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Abstract. The recent explosion of high dimensionality in datasets for
several domains has posed a serious challenge to existing Bayesian net-
work structure learning algorithms. Local search methods represent a
solution in such spaces but suffer with small datasets. MMHC (Max-
Min Hill-Climbing) is one of these local search algorithms where a first
phase aims at identifying a possible skeleton by using some statistical
association measurements and a second phase performs a greedy search
restricted by this skeleton. We propose to replace the first phase, im-
precise when the number of data remains relatively very small, by an
application of ”Perturb and Combine” framework we have already stud-
ied in density estimation by using mixtures of bagged trees.
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1 Introduction

Bayesian networks are probabilistic graphical models that encode a joint distri-
bution over a set of variables by a product of conditional probability distribu-
tions, one for each variable conditionally to its parents in the directed graph.
These models may be learned from data and used to perform probabilistic infer-
ences over the encoded distribution [15]. However, learning the graphical struc-
ture of such models from data is NP-hard [7]. In general, there are two main
approaches for learning Bayesian network structure from data. The search-and-
score approach, with algorithms such as K2 [10] or GS [8], attempts to identify
the network that maximizes a given scoring function used to indicate how well the
network fits the data. The second approach, constraint-based, with algorithms
such as IC [16] or PC [18], attempts to estimate conditional independences be-
tween variables using statistical independence tests.

The recent explosion of high dimensionality in datasets for several domains
such as the biomedical domain with hundreds or thousands of variables, has
posed a serious challenge to existing Bayesian network structure learning algo-
rithms. These algorithms are not scalable to high dimensional spaces because
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of their excessive computational complexity [5]. The local search methods, hy-
brid between constraint-based and score-based ones, are the most appropriate
solution in such spaces.

Moreover, in the context of high dimensional space, the datasets are generally
very small comparatively to the space dimension. Structure learning algorithms
are known to be unstable in such context : small changes in training data can
cause large changes in the learned structures. So, learning a single model from
small dataset will not produce a good estimation. Several works demonstrated
that in such conditions, the use of the ”Perturb and Combine” principle such
as bagging (model averaging and bootstrap replicas) improves considerably the
results. In this direction, [6] applied the bagging principle to the greedy hill-
climbing algorithm with randomized restarts.

In this paper, we propose to apply the ”Perturb and Combine” idea to develop
a new methodology for bayesian network structure learning in the context of high
dimensional space and small datasets. We propose to first learn a mixture of trees
on a set of bootstrap replicas of the original dataset, and then use this mixture
to guide a local search algorithm.

The rest of this paper is organized as follows. Section 2 recalls Bayesian
network structure learning framework in high dimension. Section 3 presents how
can we apply the Bagging principle to learn a mixture of trees from data and
Section 4 describes our proposition. Section 5 presents our experimental protocol
and collects our simulation results. Section 6 concludes and highlights some
directions for further research.

2 Bayesian network structure learning in high dimension

2.1 Introduction

Bayesian network structure learning is NP-hard and existing algorithms are not
scalable to very high dimensional spaces. Some approaches have been proposed
to provide scalable algorithms, such as the Sparse Candidate algorithm [11] that
constrains the search of a score-based algorithm by limiting the set of possi-
ble parents of each variable to contain at most k candidate parents. The other
scalable structure learning approaches, local search methods, can be seen as a
generalization of the sparse candidate principle. This kind of methods consists
in, first, applying statistical tests to identify local structures around a target
variable (e.g. a Markov Blanket (MB) or a set of candidate parents and chil-
dren (CPC)), and then in using another heuristic to learn the full structure by
considering the previous local results. Many heuristics have been proposed for
local structure identification, IAMB [19] and MBOR [13] for Markov blanket
and MMPC (Max-Min Parent Children) [20] for set of Parents and Children.

2.2 MMHC algorithm

The Max-Min Hill-Climbing (MMHC) algorithm [21] briefly described in Algo-
rithm 1 is one of these local search structure learning algorithm. Its first phase
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Algorithm 1 MMHC algorithm

Require: data D
Ensure: a DAG structure

% Restrict
for every variable X ∈ V do
PC(X) = MMPC(X,D)

end for
% Search
Starting from an empty graph perform Greedy Hill-Climbing with operators add-
edge, delete-edge, reverse-edge. Only try operator add-edge(Y → X) if Y ∈ PC(X)

return the highest scoring DAG found

consists in identifying the set of CPC for each variable by using the MMPC
algorithm. The second phase consists in using a score-based algorithm (Hill-
climbing) by constraining the classical AddEdge operator to edges discovered by
MMPC in the first phase.

MMHC is scalable to high dimensional spaces with hundreds of variables and
can identify a structure with higher score in less time than the Sparse Candidate
algorithm.

MMPC is used in order to reconstruct a possible skeleton of the Bayesian
network. This phase relies on statistical tests on training data to detect con-
ditionally independence between variables. In the context of high dimensional
space (thousands of variables) and small data sets (few hundreds samples), de-
tecting conditionally independence between variables from data can both require
an excessive computational complexity and, more damaging, return very impre-
cise results.

3 Mixture of bayesian networks structured trees

Let X = {X1, . . . , Xn} be a finite set of discrete random variables, and D =
(x1, · · · , xN ) be a sample (dataset) of joint observations xi = {xi1, · · · , xin} in-
dependently drawn from some data-generating density PG(X1, . . . , Xn).

A mixture distribution PT̂ (X1, . . . , Xn) induced by a multiset T̂ = {T1, . . . , Tm}
of m Markov trees is defined as a convex combination of elementary Markov tree
densities, i.e.

PT̂ (X) =

m∑
i=1

µiPTi
(X),

where µi ∈ [0, 1],
∑m
i=1 µi = 1, and PTi(X) is the probability density over X

encoded by the graphical model composed of the Markov tree structure Si and
its parameter set θ̃i :

PTi
(X) = PSi,θ̃i

(X) =

n∏
p=1

Pθ̃i(Xp|PaSi
(Xp)),
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Algorithm 2 Markov tree Mixture learning algorithm (MtM)

Require: dataset D, mixture size m

for i = 1, · · · ,m do
Di = BootstrapReplica(D)
Ti = BuildMarkovTreeStructure(Di)
θ̃i = LearnPars(Ti, D)

end for
(µ)mi=1 = CompWeights((Ti, θ̃i)

m
i=1, D)

return
(
µi, Ti, θ̃i

)m

i=1

where PaSi
(Xp) is the parent variable of Xp in the tree structure Si.

Several versions of Markov tree mixture learning algorithm described in Algo-
rithm 2 were proposed in [2, 4] as an alternative to classical methods for density
estimation in the context of high-dimensional space and small datasets : mix-
tures of tree structures generated in a totally randomized fashion and ensembles
of optimal trees derived from bootstrap replicas of the dataset by the Chow
and Liu algorithm [9] (i.e. bagging of Markov trees). In [4, 3], we also proposed
three sub-quadratic heuristics to approximate the optimal tree and then to con-
struct mixture of trees in a sub-quadratic way. Our best heuristic (Inertial search
heuristic) complexity is n log(n) log(n log(n)). These works have fruitful results
for density estimation in terms of scalability and efficiency. But result of these
methods, described by a mixture of several models, cannot directly identify a
single model that can be graphically visualized and interpreted.

4 MtMHC algorithm

4.1 MtMHC Principle

On the one hand, scalable structure learning algorithms like MMHC can give
very unstable results with small datasets. On the other hand, scalability and
robustness of Markov tree mixtures for density estimation in the context of high
dimensional space and small datasets make this approach attractive in such
context.

For these reasons, we propose in this work to exploit the advantages of both
methods with the MtMHC algorithm described in Algorithm 3. This algorithm is
very similar to MMHC algorithm, but our idea is using mixtures of Markov trees
in order to identify a set of candidate parents and children instead of MMPC
algorithm. This new CPC identification algorithm, named MtMPC, is described
in the next section.

4.2 MtMPC algorithm

Algorithm 4 describes the use of mixtures of Markov trees in order to identify a
set of candidate parents and children. Given a dataset D, we first use our MTM
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Algorithm 3 MtMHC algorithm

Require: dataset D, mixture size m
Ensure: a DAG structure

% Restrict
{PC(X)}X∈V = MtMPC(D,m)
% Search
Starting from an empty graph perform Greedy Hill-Climbing with operators add-
edge, delete-edge, reverse-edge. Only try operator add-edge(Y → X) if Y ∈ PC(X)

return the highest scoring DAG found

Algorithm 4 MtMPC algorithm

Require: dataset D, mixture size m

{Ti} = MtM(D,m)
for every variable X in V do

MtMPC(X) = ∅
for i = 1...m do

MtMPC(X) = MtMPC(X) ∪ NeTi(X)
end for

end for

return MtMPC(X)X∈V

algorithm described in Algorithm 2 to construct a set of m Markov models. We
make here the hypothesis that the union of the Markov tree models can be a
good approximation of the CPC set. We then define the CPC set of a given
variable A as the union of the neighbors of this variable in each tree of the
mixture NeTi

(A).

Using bootstrap replicas in our mixture allows to deal with small datasets.
Another related solution would have been to consider more robust conditional
independence tests in MMPC algorithm such as permutation tests as proposed
in [17, 22].

Note that we are only working with the Markov tree skeletons without tak-
ing into account their corresponding weights µi. We have demonstrated in our
previous work that using uniform weights in the mixture provides the best re-
sults with small datasets, so these weights are non informative for our MtMPC
algorithm.

Figure 1 illustrates an example of this algorithm. An undirected skeleton G
summarizing the set of all CPC is built from the ten trees of the mixture. As an
illustration, the set of CPC(A) appears in blue.
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CPC(A) = {C,B,E}
CPC(B) = {A,C,D,F}

CPC(C) = {A,B,D,E}
CPC(D) = {B,C,E,F}
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Fig. 1. Example of execution of the MtMPC algorithm

4.3 MtMHC Optimization

Because of the variability induced by boostraping data during the mixture learn-
ing, some edges only appear in a few models in the mixture. Moreover, the com-
plexity of the second step of MtMHC algorithm (hill climbing) is directly related
to the size of the PC set returned by MtMPC.

We propose one possible optimization of our MtMHC algorithm by pruning
the edges non frequent in the set of Markov tree. This pruning phase is usual
when we want to describe a set of graphs, as proposed in [14].

Figure 2 describes an example of CPC refinement when using this pruning
optimization. When we construct the graph G from the different mixture trees,
we use for each connexion in G a weight given by the number of occurence of the
corresponding edge in the mixture. Then, after constructing the graph G, these
weights are divised by the mixture size. So, connexions with low weight (under
a given percentage) will be deleted. Figure 2 shows that connexions in G with a
weight under 0.2 (threshold = 20%) (A− E and B − F ) are pruned.
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CPC(A) = {C,B,E}
CPC(B) = {A,C,D,F}
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Fig. 2. Example of execution of the MtMPC algorithm with pruning phase

5 Empirical simulations and results

5.1 Experimental protocol

In order to evaluate the results of our proposition, we carried out repetitive ex-
periments for different structures, by proceeding in the following way. All our
experiments were carried out with models for a set of n = 100 binary random
variables. To choose a target density, we first decide whether it will factorize
according to a general directed acyclic graph structure. Then we use the appro-
priate random structure [12] and parameter generation algorithm (described in
[1]) to draw a structure and their parameters.

For each target density and dataset size, we generated 10 different datasets by
sampling values of the random variables using the Monte-Carlo method with the
target structure and parameter values. We carried out simulations with dataset
sizes of N = 50 and 200 elements. Given the total number of 2n possible data
configurations of our n random variables, we thus look at rather small datasets
in such context.

For the tree mixture learning, we tested different sizes : m = 50, 100, 150
and 300 trees in order to observe the potential influence of the mixture size on
the quality of the result.

For this preliminary work, we concentrate our study to MtMPC results with
or without pruning. Pruning threshold is set to 10% in order to illustrate the
interest of the pruning optimisation.

We measure the quality of the obtained CPC sets by estimating the per-
centage of true positive (TP) edges with respect to the number of correct edges
in the true model (edges present in the target structure and truly discovered
by the algorithm) and false positive (FP) edges with respect to the number of
edges absent in the true model (edges absent in the target structure and falsely
discovered).

We also provide results obtained in the same conditions by MMPC algorithm
using an usual statistical test (the χ2 test with a parameter α = 5%), even if we
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Table 1. Results obtained with MtMPC algorithm (n = 100, N = 50)

TP FP TP FP

no pruning phase with pruning phase

MtMPC (m=50) 35.29 % 12.78 % 29.11 % 0.31 %

MtMPC (m=100) 39.21 % 18.58 % 28.92 % 0.27 %

MtMPC (m=150) 40.19 % 21.52 % 28.92 % 0.25 %

MtMPC (m=300) 45.09 % 23.95 % 28.82 % 0.24 %

MMPC 1.96 % 0.69 %

Table 2. Results obtained with MtMPC algorithm (n = 100, N = 200)

TP FP TP FP

no pruning phase with pruning phase

BTM-PC (m=50) 43.13 % 11.84 % 30.39 % 0.38 %

BTM-PC (m=100) 43.17 % 17.46 % 30.30 % 0.35 %

BTM-PC (m=150) 43.13 % 19.87 % 30.29 % 0.33 %

MMPC 5.88 % 1.63 %

know that these tests are not well appropriate for small datasets. Using more
sophisticated test is part of our future work.

5.2 Results

Table 1 contains MtMPC and MMPC results for a very small dataset (N = 50
samples) without and with pruning. Tables 2 contains similar results for small
dataset (N = 200).

Previous work demonstrates that increasing the mixture size gives us a better
estimation of the target joint distribution. This property is illustrated by the
fact that the percentage of good edges (TP) discovered by our algorithm also
increases in the left part of table 1 and table 2. We can also observe that it also
increases the variability of the obtained trees and the number of false positives
(FP).

In both tables, we can discover about 45% of the right edges in very extrem
context (small datasets, N = 50 and 200).

The right parts of tables 1 and 2 illustrate the influence of the pruning
phase. FP highly decreases to less than 0.4%, to the detriment of FP which
also decreases from 45% to 30%.

As we want to plug our MtMPC results into a constraint Hill Climbing
algorithm, the behavior of this pruning optimization is no so interesting. Even
if we want to control the complexity of the greedy search by decreasing the
number of edges of the CPC generated by MtMPC, we would like that the
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pruning procedure mainly affect the FP . Pruning interesting edges is dangerous
because the Hill Climbing procedure will not be able to add them again.

6 Summary and future works

We proposed in this work to apply the ”Perturb and Combine” idea to develop a
new methodology for bayesian network structure learning in the context of high
dimensional space and small datasets. We proposed a new approach MtMHC,
based on mixture of trees that have fruitful results for density estimation in such
space, to guide a local search structure learning.

Our proposed algorithm for estimating the set of candidate parents and chil-
dren, MtMPC, quasi-linear with respect to the number of variables, provides
interesting results with very small datasets. We also proposed a potential opti-
mization for our algorithm, but first results indicate that this optimization could
be counterproductive.

As further work, we have to develop the experimentation part in several
directions, by working in higher spaces, by examining the final results of MtMHC
instead of the intermediate one given by MtMPC, by comparing our algorithm
to specific algorithm designed for handling small datasets inspired from [17, 22].
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