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Abstract

Probabilistic Graphical Models (PGMs) are
powerful tools for representing and reasoning
under uncertainty. Although useful in sev-
eral domains, PGMs suffer from their build-
ing phase known to be mostly an NP-hard
problem which can limit in some extent their
application, especially in real world applica-
tions. Ontologies, from their side, provide a
body of structured knowledge characterized
by its semantic richness. This paper proposes
to harness ontologies representation capabil-
ities in order to enrich the process of PGMs
building. We are in particular interested in
object oriented Bayesian networks (OOBNs)
which are an extension of standard Bayesian
networks (BNs) using the object paradigm.
We show how the semantical richness of on-
tologies might be a potential solution to ad-
dress the challenging field of structural learn-
ing of OOBNs while minimizing experts in-
volvement which is not always obvious to ob-
tain. More precisely, we propose to set up
a set of mapping rules allowing us to gener-
ate a prior OOBN structure by morphing an
ontology related to the problem under study
to be used as a starting point to the global
OOBN building algorithm.

1 Introduction

Knowledge representation (KR) is one of the principal
areas of Artificial Intelligence which was studied by
different techniques coming from various disciplines.
In this work we will focus on probabilistic graphical
models and ontologies which are considered within the
most efficient frameworks in KR.

Probabilistic graphical models (PGMs) provide an ef-
ficient framework for knowledge representation and

reasoning under uncertainty. Ontologies allow logi-
cal reasoning about concepts linked by semantic re-
lations within a knowledge domain. Even though they
represent two different paradigms, PGMs and ontolo-
gies share several similarities which has led to some
research directions aiming to combine them. Concern
for the majority of them was to extend ontologies in
order to support uncertainty. This is either by adding
additional markups to represent probabilistic informa-
tion or by mapping the ontology into a PGM in order
to enrich ontology reasoning with probabilistic queries.
Few works intend to construct PGMs using ontologies.
In this area, Bayesian networks (BNs) (Pearl, 1988) are
the most commonly used. Typically, concepts are as-
sociated to nodes, ontology relations are used to link
these nodes, and for some proposals, axioms are in-
volved to express nodes or edges or to define the states
of variables. However, given the restrictive expressive-
ness of Bayesian networks, these methods focus on a
restrained range of ontologies and neglect some of their
components such as representing concepts properties,
non taxonomic relations, etc. To overcome this weak-
ness, we propose to explore other PGMs, significantly
more expressive than standard BNs, in order to ad-
dress an extended range of ontologies.

We are in particular interested in object oriented
Bayesian networks (Bangsø and Wuillemin, 2000)
(OOBN), which are an extension of standard BNs. In
fact, OOBNs share several similarities with ontologies
and they are suitable to represent hierarchical systems
as they introduce several aspects of object oriented
modeling, such as inheritance. Our idea is to bene-
fit from ontologies in order to address the challeng-
ing problem of OOBN structure learning known to
be an NP-hard process. To this end, we first estab-
lish the correspondence between OOBNs and ontolo-
gies. Then, we describe how to generate a prior OOBN
structure by morphing an ontology related to the prob-
lem under study and then to use it as a starting point
to the global building OOBN algorithm. This latter
will take advantages from both semantical data, de-



rived from ontology which will ensure its good start-up
and observational data.

The remainder of this paper is organized as follows:
In sections 2 and 3 we provide a brief representation
of our working tools. In section 4, we show how to
benefit from knowledge provided by an ontology to
define the structure of an OOBN. In section 5 we rep-
resent a survey on existing approaches trying to find a
combination between PGMs and ontologies. The final
section summarizes conclusions reached in this work
and outlines directions for future research.

2 Object Oriented Bayesian Networks

Probabilistic graphical models (PGMs) provide an effi-
cient framework for knowledge representation and rea-
soning under uncertainty. In the literature, we distin-
guish a panoply of PGMs sharing two common com-
ponents: a graphical one (i.e. a set of nodes and
links) and a numerical one allowing the quantifica-
tion of different links defined in the graphical com-
ponent via probability distributions. Among the most
used PGMs we can mention Bayesian networks (BNs)
(Pearl, 1988) which have been largely developed and
used in several real world applications. Despite their
great success, BNs are limited when dealing with large-
scale systems. Thus, several extensions have been pro-
posed in order to broaden their range of application,
such as object oriented Bayesian networks (OOBNs)
(Bangsø and Wuillemin, 2000), (Koller and Pfeffer,
1997) which introduce the object oriented paradigm
into the framework of BNs. Object Oriented Bayesian
Networks (OOBNs) are a convenient representation of
knowledge containing repetitive structures. So they
are a suitable tool to represent dynamic Bayesian net-
works as well as some special relations which are not
obvious to represent using standard BNs (e.g., exam-
ine a hereditary character of a person given those of
his parents). Thus an OOBN models the domain us-
ing fragments of a Bayesian network known as classes.
Each class can be instantiated several times within
the specification of another class. Formally, a class
T is a DAG over three, pairwise disjoint sets of nodes
(IT ,HT ,OT ), such that for each instantiation t of T:

• IT is the set of input nodes. All input nodes are
references to nodes defined in other classes (called
referenced nodes). Each input node have at most
one referenced node, it has no parents in t and no
children outside t.

• HT is the set of internal nodes including instan-
tiations of classes which do not contain instanti-
ations of T . They are protected nodes that can’t
have parents or children outside t.

• OT is the set of output nodes. They are nodes
from the class usable outside the instantiations of
the class and they can not have parents outside
t. An output node of an instantiation can be a
reference node if it is used as an output node of
the class containing it.

Internal nodes, which are not instantiations of classes,
and output nodes (except those that are reference
nodes) are considered as real nodes and they repre-
sent variables. In an OOBN, nodes are linked using
either directed links (i.e., links as in standard BNs) or
reference links. The former are used to link reference
or real nodes to real nodes, the latter are used to link
reference or real nodes to reference nodes. Each node
in the OOBN has its potential, i.e. a probability dis-
tribution over its states given its parents. To express
the fact that two nodes (or instantiations) are linked
in some manner we can use construction links (−−−)
which only represent a help to the specification.

When some classes in the OOBN are similar (i.e. share
some nodes and potentials), their specification can be
simplified by creating a class hierarchy among them.
Formally, a class S over (IS ,OS ,HS) is a subclass of
a class T over (IT ,OT ,HT ), if IT ⊆ IS ,OT ⊆ OS and
HT ⊆ HS .

Example 1. Figure 1 represents the insurance net-
work adapted to the OOBN framework (Langseth and
Nielsen, 2003). This network contains six classes (In-
surance, Theft, Accident, Car, CarOwner and Driver).
In this figure only the interfaces of the encapsulated in-
stantiations are shown, dashed ellipses represent input
nodes, while shaded ellipses represent output nodes.
For instance, the class CarOwner describes properties
of a car owner. It has no input nodes, the nodes
Age, SocioEcon, HomeBase, AntiTheft, VehicleYear
and MakeModel operate as output nodes of this class.
Moreover, Driven characteristics are a part of the no-
tion of a car owner. Thus, an instantiation of the class
Driver is then encapsulated in the class CarOwner.
Note that the output node DrivQuality of the class
Driver is used as output reference node of the class
CarOwner as it is referenced in the Accident class.

In the extreme case where the OOBN consists of a
class having neither instantiations of other classes nor
input and output nodes we collapse to standard BNs.

As all PGMs, OOBNs have two fundamental corner-
stones: construction and reasoning. The construc-
tion of an OOBN concerns both learning the graph
structure and parameters estimation. Few works have
been proposed in the literature to learn the structure
(Bangsø et al., 2001), (Langseth and Nielsen, 2003)
and the parameters (Langseth and Bangsø, 2003) of
such a model from data. Given an OOBN, reasoning
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Figure 1: The insurance network represented using the OOBN framework

stands for probabilistic inference and this requires to
translate the OOBN into a BN or a multiply sectioned
Bayesian network (MSBN) (Bangsø and Wuillemin,
2000).

In this paper we are interested in the learning process.
The standard approach proposed by (Langseth and
Bangsø, 2003) is the OO-SEM algorithm. This algo-
rithm is based on an Object Oriented assumption
which states that all instances of a class are assumed
to be identical w.r.t. both parameters and structure.
This algorithm is based on a prior expert knowledge
about a partial specification of the OOBN by group-
ing nodes into instantiations and instantiations into
classes. Then, on the basis of this prior, the learning
process adapts the SEM algorithm (Friedman, 1998)
in order to learn the OOBN structure that fits best to
the data. Learning in object oriented domains allows
to reduce the search space, however it remains an NP-
hard problem. In fact, the main computational phase
in the OO-SEM algorithm consists in finding the in-
terfaces of instantiations, which is exponential in the
number of instantiations. So, this information may be
also elicited from domain experts. However, human
expertise, required to initiate the learning process, is

not always obvious to obtain. To overcome this lim-
itation we propose to use ontologies richness. Before
introducing our method, we give basic notions on on-
tologies.

3 Ontologies

Over the last few years, there has been an increas-
ing interest in the application of ontologies in vari-
ous domains (e.g., linguistics, semantic web, bioinfor-
matics). They represent not only a fixed structure
but also the basis for deductive reasoning. For the
AI community, an ontology is an explicit specification
of a conceptualization (Gruber, 1995). That is, an
ontology is a description of a set of representational
primitives with which to model an abstract model of
a knowledge domain. Formally, we define an ontology
O = 〈Cp,R, I,A〉 as follows:

• Cp = {cp1, . . . cpn} is the set of n concepts
(classes) such that each cpi has a set of k proper-
ties (attributes) Pi = {p1, . . . pk}.

• R is the set of binary relations between elements
of Cp which consists of two subsets:
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Figure 2: The joint credit ontology

– HR which describes the inheritance relations
among concepts.

– SR which describes semantic relations be-
tween concepts. That is, each relation
cpisRcpj ∈ SR has cpi as a domain and cpj
as a range.

• I is the set of instances, representing the knowl-
edge base.

• A is the set of the axioms of the ontology. A con-
sists of constraints on the domain of the ontology
that involve Cp, R and I.

Axioms are of the form A ≡ B (A and B are equiva-
lent), R1 ⊆ R2 (R1 is a subproperty of R2), R1(x, y)
(x is related to y by the relation R1), A(x) (x is of
type A), etc. Where A and B are concepts, R1 and
R2 are relations and x and y are instances.

Example 2. Figure 2 is an example of a joint credit
ontology.
Cp = {Loan,Couple,Man,Woman, Person}.
For instance PLoan = {Amount,Decision}.
SR = {requests(Couple × Loan), constituted
of(Couple×Man), constituted of(Couple×Woman)}.
Is-a relations represent HR and are equivalent to
subsumption axioms, e.g., Man⊆ Person. For in-
stance, we can have an instance p of the concept Man
p {Paul, 30, 2000$, teacher, T}, p.Name = Paul, p.Age
= 30, p.Salary = 2000$, p.Employment = teacher and
p.Military service = T.

4 A new approach for OOBNs
building based on ontologies

Clearly PGMs and ontologies share several similarities
even they are derived from different frameworks. Thus
our idea is to use the ontological knowledge in the
OOBN learning process by morphing the ontology in

hand into the a prior OOBN structure. To this end, we
first define the common points and similarities between
these two paradigms, then we describe the main steps
of our proposal.

4.1 OOBNs vs ontologies

In this part, we highlight the common points and
similarities between ontologies and object oriented
Bayesian networks. The main components of an ontol-
ogy (i.e., concepts and relations) may be viewed as a
start-up to define the main components of an OOBN
(i.e., classes and relations among them).

• Concepts vs classes

Ontology concepts are translated into classes of
the OOBN framework. Hence, for each class so
defined, concept properties will constitute the set
of its random variables (real nodes). It is clear
that the set of the concept properties does not
cover the three sets of nodes of a class. Let:

– cpi be the concept of the ontology trans-
lated to the class ci in the underlying OOBN,
where ci is a DAG over Ic,Hc and Oc.

– Pi = {p1 . . . pk} be the set of properties of
cpi.

– H′
c = Hc \Hinst

c , where Hinst
c is the set of in-

ternal nodes which are instantiations of other
classes.

– O′
c = Oc \ Oref

c , where Oref
c is the set of

output nodes which are reference nodes.

Pi allows us to generateH′
c∪O′

c. Reference nodes,
namely, Ic ∪ Oref

c , are pointers to nodes defined
in other classes. Consequently their set of states
as well as parameters are copied from the refer-
enced nodes. These latter are properties of other
concepts in the ontology side. Reference nodes as
well as Hinst

c will be derived from the semantic
relations.

• Inheritance relations vs class hierarchy

As ontological inheritance relations already model
a hierarchical feature, then all concepts connected
by an is-a relation in the ontology will be repre-
sented by a class hierarchy in the OOBN frame-
work.

• Semantic relations vs links

Having two concepts {cpi, cpj} ∈ Cp2 related by a
semantic relation means that there is at least one
property of one of them that affects at least one
property of the other, which means that the def-
inition of one of them depends on the existence



of the other. In the underlying OOBN, this al-
lows to set up dependencies among nodes from
different classes. Suppose that the property pk of
concept cpi affects the property pk′ of concept cpj .
Then, the node that represents pk in the class ci
will be either an output node connected directly
using directed links to the internal node represent-
ing pk′ in the class cj , in this case cj could only
be an encapsulating class of the instance of ci, or
an output node referenced, using reference links,
by a reference node in the class cj , this reference
node is either an input node, parent of the node
that represents pk′ in cj or an output reference
node of the class containing an instance of ci and
communicates with cj .

Semantic relations might provide an information
about classes interfaces and instantiations organi-
zation in the OOBN. However, the link direction
of the semantic relation can not provide a good
informer about dependence relations among the
variables of the OOBN, which variable depends
on the other? So, it is required that the seman-
tic relations be designed from the beginning of a
causal or an anti-causal orientations. The choice
of a fixed orientation is a determining factor to
specify which instantiation Ii could be referenced
from an instantiation Ij . Suppose that all seman-
tic relations are of causal orientation, the cause
is then conceived as the direct explanation of the
fact and it is involved in its production. conse-
quently, the definition of the concept range de-
pends on the existence of the concept domain. In
the OOBN side, this means that the definition of
the class representing the concept domain is part
of the class representing the concept range. This
can be translated in the OOBN by instantiating
the class representing the concept domain within
the specification of the class representing the con-
cept range.

In what follows, we assume that all seman-
tic relations have a causal orientation. Thus,
∀ {cpi, cpj} ∈ Cp2 related by a semantic relation,
where cpi is the domain and cpj is the range, cpi
is considered as the cause of cpj and this latter is
the effect.

In fact, the ontology conceptual graph is simply
the result of the ontology components definition.
Thus, we require that semantic relations defini-
tion to be, from the beginning, done following a
causal reasoning that is considered as an intuitive
reflexion of the ontologist. Then, if we require to
have all semantic relations to be anti-causal, we
just have to reverse their definitions (i.e., define
the domain as range and vice versa).

4.2 The morphing process

To ensure the morphing process, we need to traverse
the whole ontology. To provide this, we assume that
the ontology is a directed graph whose nodes are
the concepts and relations (semantic and hierarchical
ones) are the edges. Our target is to accomplish the
mapping of the ontology graphical representation into
an OOBN while browsing each node once and only
once. To this end, we propose to adapt the generic
Depth-First Search (DFS) algorithm for graph travers-
ing. The idea over the Depth-First Search algorithm is
to traverse a graph by exploring all the vertices reach-
able from a source vertex: If all its neighbors have al-
ready been visited (in general, color markers are used
to keep track), or there are no ones, then the algorithm
backtracks to the last vertex that had unvisited neigh-
bors. Once all reachable vertices have been visited, the
algorithm selects one of the remaining unvisited ver-
tices and continues the traversal. It finishes when all
vertices have been visited. The DFS traversal allows
us to classify edges into four classes:

• Tree edges: are edges in the DFS search tree.

• Back edges: join a vertex to an ancestor already
visited.

• Forward edges: are non-tree edges connecting a
vertex to a descendant in a DFS search tree.

• Cross edges: all other edges.

We use these classes of edges to determine actions
to do on each encountered concept. Tree edges al-
low to define actions on concepts encountered for the
first time, while forward and cross edges allow to de-
fine actions to do on concepts that are already visited
crossing another path and so having more than one
parent. According to their definition, back edges al-
low cycle detection, in our case these edges will never
be encountered. As our edges respect a causal orienta-
tion having a cycle of the form X1 → X2 → X3 → X1

means that X1 is the cause of X2 which is the cause of
X3 so this latter can’t be the cause of X1 at the same
instant t but rather at an instant t+ ε. We are limited
to ontologies that do not contain cycles, because such
relationships invoke the dynamic aspect which is not
considered in this work.

A deep study of the similarities discussed above shows
that the morphing process can be done in three main
steps, namely initialization, discovery and closing. At
each step, we define a set of actions that might be
done:

i. Initialization step: All concepts are undiscov-
ered, we generate the OOBN class and a class to



Algorithm 1: Generate OOBN

Input: An ontology O
O is of an anti-causal orientation.

For all concepts, the color must be initialized to
”white” before running the algorithm.

begin
CREATE OOBN GLOBAL ;
for each concept cp ∈ Cp do

RECORD PREDECESSOR[cp]=NULL;
CREATE CLASS(cp)

for each concept cp ∈ Cp do
if color[cp]= white then

Handling Process(O, cp)

each concept:

CREATE OOBN GLOBAL : creates the OOBN
class.

CREATE CLASS(Concept cp): transforms a con-
cept cp to a class ccp.

ii. Discovery step: The classes of edges are used to
determine actions to do on each encountered con-
cept. These actions allow us to define input, inter-
nal and output sets for each class of the OOBN.

ADD INPUT NODE(Node n, Class c) : adds an
input node n to a class c. this action is invoked
on all properties of a concept which is related by
an out edge to another one. Its properties are
considered as candidate input nodes of the class
representing the second concept.

ADD INTERNAL NODE(Node n, Class c): adds
an internal node n to a class c. The set of internal
nodes of a class consists of instantiations of other
classes representing concepts that are related by
an out edge to the corresponding concept of the
class c in the ontology and this edge is in the same
DFS search tree.

ADD OUTPUT NODE(Node n, Class c): adds
an output node n to a class c. all properties of a
concept are transformed into variables of its cor-
responding class in the OOBN. These nodes are
considered as candidate output nodes of the class.

ADD OUTREF NODE(Class c1, Class c2): adds
output reference nodes to classes containing c1
until reaching c2. In fact, some concepts might
have parents coming from more than one DFS
search tree or from different paths. Let cpi be
a concept having two parents cp1i and cp2i com-
ing from two different branches. Then, ccpi would
to be instantiated within the specification of only
one of them. However, ccpi

has its output nodes

Algorithm 2: Handling Process

Input: An ontology O, A concept S.

We use color markers to keep track of which vertices
have been discovered: white marks vertices that have
yet to be discovered, gray marks a vertex that is
discovered but still has vertices adjacent to it that are
undiscovered and black marks discovered vertex that
is not adjacent to any white vertices.

begin
color[S]:= gray;
for each property p of S do

ADD OUTPUT NODE(p, cS)

for each V ∈ adjacent[S] do
if color[V ]=white then

RECORD PREDECESSOR[V ]=S;
Handling Process(O, V );
ADD INTERNAL NODE
(INSTANCE OF(cV ), cS);
if (S, V ) is an inheritance relation then

ADD CONSTRUCT LINK
INSTANCE OF(cV ),INSTANCE OF(cS))

if (S, V ) is a semantic relation then
for each node n ∈ GET OUTPUT(cV ) do

ADD REFERENCE LINK
(n,ADD INPUT NODE(n,cS))

if color[V ]=black then
if (S, V ) is an inheritance relation then

ADD CONSTRUCT LINK
INSTANCE OF(cS),INSTANCE OF(cV ))

if (S, V ) is a semantic relation then
for each node n ∈ GET OUTPUT(cV )
do

ADD INPUT NODE(n, cS)

ADD OUTREF NODE
(INSTANCE OF(cS),INSTANCE OF(cV )

color[S]:= black;
if RECORD PREDECESSOR[S] = Null then

ADD INTERNAL NODE
(INSTANCE OF(cS),GLOBAL OOBN CLASS)

to be referenced by output reference nodes of the
class containing it until reaching its second parent
(see figure 3).

ADD CONSTRUCT LINK(Class c1, Class c2): a
construct link appears between instantiations of
superclasses and instantiations of their subclasses
(see figure 4). All properties of the super-concept
are considered as properties of its subconcepts.

ADD REFERENCE LINK(Node n1, Node n2):
allows the communication between classes inter-
faces.
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iii. Closing step: We check whether the vertex is
a root (having no predecessor), if it is, we add
an instance of its class to the global OOBN class
using the ADD INTERNAL NODE action.

We also define the INSTANCE OF (Class c)
which allow to instantiate a class c and the
GET OUTPUT(Class c) which returns all output
nodes of a class c.

All these actions are used in Algorithms 1 and 2. The
Handling Process function (see algorithm 2) provides
actions to do at each vertex.

Example 3. We assume that all random variables are
modeled in the corresponding ontology 5(b) as concepts
properties and that all semantic relations present in the
ontology are of an anti-causal orientation.

We will follow the steps of the Generate OOBN algo-
rithm (see algorithm 1)to generate our prior OOBN
structure.

First of all, we start by generating the Global OOBN
class Prior OOBN. Then we create a class to each
concept of the ontology, that is, we create 11 classes
ccpi

, i = {1, . . . 11} which are initially empty. their
sets of nodes will be discovered during the generation
process.

Initially, all concepts are white. cp1 is the source con-
cept, it is grayed and all its properties are declared as
output nodes of the class representing it in the prior
OOBN. Then, each concept adjacent to cp1 is recur-
sively visited if it is white and its properties are treated
in the same way. cp1 has cp2 as adjacent concept, it is

painted gray and it has cp5 as adjacent concept, so on
until reaching cp9. cp9 is grayed and all its properties
are declared as output nodes of the class representing
it in the prior OOBN (ccp9

). As it has no adjacent, it
is instantiated within its ancestor ccp6

. As cp6 and cp9
are related by an inheritance relation then, we add a
construction link between ccp6 and ccp9 and all proper-
ties of the super-class ccp9

are considered as properties
of its subclass ccp6

. The concept cp9 is finished and
blackened. We backtrack to the cp6 concept, it is gray
and it has finished his adjacent concepts so, it is in-
stantiated within its ancestor ccp11 . As cp11 and cp6
are related by a semantic relation then, all its output
nodes are considered as input nodes of the ccp11

class
linked by reference links. cp6 is blackened and we go
back to cp11 it is gray and it has finished his adjacent
concepts so, it is instantiated within its ancestor ccp5 .
As ccp11 and ccp5 are related by an inheritance relation
then, we add a construction link between them. cp11 is
blackened and we go back to the second adjacent of the
cp5 concept. cp5 is gray and cp9 is black, so (cp5,cp9) is
a cross/forward edge, means that cp9 has already been
instantiated so, we add output reference nodes from
ccp6 until reaching the ccp5 class. cp5 is gray and it
has finished his adjacent concepts so, it is instantiated
within its ancestor and so on until backtracking to the
concept ccp1

, it is gray and it has not ancestors, so it
is blackened and instantiated within the specification of
the Prior OOBN class. The first DFS tree is finished,
so we choose an undiscovered node from the remain-
der nodes and we apply the algorithm until discovering
all the concepts. The result of this process is shown in
figure 5.(b)) shows the final result.

5 Related work

In recent years, a panoply of works have been proposed
in order to combine PGMs and ontologies so that one
can enrich the other. We can outline two main direc-
tions for these proposed approaches. The first aims to
enhance ontologies capabilities to support probabilis-
tic inference. While the second aims to enhance PGMs
construction by integrating ontologies.

Ontologies provide a support for logical reasoning, but
they do not support uncertainty. Hence, several exten-
sions have been proposed to overcome this limitation.
One line of research aims to extend existing ontology
languages, such as OWL1, to be able to catch uncer-
tainty in the knowledge domain. Proposed methods,
such as BayesOWL (Ding and Peng, 2004), OntoBayes
(Yang and Calmet, 2005) use additional markups to
represent probabilistic information attached to indi-

1ttp://www.w3.org/TR/2004/REC-owl-features-
20040210/
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Figure 5: An example of ontology morphing to a prior OOBN structure

vidual concepts and properties in OWL ontologies.
The result is then a probabilistic annotated ontology
that can be translated into a BN to perform probabilis-
tic inference. Other works define transition actions in
order to generate a PGM given an ontology with the
intention of extending ontology querying to handle un-
certainty while keeping the ontology formalism intact
(Bellandi and Turini, 2009).

On the other hand, some solutions proposed the use of
ontologies to help PGMs construction. Some of them
are designed for specific applications (Helsper and Van
der Gaag,2002), (Zheng et al., 2008), while some oth-
ers give various solutions to handle this issue. We
can mention the semi-automatic approach provided
in (Fenz et al., 2009) to create BNs and the Sem-
CaDo (Semantical Causal DiscOvery) algorithm (Ben
Messaoud et al., 2009) (Ben Messaoud et al., 2011)
which ensure the integration of ontological knowledge,
more precisely, subsumption relationships, to learn the

structure of causal Bayesian networks (i.e. BNs with
causal relations) (Pearl, 2000) and improve the causal
discovery.

However, all these solutions are limited to a restrained
range of PGMs, usually BNs. So, they neglect some
ontology important aspects such as representing con-
cepts having more than one property, non taxonomic
relations, etc. In our approach we used OOBNs which
are much richer graphical model than standard BNs.
They allowed us to address an extended range of on-
tologies, we focused on concepts, their properties, hi-
erarchical as well as semantic relations and we showed
how these elements would be useful to automatically
generate a prior OOBN. Our proposal concerns exclu-
sively the OOBN structure definition through the use
of ontologies.



6 Conclusion and future work

The crossing-over of PGMs and ontologies can allow
us to improve relevant tasks related to each of them.
In this paper, we showed how we take advantage of
the semantic richness provided by ontologies to gen-
erate a prior OOBN structure and this is by explor-
ing similarities between these two paradigms. The
use of the OOBN framework has enabled us to han-
dle an extended range of ontologies unlike works which
were limited to the use of standard Bayesian networks,
which brings us to say that this work is an initia-
tive aiming to set up new bridges between these two
paradigms.

The final structure resulting from the learning process
may also be useful to make the initial ontology evolve,
and this is by trying to find how the new relations dis-
covered by the learning process can affect the (semi)
automatic ontology enrichment process. Thus, as an
ongoing work, we aim to analyze the elements that are
common to both tasks and provide a two-way approach
that uses ontology power in representing knowledge to
help the hard process of OOBN structure learning by
proposing new metrics, based on ontological knowl-
edge, allowing to assess better the choice of the best
structure. Then, uses novel relations discovered by the
learning process in order to improve the hard activity
of ontology enrichment.
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