion of the fadia
equation of motion with thé&, variable. We verify that taking
the limit at smallno provides the expression found for the A-
mode in the NSH86 expansion. (Formally, we will show that

lim lim [...] = lim lim [...]). Hence, we set:
Sox1lnoxl no<1Sox1

where we have used for convenience the same formalism as for
the expansion iy — see Eq. (13) (noting of course thatepre-
sents diferent functions). An important point is that the lemma
of Appendix D holds when substitutir®, to r70. Therefore, sub-
stituting Eq. (F.1) into Eq. (11) provides the equations otion

for different orders o (So):

¥ = Vo + SoWh1 + SZU2 + O(S]).

J i i (F.1)
Vo = Vgo + SoVp1 + SSV@Z +0 (Sg) ,

— OrderO (4 ): Eq. (11) provide) (1) expressions for the ve-
\7r0 = 07

locities:
- 1
{ Voo = 4/ R noR~A.

In this order of expansion, the azimuthal velocity corre-
sponds to the sub-Keplerian velocity of the gas. There is no
radial motion.

— OrderO (2):
V1 = —2RP2 (1 - J1- noR—Q+1) ,

{\791 =0,

(F.2)

OrderO (no): Applying the lemma in this order of expansion

(F.3)
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— OrderO (So): Taking the same precautions as for the previous expansions,
we write:
VI 1 1
V2 =0, I Vr—Vr0+S_Vrl+O(Sz),
Voo = RP+3 [770 /ﬁ _ noRqufq*% 1 1 (F.8)
(F4) V@ = V(.;O + S—V(.;j_ +0 SZ
1 - +nogR? . .
+= . Following the same method as for the small grain sizes expan-

2 /% — noR-AnoRP-4+2 sion, we obtain:

Finally, we obtain expressions for &ndvj: - OrdLO(l):

\7I'0 = 09
/ 1 F.9
V= —ZSORpf% (1 - 4/1- T]oR_q"'l) +0 (Sg) s Voo = \/; (F.9)
. 1 3 1 a1 It this order of expansion, the azimuthal velocity of theigra
Vo= /g~ MR+ SRP*2 [Uo \ g~ MRERT (F.5) is the standard Keplerian velocity.

— OrderO(&):
1 —g +mooRY? —(SO)

+= +0(Sg).
2 1 —o+ 2 0
&~ moR-noRP+3 . 1 -
¢ Vre = MR R (F.10)
We now compare the NSH86 expansionRi5, <« 1 (A- Vg =

mode) and the W77 expansiongt< 1. . _ . )
The expansion at higher order is more complicated and will no

— NSH86:From Egs. (16) and Eq. (E.7): be used for further developments. At the ordl%(r

& ) we have
for ¥, andvp:

10SoRP-9+3 5
- 2pQ2 +O(n0)

1+ RePS] G o= = R R—P+0_
= —70SoR” 2 + 0 (3) + O(S3). " s0 0 sz)’
N 1 RO Ty = \/>+0( )
V9=\/;—@7+0(773) R S3

2 1+ S3ReP

(F.11)

1 o meSE L We now compare the expressions provided by the NSH86 expan-
VR~ U—ZOR e TORZP ©5+0(8) +O(S3).  sion atRePS?Z > 1 (B-mode) and the W77 expansiongt< 1
(F.6) forthe radial velocity:
— W77 small grainsFrom Eg. (F.5): — NSHS6:

- p-C+3
U, = ~2S0RP3 (1— Vi- UOF””) +0(S}) U = —'7;302—2,)8; +0(n5). (F.12)
+

—_UOSORp a+3 +O( ) ( ) _ UOR p-g+3 +O(T](2))+O(i)
s2)

1 So
Vo= g MR+ S2RP: ?[mo R — oR-IRP42

1 oRP-4+2 (_@ + R 1) — W77 large grains:

i J+o(s)
\/é—noF*qz W = —SER—p—% (1—\/1 noFH+1)+0(—g) (F.13)

0

1
Rt -0l g+ ol)

_JE oo, UO—ZSORZP“**% +0(s3)+0(u).

R 2
(F.7)

Clearly, Egs. (F.6) and (F.7) are identical, demonstrétiadjthe

theories of W77 and NSH86 are consistent. We also note tl@tice again, we show that the W77 and NSH86 theories are con-
if the simplification of Eq. (15) is not performed, the two W7&istent.

expansions directly appear as the expansion of NSH8H 8y)
orO(S‘l)

Now, in the case of large grains, we perform a perturbatlv
expansion of the radial equation of motion with respecgﬂto
while assuming thaBoRP > 1, and verify that taking the limit Noting R; (T) the position of a grain integrated directly from
at smallng provides the expression found for the B-mode in thie equation of motion (Eg. (11)) ari®h (T) the position inte-
NSH86 expansion. grated from the NSH86 approximation (Eq. (34)), we highligh

&ppendlx G: Asymptotic radial behaviour of a
single grain

17
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For such disc profiles, all grains pile-up and fall onto the

p=0, ¢=3
osk p:g,q:§§ central star in an infinite time. Indeed, the surface density
w F ] profile given byp > g+ % is steep enough to counterbalance
s ] the increase of the acceleration due to the pressure gradi-
o7 | I ent. Therefore, grains fall onto the central star in an itdini
] time, whatever their initial size. Such an evolution happen
ool ] because the grains always end migrating in the A-mode when
o ] they reach the disc’s inner regions. A crucial consequece i
& o8l 1 that grains are not depleted on the central star and therefor
o 3 T stay in the disc where they can potentially form planet em-
B ] bryos.
eton | —If-p+gq+3>0: i Ro o
& L =
$2x10’4: TI—’mrm ’ (G.4)
£ of ] where
—2x10-4 L . . . L . . . L . . - ] 2
0 200 r 400 600 T = 1 ( 1 -+ SO - ) (G.5)
_ _ _ noSo\-p+q+3 pP+0+3
Fig. G.1. The discrepancy (bottom panel) between the exact motion
(top panel) and its NSH86 approximation (central panel) dgligi- In this case, grains fall onto the central star in a finite time
ble. This is illustrated plotting the radial motion of dugtaims for The surface density profile given Ipy< q+% is now too flat

So = 102,10 = 102 and forp = 0.q = § (solid) andp = 3.9 = to counterbalance the increasing acceleration due toymess
3 (dashed). TopR; (T), middle: R, (T), bottom: relative dference gradient. We note that:

(Ro (T) = R (T)) /Ry (T). — For small sizes$o < 1), Tm = O (Sono)-
— For large sizeso > 1), T = O(2).
(Fig. G.1) that the discrepancy between the motion fromihe e  — T,, reaches a minimal value for a si&g, given by
act equations and its NSH86 approximation is negligible (th
relative error is lower than 18 for all the considered sizes). Itis p+q+ 1
therefore justified to use the analytical results derivefeat. 3 Sm = 721 (G.6)
to interpret the grain behaviour. Thus, from Eq. (34), wetbae —P+Qa+3
the time for a grain starting & = 1 to reach some final radius
R: is minimized for an optimal grain sizéy s given by Therefore
2
+gq+t Tm (Sm) = . (G
St = J%xmm, (G.1) moy(P+a+3)(-p+a+3)
2
. Sm is of order unity and corresponds to an optimal size
with peae of migration. Values ofS,, andnoTm (Sm) in the (p,Q)
(1’Rf ’ i 1.0 plane are shown in Fig. G.2. Whé&nh~ S, both the A-
ki (Rf) = (17pr+q+%) tp+q+s3# (G.2) and B-modes contribute in an optimal way to the grains
, 1 radial motion.
-In(R) if p+q+3=0 In this case, grains can béieiently accreted by the central

As shown in Eq. (34), the outcome of the grain radial motion star if S ~ Sy = O(1). Thus, they can not contribute to
depends on the value efp + q + %; the.formatlon of pre-planete5|mals._Th|s process is célled
radial-drift barrier for planet formation.
—If—p+qg+3<o0:
lim R=0. (G.3)

T—+c0
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