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Ontology-based generation of Object Oriented Bayesian Networks

Probabilistic Graphical Models (PGMs) are powerful tools for representing and reasoning under uncertainty. Although useful in several domains, PGMs suffer from their building phase known to be mostly an NP-hard problem which can limit in some extent their application, especially in real world applications. Ontologies, from their side, provide a body of structured knowledge characterized by its semantic richness. This paper proposes to harness ontologies representation capabilities in order to enrich the process of PGMs building. We are in particular interested in object oriented Bayesian networks (OOBNs) which are an extension of standard Bayesian networks (BNs) using the object paradigm. We show how the semantical richness of ontologies might be a potential solution to address the challenging field of structural learning of OOBNs while minimizing experts involvement which is not always obvious to obtain. More precisely, we propose to set up a set of mapping rules allowing us to generate a prior OOBN structure by morphing an ontology related to the problem under study to be used as a starting point to the global OOBN building algorithm.

Introduction

Knowledge representation (KR) is one of the principal areas of Artificial Intelligence which was studied by different techniques coming from various disciplines. In this work we will focus on probabilistic graphical models and ontologies which are considered within the most efficient frameworks in KR.

Probabilistic graphical models (PGMs) provide an efficient framework for knowledge representation and reasoning under uncertainty. Ontologies allow logical reasoning about concepts linked by semantic relations within a knowledge domain. Even though they represent two different paradigms, PGMs and ontologies share several similarities which has led to some research directions aiming to combine them. Concern for the majority of them was to extend ontologies in order to support uncertainty. This is either by adding additional markups to represent probabilistic information or by mapping the ontology into a PGM in order to enrich ontology reasoning with probabilistic queries. Few works intend to construct PGMs using ontologies. In this area, Bayesian networks (BNs) [START_REF] Pearl | Probabilistic reasoning in intelligent systems[END_REF] are the most commonly used. Typically, concepts are associated to nodes, ontology relations are used to link these nodes, and for some proposals, axioms are involved to express nodes or edges or to define the states of variables. However, given the restrictive expressiveness of Bayesian networks, these methods focus on a restrained range of ontologies and neglect some of their components such as representing concepts properties, non taxonomic relations, etc. To overcome this weakness, we propose to explore other PGMs, significantly more expressive than standard BNs, in order to address an extended range of ontologies.

We are in particular interested in object oriented Bayesian networks [START_REF] Bangsø | Object Oriented Bayesian networks: a framework for top-down specification of large Bayesian networks with repetitive structures[END_REF] (OOBN), which are an extension of standard BNs. In fact, OOBNs share several similarities with ontologies and they are suitable to represent hierarchical systems as they introduce several aspects of object oriented modeling, such as inheritance. Our idea is to benefit from ontologies in order to address the challenging problem of OOBN structure learning known to be an NP-hard process. To this end, we first establish the correspondence between OOBNs and ontologies. Then, we describe how to generate a prior OOBN structure by morphing an ontology related to the problem under study and then to use it as a starting point to the global building OOBN algorithm. This latter will take advantages from both semantical data, de-rived from ontology which will ensure its good start-up and observational data.

The remainder of this paper is organized as follows:

In sections 2 and 3 we provide a brief representation of our working tools. In section 4, we show how to benefit from knowledge provided by an ontology to define the structure of an OOBN. In section 5 we represent a survey on existing approaches trying to find a combination between PGMs and ontologies. The final section summarizes conclusions reached in this work and outlines directions for future research.

Object Oriented Bayesian Networks

Probabilistic graphical models (PGMs) provide an efficient framework for knowledge representation and reasoning under uncertainty. In the literature, we distinguish a panoply of PGMs sharing two common components: a graphical one (i.e. a set of nodes and links) and a numerical one allowing the quantification of different links defined in the graphical component via probability distributions. Among the most used PGMs we can mention Bayesian networks (BNs) [START_REF] Pearl | Probabilistic reasoning in intelligent systems[END_REF] which have been largely developed and used in several real world applications. Despite their great success, BNs are limited when dealing with largescale systems. Thus, several extensions have been proposed in order to broaden their range of application, such as object oriented Bayesian networks (OOBNs) [START_REF] Bangsø | Object Oriented Bayesian networks: a framework for top-down specification of large Bayesian networks with repetitive structures[END_REF], [START_REF] Koller | Object-oriented Bayesian networks[END_REF] which introduce the object oriented paradigm into the framework of BNs. Object Oriented Bayesian Networks (OOBNs) are a convenient representation of knowledge containing repetitive structures. So they are a suitable tool to represent dynamic Bayesian networks as well as some special relations which are not obvious to represent using standard BNs (e.g., examine a hereditary character of a person given those of his parents). Thus an OOBN models the domain using fragments of a Bayesian network known as classes. Each class can be instantiated several times within the specification of another class. Formally, a class T is a DAG over three, pairwise disjoint sets of nodes (I T , H T , O T ), such that for each instantiation t of T:

• I T is the set of input nodes. All input nodes are references to nodes defined in other classes (called referenced nodes). Each input node have at most one referenced node, it has no parents in t and no children outside t.

• H T is the set of internal nodes including instantiations of classes which do not contain instantiations of T . They are protected nodes that can't have parents or children outside t. In the extreme case where the OOBN consists of a class having neither instantiations of other classes nor input and output nodes we collapse to standard BNs.

As all PGMs, OOBNs have two fundamental cornerstones: construction and reasoning. The construction of an OOBN concerns both learning the graph structure and parameters estimation. Few works have been proposed in the literature to learn the structure [START_REF] Bangsø | Structural learning in object oriented domains[END_REF], [START_REF] Langseth | Fusion of domain knowledge with data for structural learning in object oriented domains[END_REF] and the parameters (Langseth and Bangsø, 2003) [START_REF] Bangsø | Object Oriented Bayesian networks: a framework for top-down specification of large Bayesian networks with repetitive structures[END_REF].

In this paper we are interested in the learning process. The standard approach proposed by (Langseth and Bangsø, 2003) is the OO-SEM algorithm. This algorithm is based on an Object Oriented assumption which states that all instances of a class are assumed to be identical w.r.t. both parameters and structure. This algorithm is based on a prior expert knowledge about a partial specification of the OOBN by grouping nodes into instantiations and instantiations into classes. Then, on the basis of this prior, the learning process adapts the SEM algorithm [START_REF] Friedman | The Bayesian structural EM algorithm[END_REF] in order to learn the OOBN structure that fits best to the data. Learning in object oriented domains allows to reduce the search space, however it remains an NPhard problem. In fact, the main computational phase in the OO-SEM algorithm consists in finding the interfaces of instantiations, which is exponential in the number of instantiations. So, this information may be also elicited from domain experts. However, human expertise, required to initiate the learning process, is not always obvious to obtain. To overcome this limitation we propose to use ontologies richness. Before introducing our method, we give basic notions on ontologies.

Ontologies

Over the last few years, there has been an increasing interest in the application of ontologies in various domains (e.g., linguistics, semantic web, bioinformatics). They represent not only a fixed structure but also the basis for deductive reasoning. For the AI community, an ontology is an explicit specification of a conceptualization [START_REF] Gruber | Toward Principles for the Design of Ontologies Used for Knowledge Sharing[END_REF]. That is, an ontology is a description of a set of representational primitives with which to model an abstract model of a knowledge domain. Formally, we define an ontology O = Cp, R, I, A as follows:

• Cp = {cp 1 , . . . cp n } is the set of n concepts (classes) such that each cp i has a set of k properties (attributes)

P i = {p 1 , . . . p k }.
• R is the set of binary relations between elements of Cp which consists of two subsets: That is, each relation cp i s R cp j ∈ S R has cp i as a domain and cp j as a range.

• I is the set of instances, representing the knowledge base.

• A is the set of the axioms of the ontology. A consists of constraints on the domain of the ontology that involve Cp, R and I. 

Axioms

A new approach for OOBNs building based on ontologies

Clearly PGMs and ontologies share several similarities even they are derived from different frameworks. Thus our idea is to use the ontological knowledge in the OOBN learning process by morphing the ontology in hand into the a prior OOBN structure. To this end, we first define the common points and similarities between these two paradigms, then we describe the main steps of our proposal.

OOBNs vs ontologies

In this part, we highlight the common points and similarities between ontologies and object oriented Bayesian networks. The main components of an ontology (i.e., concepts and relations) may be viewed as a start-up to define the main components of an OOBN (i.e., classes and relations among them).

• Concepts vs classes

Ontology concepts are translated into classes of the OOBN framework. Hence, for each class so defined, concept properties will constitute the set of its random variables (real nodes). It is clear that the set of the concept properties does not cover the three sets of nodes of a class. Let:

cp i be the concept of the ontology translated to the class c i in the underlying OOBN, where c i is a DAG over I c , H c and O c .

-P i = {p 1 . . . p k } be the set of properties of cp i . -H c = H c \ H inst c
, where H inst c is the set of internal nodes which are instantiations of other classes.

-

O c = O c \ O ref c , where O ref c
is the set of output nodes which are reference nodes.

P i allows us to generate H c ∪O c . Reference nodes, namely, I c ∪ O ref c
, are pointers to nodes defined in other classes. Consequently their set of states as well as parameters are copied from the referenced nodes. These latter are properties of other concepts in the ontology side. Reference nodes as well as H inst c will be derived from the semantic relations.

• Inheritance relations vs class hierarchy

As ontological inheritance relations already model a hierarchical feature, then all concepts connected by an is-a relation in the ontology will be represented by a class hierarchy in the OOBN framework.

• Semantic relations vs links

Having two concepts {cp i , cp j } ∈ Cp 2 related by a semantic relation means that there is at least one property of one of them that affects at least one property of the other, which means that the definition of one of them depends on the existence of the other. In the underlying OOBN, this allows to set up dependencies among nodes from different classes. Suppose that the property p k of concept cp i affects the property p k of concept cp j . Then, the node that represents p k in the class c i will be either an output node connected directly using directed links to the internal node representing p k in the class c j , in this case c j could only be an encapsulating class of the instance of c i , or an output node referenced, using reference links, by a reference node in the class c j , this reference node is either an input node, parent of the node that represents p k in c j or an output reference node of the class containing an instance of c i and communicates with c j .

Semantic relations might provide an information about classes interfaces and instantiations organization in the OOBN. However, the link direction of the semantic relation can not provide a good informer about dependence relations among the variables of the OOBN, which variable depends on the other? So, it is required that the semantic relations be designed from the beginning of a causal or an anti-causal orientations. The choice of a fixed orientation is a determining factor to specify which instantiation I i could be referenced from an instantiation I j . Suppose that all semantic relations are of causal orientation, the cause is then conceived as the direct explanation of the fact and it is involved in its production. consequently, the definition of the concept range depends on the existence of the concept domain. In the OOBN side, this means that the definition of the class representing the concept domain is part of the class representing the concept range. This can be translated in the OOBN by instantiating the class representing the concept domain within the specification of the class representing the concept range.

In what follows, we assume that all semantic relations have a causal orientation. Thus, ∀ {cp i , cp j } ∈ Cp 2 related by a semantic relation, where cp i is the domain and cp j is the range, cp i is considered as the cause of cp j and this latter is the effect.

In fact, the ontology conceptual graph is simply the result of the ontology components definition. Thus, we require that semantic relations definition to be, from the beginning, done following a causal reasoning that is considered as an intuitive reflexion of the ontologist. Then, if we require to have all semantic relations to be anti-causal, we just have to reverse their definitions (i.e., define the domain as range and vice versa).

The morphing process

To ensure the morphing process, we need to traverse the whole ontology. To provide this, we assume that the ontology is a directed graph whose nodes are the concepts and relations (semantic and hierarchical ones) are the edges. Our target is to accomplish the mapping of the ontology graphical representation into an OOBN while browsing each node once and only once. To this end, we propose to adapt the generic Depth-First Search (DFS) algorithm for graph traversing. The idea over the Depth-First Search algorithm is to traverse a graph by exploring all the vertices reachable from a source vertex: If all its neighbors have already been visited (in general, color markers are used to keep track), or there are no ones, then the algorithm backtracks to the last vertex that had unvisited neighbors. Once all reachable vertices have been visited, the algorithm selects one of the remaining unvisited vertices and continues the traversal. It finishes when all vertices have been visited. The DFS traversal allows us to classify edges into four classes:

• Tree edges: are edges in the DFS search tree.

• Back edges: join a vertex to an ancestor already visited.

• Forward edges: are non-tree edges connecting a vertex to a descendant in a DFS search tree.

• Cross edges: all other edges.

We use these classes of edges to determine actions to do on each encountered concept. Tree edges allow to define actions on concepts encountered for the first time, while forward and cross edges allow to define actions to do on concepts that are already visited crossing another path and so having more than one parent. According to their definition, back edges allow cycle detection, in our case these edges will never be encountered. As our edges respect a causal orientation having a cycle of the form X 1 → X 2 → X 3 → X 1 means that X 1 is the cause of X 2 which is the cause of X 3 so this latter can't be the cause of X 1 at the same instant t but rather at an instant t + . We are limited to ontologies that do not contain cycles, because such relationships invoke the dynamic aspect which is not considered in this work.

A deep study of the similarities discussed above shows that the morphing process can be done in three main steps, namely initialization, discovery and closing. At each step, we define a set of actions that might be done:

i. ii. Discovery step: The classes of edges are used to determine actions to do on each encountered concept. These actions allow us to define input, internal and output sets for each class of the OOBN. ADD OUTREF NODE(Class c1, Class c2): adds output reference nodes to classes containing c1 until reaching c2. In fact, some concepts might have parents coming from more than one DFS search tree or from different paths. Let cp i be a concept having two parents cp1 i and cp2 i coming from two different branches. Then, c cpi would to be instantiated within the specification of only one of them. However, c cpi has its output nodes Algorithm 2: Handling Process Input: An ontology O, A concept S.

We use color markers to keep track of which vertices have been discovered: white marks vertices that have yet to be discovered, gray marks a vertex that is discovered but still has vertices adjacent to it that are undiscovered and black marks discovered vertex that is not adjacent to any white vertices.

begin color[S]:= gray; for each property p of S do

ADD OUTPUT NODE(p, c S ) for each V ∈ adjacent[S] do if color[V ]=white then RECORD PREDECESSOR[V ]=S; Handling Process(O, V ); ADD INTERNAL NODE (INSTANCE OF(cV ), cS); if (S, V ) is an inheritance relation then ADD CONSTRUCT LINK INSTANCE OF(cV ),INSTANCE OF(cS)) if (S, V ) is a semantic relation then for each node n ∈ GET OUTPUT(cV ) do ADD REFERENCE LINK (n,ADD INPUT NODE(n,cS)) if color[V ]=black then if (S, V ) is an inheritance relation then ADD CONSTRUCT LINK INSTANCE OF(cS),INSTANCE OF(cV )) if (S, V ) is a semantic relation then for each node n ∈ GET OUTPUT(c V ) do ADD INPUT NODE(n, c S ) ADD OUTREF NODE (INSTANCE OF(cS),INSTANCE OF(cV ) color[S]:= black; if RECORD PREDECESSOR[S] = N ull then ADD INTERNAL NODE (INSTANCE OF(cS),GLOBAL OOBN CLASS)
to be referenced by output reference nodes of the class containing it until reaching its second parent (see figure 3).

ADD CONSTRUCT LINK(Class c1, Class c2): a construct link appears between instantiations of superclasses and instantiations of their subclasses (see figure 4). All properties of the super-concept are considered as properties of its subconcepts.

ADD REFERENCE LINK(Node n1, Node n2): allows the communication between classes interfaces. All these actions are used in Algorithms 1 and 2. The Handling Process function (see algorithm 2) provides actions to do at each vertex.

Example 3. We assume that all random variables are modeled in the corresponding ontology 5(b) as concepts properties and that all semantic relations present in the ontology are of an anti-causal orientation.

We will follow the steps of the Generate OOBN algorithm (see algorithm 1)to generate our prior OOBN structure.

First of all, we start by generating the Global OOBN class Prior OOBN. Then we create a class to each concept of the ontology, that is, we create 11 classes c cpi , i = {1, . . . 11} which are initially empty. their sets of nodes will be discovered during the generation process.

Initially, all concepts are white. cp 1 is the source concept, it is grayed and all its properties are declared as output nodes of the class representing it in the prior OOBN. Then, each concept adjacent to cp 1 is recursively visited if it is white and its properties are treated in the same way. cp 1 has cp 2 as adjacent concept, it is painted gray and it has cp 5 as adjacent concept, so on until reaching cp 9 . cp 9 is grayed and all its properties are declared as output nodes of the class representing it in the prior OOBN (c cp9 ). As it has no adjacent, it is instantiated within its ancestor c cp6 . As cp 6 and cp 9 are related by an inheritance relation then, we add a construction link between c cp6 and c cp9 and all properties of the super-class c cp9 are considered as properties of its subclass c cp6 . The concept cp 9 is finished and blackened. We backtrack to the cp 6 concept, it is gray and it has finished his adjacent concepts so, it is instantiated within its ancestor c cp11 . As cp 11 and cp 6 are related by a semantic relation then, all its output nodes are considered as input nodes of the c cp11 class linked by reference links. cp 6 is blackened and we go back to cp 11 it is gray and it has finished his adjacent concepts so, it is instantiated within its ancestor c cp5 .

As c cp11 and c cp5 are related by an inheritance relation then, we add a construction link between them. cp 11 is blackened and we go back to the second adjacent of the cp 5 concept. cp 5 is gray and cp 9 is black, so (cp 5 ,cp 9 ) is a cross/forward edge, means that cp 9 has already been instantiated so, we add output reference nodes from c cp6 until reaching the c cp5 class. cp 5 is gray and it has finished his adjacent concepts so, it is instantiated within its ancestor and so on until backtracking to the concept c cp1 , it is gray and it has not ancestors, so it is blackened and instantiated within the specification of the Prior OOBN class. The first DFS tree is finished, so we choose an undiscovered node from the remainder nodes and we apply the algorithm until discovering all the concepts. The result of this process is shown in figure 5.(b)) shows the final result.

Related work

In recent years, a panoply of works have been proposed in order to combine PGMs and ontologies so that one can enrich the other. We can outline two main directions for these proposed approaches. The first aims to enhance ontologies capabilities to support probabilistic inference. While the second aims to enhance PGMs construction by integrating ontologies.

Ontologies provide a support for logical reasoning, but they do not support uncertainty. Hence, several extensions have been proposed to overcome this limitation.

One line of research aims to extend existing ontology languages, such as OWL1 , to be able to catch uncertainty in the knowledge domain. Proposed methods, such as BayesOWL [START_REF] Ding | A probabilistic extension to ontology language OWL[END_REF], OntoBayes [START_REF] Yang | OntoBayes: An Ontology-Driven Uncertainty Model[END_REF] The result is then a probabilistic annotated ontology that can be translated into a BN to perform probabilistic inference. Other works define transition actions in order to generate a PGM given an ontology with the intention of extending ontology querying to handle uncertainty while keeping the ontology formalism intact [START_REF] Bellandi | Extending Ontology Queries with Bayesian Network Reasoning[END_REF].

On the other hand, some solutions proposed the use of ontologies to help PGMs construction. Some of them are designed for specific applications (Helsper and Van der Gaag,2002), [START_REF] Zheng | An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines. Uncertainty Reasoning for the Semantic Web I[END_REF], while some others give various solutions to handle this issue. We can mention the semi-automatic approach provided in [START_REF] Fenz | Ontology-Based Generation of Bayesian Networks[END_REF] to create BNs and the Sem-CaDo (Semantical Causal DiscOvery) algorithm [START_REF] Ben Messaoud | Integrating ontological knowledge for iterative causal discovery[END_REF][START_REF] Ben Messaoud | SemCaDo: a serendipitous strategy for learning causal bayesian networks using ontologies[END_REF] which ensure the integration of ontological knowledge, more precisely, subsumption relationships, to learn the structure of causal Bayesian networks (i.e. BNs with causal relations) [START_REF] Pearl | Causality: Models, reasoning and inference[END_REF] and improve the causal discovery.

However, all these solutions are limited to a restrained range of PGMs, usually BNs. So, they neglect some ontology important aspects such as representing concepts having more than one property, non taxonomic relations, etc. In our approach we used OOBNs which are much richer graphical model than standard BNs. They allowed us to address an extended range of ontologies, we focused on concepts, their properties, hierarchical as well as semantic relations and we showed how these elements would be useful to automatically generate a prior OOBN. Our proposal concerns exclusively the OOBN structure definition through the use of ontologies.

The crossing-over of PGMs and ontologies can allow us to improve relevant tasks related to each of them.

In this paper, we showed how we take advantage of the semantic richness provided by ontologies to generate a prior OOBN structure and this is by exploring similarities between these two paradigms. The use of the OOBN framework has enabled us to handle an extended range of ontologies unlike works which were limited to the use of standard Bayesian networks, which brings us to say that this work is an initiative aiming to set up new bridges between these two paradigms.

The final structure resulting from the learning process may also be useful to make the initial ontology evolve, and this is by trying to find how the new relations discovered by the learning process can affect the (semi) automatic ontology enrichment process. Thus, as an ongoing work, we aim to analyze the elements that are common to both tasks and provide a two-way approach that uses ontology power in representing knowledge to help the hard process of OOBN structure learning by proposing new metrics, based on ontological knowledge, allowing to assess better the choice of the best structure. Then, uses novel relations discovered by the learning process in order to improve the hard activity of ontology enrichment.

  are of the form A ≡ B (A and B are equivalent), R1 ⊆ R2 (R1 is a subproperty of R2), R1(x, y) (x is related to y by the relation R1), A(x) (x is of type A), etc. Where A and B are concepts, R1 and R2 are relations and x and y are instances. Example 2. Figure 2 is an example of a joint credit ontology. Cp = {Loan, Couple, M an, W oman, P erson}. For instance P Loan = {Amount, Decision}. S R = {requests(Couple × Loan), constituted of(Couple×M an), constituted of(Couple×W oman)}. Is-a relations represent H R and are equivalent to subsumption axioms, e.g., Man⊆ Person. For instance, we can have an instance p of the concept Man p {P aul, 30, 2000$, teacher, T }, p.Name = Paul, p.Age = 30, p.Salary = 2000$, p.Employment = teacher and p.Military service = T.

  ADD INPUT NODE(Node n, Class c) : adds an input node n to a class c. this action is invoked on all properties of a concept which is related by an out edge to another one. Its properties are considered as candidate input nodes of the class representing the second concept. ADD INTERNAL NODE(Node n, Class c): adds an internal node n to a class c. The set of internal nodes of a class consists of instantiations of other classes representing concepts that are related by an out edge to the corresponding concept of the class c in the ontology and this edge is in the same DFS search tree. ADD OUTPUT NODE(Node n, Class c): adds an output node n to a class c. all properties of a concept are transformed into variables of its corresponding class in the OOBN. These nodes are considered as candidate output nodes of the class.
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 5 Figure 5: An example of ontology morphing to a prior OOBN structure

  • O T is the set of output nodes. They are nodes from the class usable outside the instantiations of the class and they can not have parents outside t. An output node of an instantiation can be a reference node if it is used as an output node of the class containing it. S , O S , H S ) is a subclass of a class T over (I T , O T , H T ), if I T ⊆ I S , O T ⊆ O S and H T ⊆ H S .

	Internal nodes, which are not instantiations of classes,
	and output nodes (except those that are reference
	nodes) are considered as real nodes and they repre-
	sent variables. In an OOBN, nodes are linked using
	either directed links (i.e., links as in standard BNs) or
	reference links. The former are used to link reference
	or real nodes to real nodes, the latter are used to link
	reference or real nodes to reference nodes. Each node
	in the OOBN has its potential, i.e. a probability dis-
	tribution over its states given its parents. To express
	the fact that two nodes (or instantiations) are linked
	in some manner we can use construction links (---)
	which only represent a help to the specification.
	When some classes in the OOBN are similar (i.e. share
	some nodes and potentials), their specification can be
	simplified by creating a class hierarchy among them.
	Formally, a class S over (I Example 1. Figure 1 represents the insurance net-
	work adapted to the OOBN framework (Langseth and
	Nielsen, 2003). This network contains six classes (In-
	surance, Theft, Accident, Car, CarOwner and Driver).
	In this figure only the interfaces of the encapsulated in-
	stantiations are shown, dashed ellipses represent input
	nodes, while shaded ellipses represent output nodes.
	For instance, the class CarOwner describes properties
	of a car owner. It has no input nodes, the nodes
	Age, SocioEcon, HomeBase, AntiTheft, VehicleYear
	and MakeModel operate as output nodes of this class.
	Moreover, Driven characteristics are a part of the no-
	tion of a car owner. Thus, an instantiation of the class
	Driver is then encapsulated in the class CarOwner.
	Note that the output node DrivQuality of the class
	Driver is used as output reference node of the class
	CarOwner as it is referenced in the Accident class.
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