
HAL Id: hal-00645005
https://hal.science/hal-00645005v1

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Summarizing and visualizing a set of bayesian networks
with quasi essential graphs

Hoai-Tuong Nguyen, Philippe Leray, Gérard Ramstein

To cite this version:
Hoai-Tuong Nguyen, Philippe Leray, Gérard Ramstein. Summarizing and visualizing a set of bayesian
networks with quasi essential graphs. ASMDA 2011, 2011, Roma, Italy. pp.1062-1069. �hal-00645005�

https://hal.science/hal-00645005v1
https://hal.archives-ouvertes.fr


Summarizing and visualizing a set of Bayesian
networks with Quasi Essential Graphs

Hoai-Tuong Nguyen, Philippe Leray, and Gérard Ramstein

Nantes Atlantique Computer Science Lab LINA UMR 6241
Knowledge and Decision Team
La Chantrerie - rue Christian Pauc - BP 50609 - 44360 Nantes Cedex 3, France
(E-mail: first-name.last-name@univ-nantes.fr)

Abstract. Many learning methods now generate a set of models in order to im-
prove robustness. Evaluating for instance the quality of a set of Bayesian networks
is quite usual for estimating separately the quality of each model and for summariz-
ing these results. Visualizing the outcomes are a more complex task. We propose
in this work an approach based on an inverse principle. Firstly, we build the Quasi
Essential Graph (QEG), ”most” representative of the whole set. Then, we apply
the usual quality operators for this new object. This paper describes the notion and
properties of Quasi Essential Graph. An algorithm for its extraction is proposed,
as well as a graphical metaphor for its visualization. A toy example is finally given
for the sake of illustration.
Keywords: Bayesian Network, Structure Learning, Visualization, Quasi Essential
Graph.

1 Introduction

Bayesian networks (BNs) are probabilistic graphical models which have been
widely used for prediction or classification tasks in various domains. In the
first applications, the BN structure was causally defined by expert knowledge.
Then, algorithms were proposed in order to learn the BN structure from
observational data.

Learning the structure of a Bayesian network from data is NP-complete
[CGH94], so heuristics have to be used in order to find one good local opti-
mum. Furthermore, in many real applications where these models are used,
the sample size of available data is much less than the number of observed
variables. For these reasons, many existing structure learning algorithms pro-
pose using evolutionary approaches [LPY+96,DBC07,MC07,AdF07,WY10]
or bootstrap approaches [FGW99,RB05] in order to learn a set of candidate
structures instead of one.

Evaluating the quality of one structure obtained with a classical struc-
ture learning algorithm is quite simple. When the structure learning has
to be validated, the learnt model can be compared to the expected one by
classical measures on the graphs (edit distance, ...) or on the corresponding
probability distributions (Kullback Leiber divergence). Otherwise, the ability



to represent the learning data can be measured by computing one score, ap-
proximation of the marginal likelihood used in BN structure learning [CH96].
Finally, the obtained graph can be visualized with the help of classical graph
placement algorithms.

One major difficulty for graph comparison approaches is the Markov
equivalence : some edges can be inverted without changing the underlying
independence model which has been identified with the learning dataset, so
directly comparing the learnt graph and the expected one is not appropriate.
One solution is using one property of Markov equivalence: all the equivalent
graphs can be summarized by a partially directed graph named complete
PDAG, essential graph or pattern. The right solution to graph comparison
is then comparing the essential graphs corresponding to the learnt graph and
the expected one.

Our problem here is quite more complex: we do not want to evaluate the
quality of one graph, but the quality of a set of BNs obtained for instance
by bootstrap or by evolutionary approaches. One first and trivial solution
is estimating the ”mean” quality of this set by using one quality operator
(edit distance, KL divergence, score, ...) for each model and then estimate
the mean or visualizing the distribution of these results. Graph visualization
is not appropriate when the number of BNs in the set is too high.

We propose in this work an approach based on an inverse principle: we
first find a ”most” graphical representative model for the set of BNs, the
Quasi Essential Graph (QEG), and then we apply the usual quality operators
for this new object. One disadvantage of this approach is that this QEG will
store more information than a simple graph, so these usual quality operators
will have to be redefined for this new object. One main advantage of this
QEG, and inspiration of this work, is that this object will be easily visualized
given a graphical metaphor proposed here.

After giving some preliminary definitions about Bayesian network in sec-
tion 2, we will then define, in section 3, the notion of Quasi Essential Graph,
some interesting properties, an algorithm to built it from a set of BNs and a
graphical metaphor for visualizing it. We will then illustrate this QEG on a
toy example.

2 Bayesian Networks

2.1 Definition

A Bayesian network (BN) 〈V,G, θ)〉 is defined by V = {X1, . . . , Xn}, a set
of observable discrete random variables, a directed acyclic graph (DAG) G,
where each node represents a variable from V , and a set of conditional prob-
ability distributions (CPD) θ = {P (Xi|Pa(Xi))} for each variable Xi from
V conditionally to its parents Pa(Xi) in the graph G.

When some properties named Markov properties are respected (cf. [Nea03]
for more details about these properties), the BN graph describes a set of (con-



ditional) dependence or independence statements which lead to the factoriza-
tion of the joint probability distribution P (X1, . . . , Xn) =

∏n
i=1 P (Xi|Pa(Xi)).

2.2 Markov Equivalence

This relation between DAGs and independence models is not bijective. Two
DAGs describing the same (conditional) dependence or independence state-
ments are said Markov equivalent.

A set of Markov equivalent DAGs is named a Markov equivalence class.
All DAGs in the same equivalence class share some graphical properties which
can be summarized into a partially directed acyclic graph named CPDAG
(complete PDAG) [Chi02], essential graph (EG) [AMP95] or pattern [SM95].

An edge is compelled if its orientation is the same in all DAGs of an equiv-
alence class. An edge is reversible if it is not compelled. The CPDAG is then
a partially directed graph defined by a list of directed edges corresponding
to every compelled edge in the equivalence class and a set of undirected edge
corresponding to every reversible edge in this class. One consequence is that
all equivalent DAGs have the same skeleton and the same compelled edges
[VP91].

[DT92] propose an algorithm for generating one DAG consistent with a
given Essential Graph, i.e. belonging to the given equivalence class. [Chi02]
provides an efficient algorithm for determining the Essential Graph of a given
DAG.

3 Quasi Essential Graphs

We have seen in the previous section that a set of equivalent DAGs can
be exactly summarized by the Essential Graph associated to the equivalent
class. We define here the notion of Quasi Essential Graph (QEG) in order to
approximately summarize any set of DAGs. We then give some interesting
properties of QEG, and describe one algorithm to build it from a given set
of DAGs and one graphical metaphor to visualize it.

3.1 Definition

A Quasi Essential Graph 〈V,G,wu, wa〉 is a weighted graph defined by V =
{X1, . . . , Xn}, a set of observable discrete random variables, a DAG G, where
each node represents a variable from V , a set of weights wu associated to each
(undirected) edge in G skeleton, and a set of weights wa associated to arrows
of each directed edge in G.

One QEG Q will summarize a set of BNs B, for a given threshold α > 0.5
(ensuring Q being acyclic), if and only if the three following conditions are
true :

(C0) Q and all the DAGs in B are defined for the same set of variables V ,



(C1) two vertices Xi and Xj are adjacent in Q iff their probability of being
adjacent in B is equal to wu(Xi–Xj) and greater than α,

(C2) a directed edge Xi → Xj exists in Q iff its probability of being present
in EG(B), i.e. the set of equivalent graphs associated to B, when Xi and
Xj are adjacent is equal to wa(Xi → Xj) and greater than α.

3.2 Properties

We propose our QEG approach for summarizing a set of BNs. Quasi Essential
Graph summarize the information contained in the given set B : empty graph
when there is no information (random distribution) or essential graph when
information are consistent (all DAGs in the same equivalence class, or with
small perturbations around a given graph).

QEG for BNs in the same equivalence class
The QEG summarizing a set B of equivalent BNs is defined by a partially
DAG G equal to the unique Essential Graph associated to B and weights wu

and wa equal to 1.
Proof is quite simple: if all DAGs in B, they have the same skeleton, so

wu = 1 for all edges of this skeleton, and they have the same compelled edges
(cf. section 2.2) so wa = 1 for all the corresponding arrows and G will be
defined by this common skeleton and arrows, which is the definition of the
essential graph of an equivalence class.

QEG for random BNs from a uniform distribution in DAG space
The QEG summarizing a (large) set B of BNs generated according to a uni-
form distribution in DAG space is defined by a partially DAG G equal to
the undirected graph completely connected Gc or to the empty graph G∅
depending to the value of α, weights wu equal to 1 if G = Gc, 0 otherwise
and wa = 0.

Our proof is quite intuitive. There are two directed ways of connecting
two vertices (from left or from right) for three configurations (the last one is
the disconnection). Even if one removes all configurations leading to a cycle
(impossible in directed acyclic graph), the probability of the two vertices
being connected will be below 2/3 and greater than 0.5. So all the vertices
will be present in G (leading to G = Gc) if α is low. If α increases, all the
vertices will be discarded and G = G∅.

3.3 Determination

Algorithm DAGsToQEG describes in table 1 how to determine the Quasi
Essential Graph Q associated to a set of DAGs B and a given threshold α.



In order to avoid problems related to Markov equivalence, the preprocess-
ing phase consists in considering essential graphs corresponding to elements
of B and in estimating frequency of each undirected edge (steps 3 to 6).

This algorithm then comprises two phases: we first determine during steps
8 to 10 the skeleton of Q and estimate the weights wu of each undirected edge
using condition C1 of QEGs (cf. section 3.1). We then estimate during steps
11 to 19 the potential weight of each edge orientation in the set of DAGs B
and use condition C2 of QEGs to possibly keep consistent arrows and their
corresponding weights wa.

3.4 Visualization

Inspiration of this work is related to the fact that visualizing a set of DAGs
is not very practical. Quasi Essential Graph has been defined as a graphical
object. We propose here one graphical metaphor for visualizing it.

For classical weighted graph, weights are only defined for edges, and the
graphical metaphor is simply obtained by varying the size of the correspond-
ing line. As QEG associates weights to both undirected edges and arrows,
we will then vary the size of the corresponding lines and arrows, and use
different colors for well differentiating both graphical items.

3.5 Illustration with a toy axample

As this work is a preliminary work, we propose here a toy example illustrating
the interest of our QEG approach. Our various algorithms have been imple-
mented in C++ with the Boost library (http://www.boost.org) and APIs
provided by the ProBT platform (http://bayesian-programming.org). Vi-
sualization tools are provided by Tulip framework (http://tulip.labri.fr).

Figure 1 gives us a set of 12 DAGs generated by randomly varying the
first DAG. These variations involve adding, removing or inverting between
one and three edges in the initial DAG.

Figure 2(a) describes the QEG skeleton obtained after the first phase of
our algorithm (with α = 0.55). We can see that it returns here the skeleton of
the initial and perturbed DAG (DAG1). Figure 2(b) shows us the consistent
arrows added during the second phase of our algorithm. We can notice here
that this graph corresponds to the Essential Graph of DAG1. This result is
coherent with the QEG definition.

Figure 2(c) proposes the final QEG using our graphical metaphor. This
figure confirms that QEG is a practical way to represent a set of DAGs,
providing in one unique graph a consistent summary of all these graphs.

4 Conclusion

We propose in this work the notion of Quasi Essential Graph (QEG) in order
to summarize a set of Bayesian networks. We detailed here some interesting



Algorithm DAGsToQEG(B, α)

Require: A set of DAGs, B, and a threshold, α (α > 0.5).
Ensure: A unique Quasi Essential Graph Q.

1: N ← card(B);
2: Q← ∅;
3: for i = 1 to N do
4: EGi ← EG(B(i)); {Preprocessing Phase}
5: end for
6: [UG,w(u)]← Union{Skeleton(EGi)};
7: for every edge u ∈ UG do
8: if w(u) > α then
9: add edge(u,Q); {Skeleton determination}

10: wu(u) = w(u);
11: w(←−u ) = card({EGi|←−u ∈ EGi})/(N ∗ w(u)); {Arrows determination}
12: w(−→u ) = card({EGi|−→u ∈ EGi})/(N ∗ w(u));
13: if w(←−u ) > α then
14: orient edge(←−u ,Q);
15: wa(←−u )← w(←−u );
16: else if w(−→u ) > α then
17: orient edge(−→u ,Q);
18: wa(−→u )← w(−→u );
19: end if
20: end if
21: end for
22: return Q

Notations :
- EG(B(i)) : algorithm returning the Essential Graph of a DAG (cf. sect.2.2)
- Union{Skeleton(EGi)} : algorithm generating an undirected graph resulting to
the union of the set of skeletons. This algorithm counts the frequency of each
undirected edge in this set
- for an undirected edge u = Xi–Xj , the two possible orientations are←−u = Xi ← Xj

and −→u = Xi → Xj

Table 1. Algorithm returning the Quasi Essential Graph Q for a set of DAGs B
and for a given threshold α

properties with respect to the BNs we want to summarize. We then described
an algorithm to determine the QEG from a set of BNs and a given threshold.

One main advantage of this QEG, and inspiration of this work, is that
this new object is easily visualized with a graphical metaphor we proposed
here and illustrated on a toy example.

Both theoretical properties and experimental results have now to be ex-
tended. From a theoretical point of view, we want to go further about
parametrization of a DAG distribution. More realistic experiments are also



Fig. 1. Set of 12 DAGs obtained by randomly perturbing the first one.

(a) (b) (c)

Fig. 2. (a) QEG skeleton obtained after the first phase of our algorithm (b) consis-
tent arrows added to the previous skeleton after the second phase of our algorithm
(c) QEG graphical metaphor using Tulip framework

to be performed with sets of BNs obtained from ensemble structure learning
such as evolutionary algorithms or bootstrap approaches.

Acknowledgment

This work was partially supported by a grant from the Pays de la Loire
Region, Bioinformatics Research Project (BIL).

References

[AdF07]C. Auliac, F. dAlchéBuc, and V. Frouin. Learning transcriptional regula-
tory networks with evolutionary algorithms enhanced with niching. In F. Ma-
sulli, S. Mitra, and G. Pasi, editors, Applications of Fuzzy Sets Theory, volume
4578 of Lecture Notes in Computer Science, pages 612–619. Springer Berlin /
Heidelberg, 2007.



[AMP95]S. Andersson, D. Madigan, and M. Perlman. A characterization of markov
equivalence classes for acyclic digraphs. Technical Report 287, Department of
Statistics, University of Washington, 1995.

[CGH94]D. Chickering, D. Geiger, and D.E. Heckerman. Learning bayesian net-
works is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research, 1994.

[CH96]D. Chickering and D. Heckerman. Efficient Approximation for the Marginal
Likelihood of Incomplete Data given a Bayesian Network. In Proceedings of
the 12th Conference on Uncertainty in Artificial Intelligence (UAI-96), pages
158–168. Morgan Kaufmann, 1996.

[Chi02]D. Chickering. Learning equivalence classes of Bayesian-network structures.
Journal of Machine Learning Research, 2:445–498, February 2002.

[DBC07]A. Delaplace, T. Brouard, and H. Cardot. Two evolutionary methods
for learning bayesian network structures. In Y. Wang, Y. Cheung, and H. Liu,
editors, Computational Intelligence and Security, volume 4456 of Lecture Notes
in Computer Science, pages 288–297. Springer Berlin / Heidelberg, 2007.

[DT92]D. Dor and M. Tarsi. A simple algorithm to construct a consistent extension
of a partially oriented graph. Technical Report R-185, Cognitive Systems
Laboratory, UCLA Computer Science Department, 1992.

[FGW99]N. Friedman, M. Goldszmidt, and A. J. Wyner. Data analysis with
bayesian networks: A bootstrap approach. In Proceedings of the Fifteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI–99), pages
206–215, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

[LPY+96]Larranaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers. Struc-
ture learning of bayesian networks by genetic algorithms: A performance analy-
sis of control parameters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(9):912–926, 1996.

[MC07]J. Muruzábal and C. Cotta. A study on the evolution of bayesian network
graph structures. In P. Lucas, J. Gàmez, and A. Salmerón, editors, Advances
in Probabilistic Graphical Models, volume 214 of Studies in Fuzziness and Soft
Computing, pages 193–213. Springer Berlin / Heidelberg, 2007.

[Nea03]R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
[RB05]A. S. Rodin and E. Boerwinkle. Mining genetic epidemiology data with

Bayesian networks I: Bayesian networks and example application (plasma apoE
levels). Bioinformatics, 21(15):3273–3278, 2005.

[SM95]P. Spirtes and C. Meek. Learning bayesian networks with discrete variables
from data. In Proceedings of First International Conference on Knowledge
Discovery and Data Mining, pages 294–299. AAAI Press, 1995.

[VP91]T. Verma and J. Pearl. Equivalence and synthesis of causal models. In
M. Henrion, R. Shachter, L. Kanal, and J. Lemmer, editors, Proceedings of the
Sixth Conference on Uncertainty in Artificial Intelligence, pages 220–227, San
Francisco, 1991. Morgan Kaufmann.

[WY10]T. Wang and J. Yang. A heuristic method for learning bayesian networks
using discrete particle swarm optimization. Knowledge and Information Sys-
tems, 24:269–281, 2010.


