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The collaboration of grouping laws in vision

Rafael Grompone von Gioi, Julie Delon & Jean-Michel Morel

November , 

Abstract

Gestalt theory gives a list of geometric grouping laws that could in principle give

a complete account of human image perception. Based on an extensive thesaurus

of clever graphical images, this theory discusses how grouping laws collaborate,

and conflict toward a global image understanding. Unfortunately, as shown in the

bibliographical analysis herewith, the attempts to formalize the grouping laws in

computer vision and psychophysics have at best succeeded to compute individual

partial structures (or partial gestalts), such as alignments or symmetries. Neverthe-

less, we show here that a never formalized clever Gestalt experimental procedure,

the Nachzeichnung suggests a numerical set up to implement and test the collab-

oration of partial gestalts. The new computational procedure proposed here ana-

lyzes a digital image, and performs a numerical simulation that we call Nachtanz

or Gestaltic dance. In this dance, the analyzed digital image is gradually deformed

in a random way, but maintaining the detected partial gestalts. The resulting danc-

ing images should be perceptually indistinguishable if and only if the grouping

process was complete. Like the Nachzeichnung, the Nachtanz permits a visual ex-

ploration of the degrees of freedom still available to a figure after all partial groups

(or gestalts) have been detected. In the new proposed procedure, instead of draw-

ing themselves, subjects will be shown samples of the automatic Gestalt dances and

required to evaluate if the figures are similar. Several numerical preliminary results

with this new Gestaltic experimental setup are thoroughly discussed.

 Introduction

Vision and perceptual systems manage to pass from local and partial measurements to a

global understanding of a scene. The laws governing this process are widely unknown,

in spite of valuable efforts by philosophers, psychologists, neurologists, and computer

scientists. The Gestalt school, with among others Wertheimer, Köhler, Koffka, Metzger,

Kanizsa, Metelli [, , , , , , ] has concentrated in the past century many of

the efforts to address this problem. The school proceeded by inventing and displaying

clever geometric figures to subjects. Even if the Gestalt theories were mainly quali-

tative, the experimental imagination displayed and the mass of results is impressively

demonstrated in the books by Kanizsa and Metzger. Their main conclusion was that

the first steps in visual perception, observed on humans, work like geometric group-

ing machines. The phenomenological experiments show that the grouping laws are

purely geometric and mostly independent of any empirical knowledge. A reduced set

of grouping laws was proposed by the Gestalt school. According to Kanizsa [], these

laws include proximity, similarity, continuity of direction, good continuation, tendency

to convexity, closure, common region, connectedness, constant width, symmetry, com-

mon motion, and prägnanz (or law of the good Gestalt). These laws were shown to work
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mainly in collaborative form. However much attention was paid in the experiments to

their conflicts, when two groups of laws compete to form alternative groups. Yet, the

Gestalt collaboration and conflicts were only described qualitatively.

A major contribution of the Gestalt school is the creation of the largest and most

comprehensive set of simple figures and images that are, at the same time, meaningful

visual experiments (see figure ). These experiments as a whole are supposed to cover

all the most important mechanisms of vision. Like the pendulum or the cannon ball in

physics, each one of these simple visual experiments involves, exemplifies, or disproves

a hypothetical fundamental law of perception. Each of these figures, therefore, is a

simple test that every theory of vision should match and explain. In particular, these

figures represent a permanent challenge to computer vision, which could consider one

of its main goals to process them automatically.

Figure : Some visual experiments of the Gestalt school.

These figures have many different complexity levels, involving from very few group-

ing rules to almost all. Thus, they make the perfect test bed for computational theories

of vision. Their goal was precisely to translate the problem of an explanation of vi-

sion to a reduced but complete set of test figures avoiding the luxuriance of natural

scenes. Due to the simplicity of Gestalt experiments, essentially composed of geomet-

rical figures on a flat scene, we already possess the mathematical knowledge to handle

most of the concepts and relations involved in them. On the other hand, these figures

which were printed in the Gestalt age can now be digitalized and fully analyzed as digi-

tal images in a computer. This technological possibility is the main new feature that has

emerged in the past thirty years.

In the last  years, many studies have been proposed by psychologists to complete

the work of the Gestalt school. These studies generally rely on psychophysic experi-

ments to establish quantitative limits to the perception of each law. Much attention has

been drawn on the good continuation law [, , , , , , ] and the different sit-

uations where it occurs. A possible neural mechanism for this law is suggested in [].

In the same vein, several papers focus on the ability of human perception to detect

symmetry in the presence of perturbations [, ]. In [], psychophysical experiments
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tend to prove that this ability is the result of the collaboration of several processes, one

for instance detecting orientation uniformity. For a complete review on the subject of

symmetry, see []. Numerous papers have been written on other Gestalt laws. Among

them, let us mention some works on the law of proximity [, ], and the interesting

work of Rubin on the fundamental role of junctions in our perception of occlusion [].

A related direction of research focuses on our perception of motion and its connections

with the perception of occlusions [, , ].

Several neuroscientists suggested neural interpretations of the grouping processes

at work in the early stages of vision [, , , ]. According to Treismann [], “some

mechanism is needed to bind the information relating to each object and to distinguish

it from others. Possible candidates include cells tuned to conjunctions of features, spatial

attention, and synchronized firing across separate but interconnected areas of the brain.”

From that perspective, the collaboration of Gestalt handled in the present paper is the

algorithmic counterpart of the binding problem. In the same direction, the authors

of [] claim that the interaction laws between visual neurons might be used to de-

sign universal computer vision systems. Unfortunately, their description of the neural

mechanisms is not complete enough to give birth to an algorithm. The grouping pro-

cess is formalized as a logical inference process in []. Although this paper has a more

computational point of view, it does not provide experiments on real or synthetic im-

ages.

Computer vision aims at a mathematical and computational formalization of the

grouping machine [], and eventually at algorithms analyzing automatically images.

There have been several attempts to formalize aspects of the Gestalt program to this

discipline. A first answer is provided by information theory, which permits to inter-

pret Gestalt laws as the result of efforts of the visual system toward an optimal scene

encoding. In his pioneering work, Attneave [] suggests that most of the perceptual

information in images is statistical and should be represented by sparse statistics (mean

and variance on regions for instance), while the information of contours is contained

in a filtered out curvature. This idea is taken up by [], in which a formal expression

of the information contained in a contour is proposed. However, this paper does not

take into account the statistical aspect of curvature information. Indeed, as underlined

by Attneave in [], when observing a cat, one does not observe the peak of curvature of

each hair, but rather an average contour. Information theory also underlies the work

of Leclerc [], which tackles the image partitioning problem in terms of a “descrip-

tive language that is simplest in the sense of being shortest”. More recently, the use of

the MDL (Minimum Description Length []) formalism in image segmentation prob-

lems [] follows the same trend. However, some arguments against a global minimum

principle are presented in [].

Sarkar and Boyer reviewed some of the attempts to formalize perceptual organiza-

tion in computer vision systems in []. Most early attempts and a general program

were proposed in the founding book by David Marr []. His program is “bottom-up”

and assumes that low-level visual primitives (like blobs, edges, corners) should be hier-

archically grouped to achieve object perception. The formalization of these hierarchies

was supposed to be a sort of logical programming based on the accumulation of empir-

ical knowledge. Thus, it somewhat contradicted the dominance of geometry on empir-

ical knowledge in Gestalt theory. In [, , ] was introduced the first idea of a general

grouping principle: Every spatial relation which is unlikely to have arisen by accident

should create a group. This generic Gestalt formation law is often called Helmholtz prin-

ciple or principle of non-accidentalness. The problem of the so-called amodal completion

is studied and formalized in [], drawing on the concept of relatability, by which a
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piece of edge which is discontinued can be related to another which is also discontin-

ued in its main direction and has a similar direction. More computational attempts

using similar ideas are developed in [, , , ]. In [, , ], Gestalt cues (con-

vexity, parallelism or T-junctions) are used to resolve the fundamental figure/ground

assignment problem. Formalizations of collinearity, cocircularity, proximity, paral-

lelism, and symmetry were presented in [] in a Bayesian framework. Chomskyan-

Bayesian approaches have also proposed to analyze images by building up a grammar

of visual elements [, ]. A formalization of the Prägnanz Gestalt was presented in

[]. The compositional model of [] recursively composes primitives into a structure

and ambiguity is handled by the minimum description length principle. Most of these

approaches rely on a Bayesian approach, which notoriously assumes a learning phase to

learn empirical probability distributions. Thus, they contradict the Gestalt assumption

of existence of direct geometric grouping laws.

But we should not oppose formalizations which actually take things at very different

levels. Nothing prevents a computational learning theory to address the early phase

where geometric laws themselves were formed from experience and selection in early

biological perception. The Gestalt laws seem to describe the result of this learning in

advanced perceptual beings, at the stage where this biological learning seems to have

converged toward geometric laws.

The Helmholtz (non-accidentalness) principle is an attempt to formalize the ge-

ometric laws, not the learning theory by which basic Gestalt emerged. Desolneux,

Moisan and Morel [, ] formulated the Gestalt grouping laws as independent detectors

for geometrical events (based on the non-accidentalness argument) and called them

“partial gestalts”. In their original formulation the result of each detector, or partial

gestalt, was not directly comparable to the others. Each one produced a particular kind

of analysis, and the problem of how to compare, relate, collaborate and solve conflicts

between different partial gestalts was stated but left open in [].

The present paper proposes a new direction to attack the question of collaboration

of partial gestalts. We argue that the Gestalt theory itself provides an experimental set-

ting to this question, which can be translated into computation terms. This answer is

the so called Nachzeichung, meaning “drawing after a model” set up, extensively de-

scribed in []. The formalization proposed here is general, but will be tested first on a

reduced set of Gestalt images, roughly formed by flat zones separated by straight edges.

This, in accordance with the Gestalt experimental credo, avoids the prolificacy of nat-

ural images, but still tries to retain a rich enough set of samples to cover the general

perception problem. In our current digital experiments the basic primitive will be the

(automatically detected) line segments from real digital images. We will therefore study

all grouping laws that start from segments. This keeps a rich enough set of laws includ-

ing most if not all Gestalt primitives: parallelism, constant width, several kinds of good

continuation, and convexity.

The image in figure  illustrates the method. This figure can easily be described ge-

ometrically by a set of line segments bounding the rectangles. But what are the relevant

properties of this set of edges from the Gestalt point of view? This image is perceived

as three black bars of different sizes. So the relevant properties are that the set of edges

is organized into three sets of connected edges, each one delimiting one of the bars.

Then, each of these three sets is composed of four parts, each one somewhat aligned

(the sides), and forming right angles between them. The lower side of each of the three

We drop here and in the sequel the German initial capital on purpose, to mark the difference between
gestalt in this computational theory and the references to the original Gestalt theory.





Figure : A simple figure from [].

groups are aligned. Also, the width of the three bars is the same. However, the partic-

ular width of the bars, or the particular separation between them, or even their exact

heights are not perceptually relevant in this figure. (The relative heights of the bars

are nevertheless relevant). If the Gestalt analysis is correct, a reduced set of geometric

relations on the segments should specify how this and any similar figure is organized,

at least for the low level perception. From it, a similar if not identical figure can be re-

produced if all relevant geometric relationships have been perceived, which is precisely

what gestaltists called a Nachzeichnung.

The problem of finding all relevant geometric relations in a figure is related to the

vectorization problem in computer graphics. A vector graphic is a figure determined by

a geometrical description, while a raster graphic is a figure described by its pixels. In

the former case, the geometrical description lets us produce an image, or raster graphic,

at an arbitrary resolution. For example, a vector description of figure  would be a list

of the coordinates of the three bars. With that description one can draw the figure to

any desired resolution. The process of vectorization is the opposite. It takes an image

like figure  and produces a geometrical description of it, which is nothing but a list of

geometric relations, or gestalts.

Thus Gestalt analysis is, in a sense, a symbolic vectorization problem, because we

would like to retain merely the geometric relationships, and discard the other quanti-

tative values that would be also discarded by a person performing a drawing after the

model (a Nachzeichnung). Thus the goal is to perform a symbolic vectorization reveal-

ing the geometric relations, but also the hidden degrees of freedom left on the figure.

On the same example of figure , in addition to changing the image resolution, we

would like to be allowed to change the width of the bars, their separating space, or the

height of each one. Indeed, from the Gestalt analysis point of view there are only a few

partial gestalts: the fact that there are three rectangular bars, that they share the same

width, that they are aligned in the baseline, and that they have decreasing heights values

with equal decreasing steps. The other features, like the bar widths, are arbitrary and

therefore should be allowed to vary, as shown on figure . For performing this symbolic

vectorization in the general case, we must be able to select automatically the perceptu-

ally relevant properties, and to discard those which are irrelevant. A Gestalt analysis is

a geometrical description of the perceptually relevant properties only.

According to Kanizsa [], the Gestalt grouping laws include proximity, similarity,

continuity of direction, good continuation, tendency to convexity, closure, common

region, connectedness, constant width, symmetry, common motion, and prägnanz (or

law of the good Gestalt). Nevertheless, the computational formalization requires some

changes even in the terminology. For example, the complex and imprecise law of
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Figure : An example of Nachtanz automatically performed by our algorithms on the

image of figure .

Prägnanz will be replaced by a set of related structures, including alignments of points

and a stroke detector (related to width constancy and parallelism).

A problem that arises immediately is the validation of the geometrical description

performed by a complete Gestalt analysis. How do we know that we are producing rea-

sonably complete results? The problem is rendered more complex by the conflicts and

collaboration between laws that preclude an independent evaluation for each one. The

main contribution of this paper is a numerical method to perform a joint evaluation of

any given set of perceptual grouping algorithms. The proposed test is the generalization

and computational analog of the Nachzeichnung.

In the Nachzeichnung Gestalt experimental setting, a figure was shown to a subject

for a varying period of time. Then, the subject was asked to make a drawing of it. Rel-

evant elements and perceived relations were kept in the copy, while irrelevant relations

were not.

The proposed computational test literally replaces the subjects performing the Nach-

zeichnung by a computer program implementing automatic detection of partial group-

ing laws and a reconstruction algorithm of an image from its segments. In addition,

with a computer it is actually possible to implement a dynamic time varying recon-

struction. Thus, we called the result Nachtanz, “after dance” because it produces a

dancing figure emulating the original. Given a figure and the geometric relations found

by the partial gestalt algorithms, each figure is automatically modified in a random

way, but keeping all the gestalt relations that have been detected. The figure is thus

gradually modified by this Gestalt dance, but hopefully in a way that respects its fun-

damental relations. When it does, the experimenter knows that the algorithms have

captured the relevant relations; otherwise the algorithms need revision or completion.

A preliminary version of the Nachtanz was described in []. In this paper we will show

some static frames of this dance, but the animated version are accessible at the web page

http://iie.fing.edu.uy/∼jirafa/nachtanz/.

The book Pattern theory by Mumford and Desolneux [] develops many algo-

rithms deriving from a single and strong principle due to Grenander: to recognize a

pattern, one must be able to synthesize it. The Nachtanz proposed in this paper is a

Nachtanz seems to be an old German term, the following is a definition from http://www.

encyclopedia.com/doc/1O76-Nachtanz.html. “Nachtanz (Ger.). After-dance. Term applied to the
nd of the two dance tunes which were commonly paired from the th to the th cents., i.e. pavan and
galliard, passamezzo and saltarello, sarabande and gigue, etc. (The Saltarello, especially, is known by this
name.)”
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(much milder) application of this reconstruction principle, since our goal here is to be

able to demonstrate an implicit global analysis of the pattern from many partial detec-

tors. Thus the Gestalt dance does not gives back a model of the observed pattern, like

in [], but it gives an indirect proof that the pattern structure is globally apprehended

by the partial gestalt detectors.

This paper is organized as follows. Section  develops the Nachtanz. A preliminary

implementation is described in section A, also examining the partial gestalts involved.

Section  presents and discusses several experiments. Section  concludes.

 Nachtanz

A natural question when dealing with perceptually inspired algorithms is how to vali-

date them. In our Gestalt laws approach we face two problems: the validation of each

particular detector, and the selection of the set of Gestalt laws to use. It is hard and per-

haps impossible to evaluate one grouping law independently of all others. Gestalt laws

collaborate to form structures. For example, a weak alignment may became strongly

perceived if reinforced by a shape similarity of its elements. Visual information is

highly redundant and an occasional missed detection can be implicitly restored by other

grouping laws. Inversely, two or more laws can be in conflict and yield alternative image

interpretations. Gestalt conflicts fascinated gestaltists, but computational experience

shows that the collaboration question, the “binding problem” is far more challenging

and promising.

Figure : An example of Nachzeichnung by children of growing ages. Taken from Gesetze

des Sehens by Wolfgang Metzger, page .

Figure : A second example of Nachzeichnung from [].

In the Nachzeichnung Gestalt experimental set up, a figure was shown to the subject

for a short period of time, or sometimes at some large distance, or in other unfavor-

able conditions. The experiments were also performed on children of growing age to

assess the progress and emergence of each grouping law. Subjects were asked to make

a drawing (Zeichnung) of the figure they had been shown. The result was invaluable

to gestaltists: the relevant elements and perceived relations were kept in the copy made





by subjects, while irrelevant relations were not! Figure  shows some experiments with

children of ages growing from four to six years []. One can see how the perception

of various partial gestalt relations, such as the general shape, the number of dots, align-

ments, the presence of a square etc., improves with age. The perception of that figure

differs for adults and small children, as revealed by these reproductions, reasonably sat-

isfactory for the child who made them, but definitely not for an adult. In the second

example shown on figure  the copy is quite similar to the original (up to the drawing

skills of the subject). Only the spacing between the white crosses to the black squares

is larger in the copy. The interspace was perceptually indistinguishable to the subject.

The last example on figure  shows two copies of the same picture. The first one is

quite accurate. On the second one, as in the previous example, we observe an uneven

separation of the Celtic maze patterns. Again, the even separation was not perceptually

relevant to the subject. The Nachzeichnung is a complex experimental set up involving

two different subjects: one who makes the drawing, and one who compares how the

first subject perceives a figure to how other humans would perceive it in good condi-

tions.

Figure : Nachzeichnung from [].

In our proposed set up, the first subject is replaced by the machine, but the ex-

perimenters who compare the original to the computer Nachzeichnung are still there,

and use their own perception. Thus, they actually must become the real subjects of the

experiment. In the future they should be reduced to the subjects of an experimental

psychophysical procedure where they are asked yes-no questions about the similarity

or dissimilarity of two figures produced by the computerized after-dance.

In the Gestalt experiments, subjects drew figures that were, in a sense, modifica-

tions of the observed figures, but those modifications were compatible with the Gestalt

organization they perceived. Similarly in the Nachtanz the algorithms modify images

in a random way, but keeping the detected structures. For example, if three points were

detected as aligned, then the figure can be modified in any way that maintains these

points aligned. A trivial example of such a modification is to scale the original image:

all geometrical relations would be maintained. But other modifications are possible.
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For example, the dot pattern of figure  is reproduced with slight variations of the size

of the dots while keeping the same interspace. Nobody will notice the difference.

The Nachzeichnung experiments were manual and static. Computers allow for grad-

ual modifications of the figures into an animated “Gestaltic dance”. The more elaborate

the figures for which the Nachtanz succeeds in indistinguishable figures, the more com-

plete the theory will be. Our end goal will be to perform it on any digital image, and

not just on scans of the Gestalt experimental thesaurus.

Figure : Scan of figure . from [].

Figure : An example of Nachtanz automatically performed by our algorithm with a

manually selected set of restrictions that maintain the essence of the figure.

Figure : An example of Nachtanz with an incomplete set of restrictions.

Figure  contains five non intersecting squares, all centered on the same point,

which we can number from  to , starting from the exterior square. Squares  and  are

parallel, and so are squares  and . Furthermore, the distance of  to  and the distance

of  to  are equal. This short description is a near complete perceptual description of

the figure. Any variant of the figure that satisfies this list of relations will be termed per-

ceptually similar or even indistinguishable at first sight. All of the mentioned relations

can be expressed as geometric restrictions to the elements of the picture. This permits

a computer program to gradually and randomly modify the picture, while maintaining

a list of geometric restrictions. Figure  shows such a result. An animated version is
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accessible at the web page http://iie.fing.edu.uy/∼jirafa/nachtanz/, as well

as for the other Nachtänze on this paper.

If more restrictions than what is perceptually needed were imposed, the figure

would not move at all. On the other hand, if the set of restrictions is not perceptu-

ally complete, the “dance” will gradually destroy the essence of the figure. A manually

selected set of incomplete restrictions was used to generate the samples in figure .

When all perceptually relevant geometric structures (partial gestalts) are formal-

ized, it will be possible to automatically produce a valid Nachtanz with them. Detectors

for each partial gestalt will detect the relevant structures and transform them into a set

of restrictions to impose to the figure. Then the full set of restrictions will be formed

as the sum of all restrictions provided by partial gestalts and used to generate the Nach-

tanz. In a sense, the full set of restrictions will therefore encode the global Gestalt of the

figure.

Figure : Scan of figure . from [].

Figure : Nachtanz of the image on figure  with a manually selected set of restrictions.

Figure : Nachtanz of the image on figure  with a manually selected set of restrictions.

Note that in this Nachtanz there are  dots instead of  in the original version.

The goal is indeed ambitious. Consider the image on figure . Even if it is ex-

tremely simple, it involves identifying structures at various levels. A recursive analysis

is probably necessary: a first level would identify the black disks, which are already

complex gestalts, and a second level would be necessary to find out that these disks are

uniformly distributed along a circle, a particular case of good continuation. A Nachtanz
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generated with a manually selected set of restrictions is shown on figure . Actually, the

Nachtanz of this figure should be able to change (at least to some extent) the number

of dots, which would be perceptually indistinguishable as shown on figure . This is a

further challenge.

In the rest of this paper we will show some preliminary results of this research pro-

gram toward automatic gestalt analysis and its Nachtanz. The next section details a first

implementation of the Nachtanz, working on a reduced set of partial gestalts. Then,

section  shows the current results.

 Preliminary Implementation

In this section we briefly describe our preliminary formalization of some partial gestalts

and the Nachtanz generator. The algorithms used to detect those gestalts and imple-

ment the respective restrictions in the Nachtanz are more thoroughly detailed in the

appendix A. The structures currently analyzed are line segments, line segment chains,

alignments of points (vertices of chained line segments), a restricted form of parallelism

(also related to the constancy of width) that we called strokes, modes of angles between

chained line segments, and modes of stroke widths. Our current implementation of

the Nachtanz is limited to figures composed by straight contours defined by control

points. A limited set of geometrical restrictions are currently implemented. Neverthe-

less, the algorithmic chain starts from a raw digital image of the figure and proceeds at

all stages with automatic detections. Several simple figures actually get the correct and

autonomous Nachtanz.

. Line Segment Chaining

Line segments give the main basic geometric information on almost any image: each

one corresponds to a locally straight part of an edge. It is statistically observed in digital

images that detected line segments are connected to other line segments forming a ver-

tex, or being part of a smooth edge locally approximated by line segments. Both cases

are illustrated on figure . The line segments detected by the parameterless and fully

automatic algorithm LSD [] provide a good description of the image provided that

the relative positions of the line segments are considered. Thus, detecting and linking

adjacent line segments belonging to the same edge is a relevant task and should consti-

tute the basis of the Nachtanz. Figure  shows the result for the image in figure . The

linking algorithm is described in section A..

Figure : An image (left) and the line segments detected by LSD [] (right).
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Figure : Result of the line segment chaining algorithm described in section A. for the

example in figure . Linked line segments share endpoints.

. Alignment of Points

The alignment of points is one of the basic geometrical structures in images. Figure 

shows an example. To exemplify why alignment detection is a subtle task, the con-

spicuous alignment on the left figure was also placed in the two examples on the right

in figure . Observe how it simply vanishes perceptually on the right, an effect that

Gestaltists called masking by texture []. The algorithm for detecting point alignments

is described in section A., and the respective restriction is described in section A..

Figure : An alignment of dots and an increasing quantity of random dots. The per-

ceptually visible alignment of the left vanishes on the right image.

. Strokes

We now consider the analysis of parallelism, in a restricted form that we have called

“strokes”. What we are looking for is a zone of the image generated by a straight stroke

of uniform color. Such a stroke produces parallel line segments of opposite orientation,

with no other detectable edge between them, see figure . There are two kinds of

strokes: dark and light. In dark strokes the uniform color between the two line segments

is darker than the surrounding, while in light strokes it is the opposite. This geometric

structure is an implementation of the constant width Gestalt law studied by Kanizsa

[]. The strokes detection algorithm is described in section A..

. Angle and stroke width modes

A particular type of the similarity Gestalt law is the similarity of angles and width of

elements. We propose to handle these structures by detecting relevant groups of simi-

lar angles and width and imposing them as perceptual restrictions to the figures. The
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Figure : A straight stroke with uniform color (the shaded rectangle) would produce

two line segments, one on each side (the arrows).

key point is to decide when similarity for some numerical value (angle, distance, width,

orientation, etc.) is “relevant”. As shown in Delon et al. [, ], this amounts to building

a histogram mode detector. Based on the a contrario approach and the Helmholtz prin-

ciple, this mode detector is parameterless and can be used indistinctly for all proposed

angle, orientation, length, or width histogram.

Since our analysis relies on chains of line segments, the natural measure of angles

of elements is the angle between two chained line segments. Figure  shows how we

measure it. This process gives one angle value for each pair of chained line segments

or vertex. With them, a histogram is built and meaningful modes are detected by the

variant of Delon et al. method [] for circular histograms. The process is similar for

the widths of dark strokes, using the non-circular variant of the Delon et al. method.

Now, note that the same process permits to handle a special case of the proximity

law in a simple way: by looking for the similarity of the light strokes widths. Indeed, in

the set of Gestalt images with straight elements, the separating space is often delimited

by parallel contours, thus producing light strokes according to our definition.

2

ϕ

ϕ

1

Figure : Measurement of the angle between chained line segments. The black line

represents three chained line segments, separating a dark area on the left from a light

area on the right. The angle is measured from the extension of the first line segment to

the next one. The order of the line segments is important, since the angles are signed (or

equivalently, measured in the range from  to  degrees). The convention we use is

that a positive angle (as ϕ1 in the figure) corresponds to a convex area on the dark side,

while a negative angle (as ϕ2 in the figure) corresponds to a convex area on the light

side.

A natural extension of the method will also look for the modes of the lengths of the

line segments. Some examples of angles and width histograms are shown on section ,

with the resulting modes and their meaning for the analysis of images.

. Nachtanz Implementation

Our implementation of the Nachtanz is based on restricted perturbations of points.

The first step is to parameterize the figure by control points. Figure  shows how

a figure composed of line segments is parameterized by their endpoints. The figure
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information is decomposed into two parts: a list of points with their coordinate values,

and a list of couples of points between which a line segment must be drawn. Given

that decomposition, the Nachtanz is obtained by a random perturbation of the control

points subject to the partial gestalt restrictions that have been automatically detected on

the original figure. Images of this Gestaltic dance are regenerated using the new points.

Figure : Line segments parameterized by its endpoints.

To impose the restrictions to the control points, we opted for a variational formula-

tion. An energy is defined on a set of points that takes a zero value when the restrictions

are perfectly satisfied, and positive values when not. The energy is defined as a sum of

terms, one for each restriction imposed. Ideally, a Nachtanz would be a trajectory of

points through null energy configurations. In practice, however, it is generated by an it-

erative algorithm that approximates it by alternating perturbation and correction steps

(see the following pseudo-code). In this Monte Carlo exploration, a random point is

selected and a random perturbation (a small displacement) is added. Then, correction

terms are applied to each point and for all the restrictions imposed to this point. This

step is repeated until the restrictions are satisfied up to a precision δ. Details about the

definition of the energy and correction terms are given in section A..

Algorithm: Nachtanz for a set of points P and a set of restrictions R.

do forever:

Select a random point pi ∈ P .

Select a random perturbation n.

pi ← pi + n

while RestrictionsError(R,P ) > δ:

for all pj ∈ P with j 6= i:

for all r ∈ R:

pj ← pj + λ · CorrectionTerm(r, pj)

A set of restrictions R can be inconsistent, meaning that no configuration of points

can satisfy them. Otherwise, starting from a set of points P satisfying R, one can apply

an arbitrary perturbation to one of its points and there exists at least one configuration

P ′ also satisfying R: the translation of the full set of points always satisfies R. However,

there is no guarantee that the simple algorithm that we use will find such a configura-

tion. To improve the chances of success, the algorithm advances by small perturbations

in an attempt to simulate a “differential dance”. We also limited the number of correc-

tion steps: if the precision required is not obtained, the perturbation is rejected and a

new one is attempted.

The Nachtanz as described selects a random point and a random perturbation at

each step. The result is a controlled joint random walk of all points. Therefore a large

number of steps is needed to observe a shy motion. Indeed, without restrictions each

point would follow a classic random walk which is slow by nature. The restrictions
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reduce even more the observed motion by relating and averaging the different pertur-

bations. In an attempt to produce a more dynamic Nachtanz, each random perturba-

tion is applied repetitively to the same point for a fixed number of iterations, or until

the correction loop is unable to satisfy the restrictions. Only then, a new point and a

new perturbation are selected. The resulting dance shows bursts of coherent motion

for short periods of time. The computation time needed to obtain interesting motions

is thereby much reduced, and the aggressive motion does a better job illustrating the

constraints imposed to the figure and the degrees of freedom still available.

 Experiments

We first illustrate the results of the Nachtanz on the simple image shown on figure  for

which a complete analysis is reached. More complex images are dealt with in contin-

uation. Our sample images are obviously very simple, being described exclusively by

straight edges. Nevertheless, we show that they contain enough complexity to produce

interesting developments, and even to overwhelm the procedure.

Figure : Left: line segments detected on the image of figure  by the LSD algorithm

[]. Right: result of the line segment chaining algorithm for the same image.

Figure  shows the line segments detected in the image of figure  and its chained

version. In these simple images, the first step of the line segment chaining does a good

job, providing us with a full set of edges in geometrical form, composed of linked line

segments. This can be termed a first-order vectorization of the figure, meaning that

we are able to reproduce it at an arbitrary resolution. With our current tools we can

perform this kind of first-order vectorization only for the reduced set of images formed

by flat zones divided by straight edges. Yet, this is not a full-fledged vectorization that

should include all the other relations, such as the relevant angles, widths, lengths, etc.,

that would allow to reproduce the figure, not only at an arbitrary precision, but also

allowing to change parameters like the width of bars, the height of each one, or the

spacing between them when they do not form meaningful modes.

The point alignment step is applied to the vertices obtained after the line segment

chaining; in this way we avoid artificial alignments produced by counting twice com-

mon endpoints. Figure  shows the alignment of control points for the same image.

The detected alignment corresponds to the baseline to which the three bars are aligned.

The stroke detector provides us the information about parallelism, see figure . In

this case, six dark strokes are found, two for each bar: one vertical, and one horizontal,

almost coincident in the drawing. All put together, these partial gestalts imply that
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Figure : Alignment automatically found of the vertices of the image in figure . It

corresponds to the aligned base of the bars.

the bars are parallelograms. Two light strokes are found, one for each bar-interspace,

implying the parallelism between bars.

Figure : Dark (left) and light (right) strokes found on the image of figure . Each

stroke is drawn in red as a rectangle, including the two parallel sides forming it. Note

that there are two dark strokes detected for each bar: one vertical, corresponding to the

vertical parallel sides of the bars; the other, horizontal, corresponding to the horizontal

and parallel sides of the bars.
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Figure : Top: histogram of angles between chained line segments corresponding to

the image of figure . Bottom: meaningful histogram mode detected.

Figure  shows the histogram of angles between chained line segments. All of

them are close to  degrees, so it is no surprise that the mode detector algorithm finds
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only one mode, see figure  bottom. This partial gestalt detection imposes that all the

angles grouped by this mode should share the same angle; this implies, in fact, that

the bars are rectangles, since only right angles can make all four angles equal. This is

an interesting example of implicit gestalt detection. Kanizsa certainly considered right

angles as a lawful gestalt. But here, it is enforced implicitly by the general similarity

grouping law. The histograms for width of dark and light modes are shown on figures 

and , respectively. The modes detected impose that the three bar widths be equal

(dark strokes), related to the Gestalt similarity law, and that the two interspaces be

equal (light strokes), related to the proximity law.

This concludes the list of partial gestalts that are currently implemented. In the fol-

lowing, we show different Nachtänze for the same figure, starting from a stripped-down

one including only line segment chaining, and gradually adding partial gestalts so we

can see the contribution of each one. The first example is shown on figure . The full

animations are available at http://iie.fing.edu.uy/∼jirafa/nachtanz/. As we

can see, the figure continues to be formed by three black elements gradually degenerat-

ing into amorphous shapes.
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Figure : Top: histogram of dark strokes widths. As we can see, three of them are

almost equal and correspond to the width of the three bars. The other three correspond

to bars’ heights and are different. Bottom: meaningful mode found.
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Figure : Top: histogram of light strokes width. Bottom: meaningful mode found.

For our next example, on figure  we added the restrictions imposed by the dark

and light strokes, parallelism being thus enforced. The black elements become parallel-

ograms, producing a perceptual difference to the original bars. With the addition of the

angles mode partial gestalt, on figure , the parallelograms turn to rectangles and the
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image gradually takes shape. But still, the misalignment of the bar bases is noticeable,

as well as the uneven spacing.

Figure : Nachtanz of the image on figure  only using the line segment chaining partial

gestalt.

Figure : Nachtanz of the image on figure  only using the line segment chaining, and

the dark or light stroke partial gestalt.

Figure : Nachtanz of the image on figure  imposing the restrictions defined by the

following partial gestalts: line segment chaining, dark and light strokes, and modes of

angles between chained line segments.

Figure : Nachtanz of the image on figure  resulting from the imposition of the partial

gestalts: line segment chaining, dark and light strokes, modes of angles between chained

line segments, and vertices alignments.

Adding the vertices alignment partial gestalt we obtain quite good results in fig-

ure , but it is evident that the difference in the bars width is missing, as well as the

equal spacing. Both constraints are added with the modes of dark and light stroke

widths. This completes the set of partial gestalts dealt with in this paper and produces

the Nachtanz shown on figure .

We strongly encourage the reader to watch the corresponding animations at http:

//iie.fing.edu.uy/∼jirafa/nachtanz/, as they give a much clearer impression

of the “Gestaltic dance” as systematically exploring the degrees of freedom still left in
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the picture. Still, there are some objections that prevent us to say that the figure is truly

perceptually indistinguishable to the original. There are some extreme cases, like the

very thin bars, that pop up among the others. Also, the height order inversion, as can

be seen on the second row of figure  seems to change the essence of the image. The

strictly decreasing order of the bar heights is probably a perceptually relevant feature

which should be included as a new partial gestalt. In this sense, the gestalt dance is

definitely a way to identify new missing Gestaltic relations, not actually mentioned in

the literature.

Figure : Nachtanz of the image on figure  imposing the full set of partial gestalts

analyzed on this paper: line segment chaining, dark and light strokes, modes of angles

between chained line segments, vertices alignments, and modes of dark and light strokes

widths.

In order to show how critical the detection of some structure can be, we made a

modification of the image in figure , by slightly rotating the small black bar, see fig-

ure . This change is enough to free the small black bar from its parallelism constraints

and to break the baseline alignment: four vertices are not enough to define the align-
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ment. Nevertheless, the two large black bars are still parallel, and all the three bars

remain rectangular and share the same width.

Our second example of Nachtanz applies to the image on figure . This image is still

simple, but perceptually more complex than the previous one. We apply the same set of

partial gestalt detectors and show two different Nachtänze. On the first one, figure ,

the restrictions from all the partial gestalts are imposed, except for the vertex alignments

that was excluded on purpose. The result is suggesting, but clearly not satisfactory as

a perceptual modification of the original image. The angle modes impose right angles

on the modified crosses, and the dark stroke width modes make the bars of all crosses

share the same width. Also, due to the parallelism imposed by light strokes, the four

external crosses are “synchronized”.

Figure : Nachtanz of a modification of the image on figure . The full set of partial

gestalts described on this paper was used. The example shows how part of the structure

is lost by a simple modification.

Figure : Scan of figure . from [].

The restrictions imposed by vertex alignments are very strong, and their effect on

the Nachtanz are marked as can be seen on figure . The figure is now perceptually

structured and only three degrees of freedom are left: the global spacing between the

central and the external crosses, the global angle of the figure, and the width of the

elements of the crosses. All the three vary on figure .
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Figure  shows the actual set of vertex alignments found on figure . Here, the

alignment detector failed to detect some of the relevant alignments, for example the

vertical alignments between the lateral crosses. However, due to the strong redundancy

and collaboration of the partial gestalts present on the figure, the Nachtanz on figure 

shows the correct perceptual structure. This is a first example of very simple gestalt

collaboration.

Figure : Nachtanz of the image on figure  with restrictions from the following par-

tial gestalts: line segments, line segments chaining, dark and light strokes, modes of

angles between chained line segments, and modes of dark and light strokes. The vertex

alignment gestalt wasn’t included on purpose.

In the next experiment, illustrated by Figure , the perceptual complexity increases

notably, with the presence of amodal (or subjective) contours. Here we reach the limits

of our current set of partial gestalts. Figure  shows the alignments detected by our

algorithms. The four detections along the amodal contours help, in conjunction with

the angle modes, to keep the structure of the subjective white square on the Nachtanz,

somewhat an achievement. Nevertheless, relevant alignments are still missing, like the

ones relating the black vertical and horizontal black bars, and the alignments of the thin

lines forming the “square” with black border perceptually present on second plane.

Figure  shows the corresponding Nachtanz. Part of the structure is lost. The

large black cross perceived on the original image behind the white square breaks down,

as well as the square with black border. This changes the global interpretation of the

figure. However, the fact that the amodal white square on the foreground keeps its
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Figure : Nachtanz of the image on figure  imposing the full set of partial gestalts

analyzed in this paper.

Figure : Vertex alignments detected on figure .
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presence can be considered as a success due to the collaboration of partial gestalts.

Figure : Scan of figure . from [].

Figure : Vertex alignments detected on the figure .

The failure of the previous Nachtanz is due to a partial failure of the alignment

detector. The next experiment shows a case were a new kind of partial gestalts is needed.

The image shown on figure  is simple only in appearance. Indeed, it involves the

concept of inclusion of the white squares inside the black ones. Inclusion is part of a list

of partial gestalts that still needs to be enforced, along with symmetry and convexity.

Figure  shows the resulting Nachtanz. The inclusion is preserved on the left hand
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squares due to the parallelism imposed by the dark strokes. But there are no strokes

to retain the inner square on the right hand. Also, we would have expected that both

squares on the left hand remain centered. It is not the case, and this shows a double

detection failure. A detection of the alignment of the diagonal vertex or a detection of

the constant width of black stroke would have been sufficient. Note, however, that the

four squares remain squares: this is the action of the angles modes and of the modes

of width. A careful observation of figure  reveals a dark spot at the center of the

figure, between the left and right black figures. This defect is large enough to produce

the detection of small line segments, as can be seen on the first frame of the Nachtanz

of figure . But since no structure is associated with them, they move freely on the

following frames.

Figure : Nachtanz of the figure  involving the full set of partial gestalts described

on this paper: line segments, line segments chaining, dark and light strokes, modes

of angles between chained line segments, modes of dark and light strokes, and vertex

alignments.

A second example of partial gestalt still missing is shown on figures  and . The

figure is very simple, but the smooth curve stops from being so on the Nachtanz. The

reason is that in our present set, no analysis tool is used to cope with convexity or

smooth curves.





Figure : Scan of figure . from [].

Figure : Nachtanz of the figure  involving the full set of partial gestalts described

on this paper: line segments, line segments chaining, dark and light strokes, modes

of angles between chained line segments, modes of dark and light strokes, and vertex

alignments.

Figure : A curved shape.

Figure : Nachtanz of the image on figure .
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 Conclusion

The Gestalt method did not deal with real 3d scenes or images of 3d scenes, but with

graphical simple images. But it conjectured that these images constituted a complete

and sufficient test bed for human vision. This was and is legitimate, in exactly the same

way as it is legitimate to test a complex system with well controlled, elementary and

complete impulses, like engineers or neurophysiologists do. Our purpose is to ana-

lyze this whole Gestalt corpus fully automatically. This corpus is composed of scanned

images, so they are real images after all. To the best of our knowledge, there is no au-

tomated analysis in computer vision of this impressive and inventive Gestalt corpus.

Certainly an algorithm able to analyze all images of this corpus will not analyze any

other real image. For example there are no real textures in these geometric images,

which is their main drawback. On the other hand, the goal of the paper was to demon-

strate how complex and rich the discussion of the interaction of Gestalt laws becomes,

even on the simplest figures of the corpus.

The authors are aware that these results will have to be confirmed on a consistent

and broad enough set of digital images. The experiments herewith give a strong evi-

dence that the sketched procedure will work soon on the whole Gestalt school figure

thesaurus, therefore permitting at the very least a whole assessment of Gestalt theory at

its end in the eighties of the past century. An application to the vectorization of scans

of graphical images might be a practical outcome.

Some recent theories of perception stress the intimate relation between action and

perception, stating that they form an inseparable sensorimotor coupling [, , ]. In

these views, perception serves action by linking the expected sensory information to a

given action. According to O’Regan & Noë [] “To see a bottle, for example, is to explore

visual-motor contingencies, such as transformations in the appearance of the bottle as one

moves in relation to it.” Our proposal is a shy expression of these principles: each partial

gestalt detector imposes restrictions to the possible modifications of the image. Citing

again form []: “seeing is not directly related to having a retinal image, but to being able

to manipulate the retinal image.” In this sense, the Gestaltic dance shows some (limited)

abilities gained in the manipulation of the image by the detected structures.

A Implementation Detail: how each grouping law is au-

tomatically enacted on digital images

A. Line Segment Chaining

The fundamental condition needed to link two line segments is that they belong to the

same edge. But defining edges is tricky, as shown in [] and [] for the particular case

of straight edges, i.e., line segments. Accordingly, a chaining algorithm should follow

the same ideas, defining the geometric structures of vertex and curve elements, and

then verifying if the image gradient is compatible with such elements.

The simple algorithm we propose here is based on the assumption that level-lines

are shared along edges. This is not true in general, as shown on figure . However, it is

reasonably true when limited to a local region. Figure  shows some of the level-lines

on a detail of the image of figure ; one can see how the assumption is approximately

satisfied.

The criterion is simple: two line segments (obtained by the fully automatic algo-

rithm LSD []) are chained when they share image level-lines within the local zone of
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Figure : An image of a vertical edge over a soft gradient background (left) and some of

its level-lines superposed to it (right). Image edges and level-lines are different concepts.

Level-lines are shared along edges only locally.

Figure : Level-lines of part of the image in figure . Note that some level-lines are

shared by unrelated edges near the X crossing.

I

R

Figure : Here we propose a simple line segment chaining criterion: two line segments

(the rectangles) are chained when they share level-lines (red curves) within the local

zone defined by the intersection point I and a radius R.
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their intersection, see figure . The level-lines considered are the ones spanning from

the short side of the rectangle defining the line segment. The local zone is defined by

the intersection point I of the line segments, and a fixed radius R. The full shared level-

line path going from one line segment (starting at the border of its defining rectangle)

to the next one should be contained in the radius R. When a chaining is accepted, the

line segment linking endpoints are updated to their intersection point and become a

common endpoint. Any further modification to one should also affect the other.

Our implementation uses the FLST algorithm developed by Monasse et al. [], that

provides the image level-lines of a bilinear interpolation of the image. Our algorithm

depends strongly on the parameter R, clearly an unsatisfactory aspect. In our tests R

was set to  pixels.

The result on figure  shows the advantages and disadvantages of this procedure.

On the one hand, it shows an acceptable result given the simplicity of the algorithm,

as it provides the fundamental edge structure of the image. On the other hand, the

algorithm fails in some cases, even if the image is relatively simple. In curved edges, the

end of the rectangle of a line segment may hang off the edge, precluding the evaluation

of the right level-lines and leading to failure. Another unsatisfactory case is when two

line segments are almost collinear, and their intersection is far from them, failing to

satisfy the locality region criterion. Finally, on natural images with complex level-lines

structures, unrelated line segments close to each other can be mistakenly chained.

A. Alignment of Points

Following the computational Gestalt theory, we use here a variant of the alignment

detectors proposed in [] and in section .. of [].

We start with a model for N non-structured points, where no alignment is expected

to be present. Then, alignments are defined as large deviations from that model. In the

non-structured model, the points follow a uniform and independent random law. Each

point is independent of the others and uniformly distributed on the image domain.

Now, a precision for the alignment is needed that will determine how far from perfectly

straight an alignment can be. A reasonable family of tests, or possible alignments, is

determined by a set of lines that a perfect alignment could follow. For each test, a strip

is defined by the perfect alignment line and the precision used, see figure .

Figure : A strip defining the alignment and a set of dots.

Given the area A(S) of the strip S and the area of the domain AD, the probability
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that a uniformly distributed point be placed in the strip is given by

p(S) =
A(S)

AD
,

and, as each point is independent of the others, the probability of observing at least

k(S) points in the strip out of a total of N is given by the binomial tail,

b
(

N, k(S), p(S)
)

.

Now we can define the NFA for a tested strip S in the usual way as

NFA(S) = Ntests · b
(

N, k(S), p(S)
)

,

and when NFA(S) ≤ ε an ε-meaningful alignment is found.

There are two natural ways of choosing the family of tests to be performed. One is

to use all the lines that cover the domain, provided that the central line of one alignment

is not covered by the precision strip of another one. A second option is to test the lines

determined by two observed points. The latter is the one we will use in the following;

in this setting the number of tests is given by

Ntests =
N(N − 1)

2
.

Now, the count of points in the strip should be modified in order to exclude the two

points that define the strip. The NFA becomes

NFA(S) =
N(N − 1)

2
· b

(

N − 2, k(S)− 2, p(S)
)

.

We still need to say how to set the precision, that is, the width of the strips. In some

cases the problem can naturally provide it. For example, if we knew that point coordi-

nates had been quantized, then it would be misleading to use finer precisions than the

quantization step. In most cases, however, it is enough to try multiple precisions. For-

mally, this is equivalent to repeating each test with a different precision, so the number

of tests Ntests must be multiplied by the number of precisions used. The final NFA is,

NFA(S) = α · N(N − 1)

2
· b

(

N − 2, k(S)− 2, p(S)
)

,

where α is the number of precisions tested. The range of precisions could be deter-

mined automatically using as criterion, for example, the largest p that can lead to a

meaningful alignment using all the points, and the smallest p needed to validate a per-

fect alignment of three points. In practice this range is too large. In our experiments

we used a fixed range: the coarser precision was selected to produce a probability p(S)
equal to 0.005, and α = 8 different values were tried, each one a factor

√
2 smaller than

the previous one; the finest precision corresponds to p(S) = 3.1× 10−4.

This algorithm produces somewhat redundant detections, see figure . Different

tests can be simultaneously positive for what is basically the same alignment. For ex-

ample, a very meaningful alignment can be detected for various precisions. Also, more

than one strip defined by different points belonging to the same alignment will produce

valid detections, see figure  center.

An exclusion principle, in the same spirit as the one already used in line segment

detection, see [, ], has been added to reduce redundancy. Each point is only allowed





Figure : Left: set of points. Center: All the meaningful alignments found. Right:

Meaningful alignments after applying the exclusion principle.

to be counted as belonging to one alignment, the one with the best (smallest) NFA

value that contains the point. Iteratively, the alignment with the smallest NFA value is

selected and validated as a detection. Then, the NFA value for the remaining alignments

is recomputed, but without counting the points already used by validated alignments.

The NFA value of many alignments will increase (i.e., they become less meaningful)

and some of them will have NFA > ε and will be rejected. This process is repeated until

all the alignments are validated or rejected. Figure  right shows one example.

A. Strokes

The key notion is how to define parallelism. The problem arises because no parallelism

is perfect and we need a criterion to decide if two line segments can be regarded as par-

allel or not. We performed some experiments with different notions of parallelism. For

example, a natural formulation would be to consider the angle between line segments

as the discriminating variable and to use an a contrario setting to decide if two line seg-

ments are parallel when their angle is surprisingly similar, deviating from what could be

expected on an unstructured model. Unfortunately, the criterion of the angle between

lines is not consistent with the notion of human perception of parallelism, as depicted

in figure . It is more likely that human perception is able to measure the unchanged

width, as suggested by Gestalt theory.

Figure : The difference in angle between the lines on the left and on the right are the

same. Nevertheless, the lines on the left seem more parallel than the ones on the right.

The criterion we will use is very simple, see figure . Given two line segments s1

and s2, the mean line L is traced, with the mean orientation of line segments s1 and

s2. Then, the overlapping of the projections of s1 and s2 to L is evaluated. If the

overlapping is null, then s1 and s2 do not form a stroke. Otherwise, the distances d1

and d2 are evaluated, from line segment s1 to s2, and measured orthogonal to line L at

the extremes of the overlapping. Line segments s1 and s2 form a stroke if |d1 − d2| <
dTH.

We need to set the threshold dTH. It is clear that this threshold should be dependent

on the size of the image and on what angle in the retina represents the pixel size. But we

do not have a principled theory for this yet. In our test we just used a fixed threshold of

 pixel.
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Figure : Definition of a stroke.

The complete algorithm to detect strokes will test all couples of line segments, and

reject the ones that are not roughly in opposite orientation. Then, the mean line L, the

overlapping and the distances d1 and d2 are computed. The stroke is finally validated or

not. Note that the method can lead to dark or light strokes, depending on the order of

the opposite line segments. A final step is needed to reject strokes intersected by other

line segments. Actually, in our definition, only intersecting line segments parallel to the

stroke could provoke a rejection.

A. Nachtanz Implementation

This section gives the energy terms for each one of the restriction types we deal with.

For the experiments presented here we need to be able to impose line segment chaining,

alignment of points, strokes, equal angle between groups of points, and equal width on

groups of strokes. We want to achieve this with a reduced set of control point restriction

primitives. Chained line segments are imposed just by using a common control point

for the shared endpoint. We need a control point alignment primitive. For strokes we

need a parallelism primitive and we must prevent the stroke from changing contrast

and from decreasing the overlapping zone; this is imposed by a primitive for keeping

control points in a half-plane defined by two control points. Finally, we have especial

primitives for angles and stroke width.
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d

d

d

d

Figure : The energy associated to the alignment of points is the sum of the squared

distance of points to the least square fitting line.

If we want to impose an alignment restriction to n points p1, . . . , pn, the energy is
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given by the sum of squared distances to the best fitting line, see figure ,

E(ralignment) = min
l

n
∑

i=1

d2(pi, l),

where l is a fitting line and d(p, l) is the distance from point p to the line l. The correc-

tion term associated to point pi is given by− ∂E
∂pi

. However, to simplify the formulation,

we will make a quasi-static assumption and suppose that the least square fitting line l is

not (significantly) modified by pi and use

CT (ralignment, pi) = −2d(pi, l)~v

as correcting factor to point pi, where ~v is the a normal vector from line l to the point

pi.
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Figure : The energy associated to parallelism is the sum of the squared errors from

points to the mean angle fitting lines.

We turn now to parallelism. As stated in section A., we will measure the parallelism

error by the distance of points to its mean angle fitting lines, see figure . Similarly to

the previous case, the energy term is defined by

E(rparallelism) = d2(p1, l1) + d2(p2, l1) + d2(p3, l2) + d2(p4, l2),

where l1 is the mean angle line fitting points p1 and p2, and l2 is the mean angle line

fitting points p3 and p4, and d(p, l) is the distance from point p to line l. Again, we will

make a quasi-static assumption and use

CT (rparallelism, pi) = −2d(pi, lj)~v

as correction term for point pi, where ~v is a normal vector from line lj to point pi.

We get to the half-plane restriction type. A set of points p1, . . . , pn is restricted to

stay in the half-plane H defined by two other control points pa and pb. In analogy to

previous cases, the energy is defined as the squared distance from the points out the

half plane to the border line l defined by pa and pb:

E(rhalf-plane) =

n
∑

i=1

d2(pi, l)1pi /∈H .

The correction term for point pi is given by

CT (rhalf-plane, pi) = −2d(pi, l)1pi /∈H~v,
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where ~v is a normal vector from line l to point pi.

Our next restriction is the one related to angles. For a group of four points p1, p2,

p3, p4, we will measure the angle between the line p1p2 and line p3p4. For a set of 4n

points, p1

1
, p1

2
, p1

3
, p1

4
, p2

1
, . . . , pn

3
, pn

4
, we want to impose that the angles of all groups

are equal. Figure  shows the relations for group number i.

i

p
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d4,B
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Figure : Relations involved in the equal angle energy term.

We will note ϕ the mean angle of the n angles φi, and the angle that all the groups

should share. Now, for each group i we will define two lines liA and liB , see figure .

Line liA cross the middle point between pi
1

and pi
2

and has an angle ϕ with the line

p3p4. In other words, points pi
1

and pi
2

should belong to line liA when the restriction is

satisfied. Analogously, pi
3

and pi
4

should belong to line liB . With this, the energy term is

defined by

E(rangle) =

n
∑

i=1

(

d2(pi
1
, lA) + d2(pi

2
, lA) + d2(pi

3
, lB) + d2(pi

4
, lB)

)

.

As in the previous cases, the correction term is obtained by − ∂E
∂pi

and, again, we will

use the quasi-static assumption to simplify the solution: We will assume that ϕ is not

(significantly) modified by applying the correction term to point pi
j . The we have,

CT (rangle, p
i
j) = −2d(pi

j , l
i
X)~v,

where liX is liA for j to  or , and liB otherwise, and ~v is a normal vector from line liX
to point pi

j .
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The last restriction to impose is equal stroke width. We want to impose equal width

to n strokes, so we will refer to 4n points, four for each stroke. For stroke i, points

pi
1

and pi
2

define one side of the stroke, and points pi
3

and pi
4

form the other side, see

figure . We will call liA the line defined by pi
3

and pi
4
, and liB the line defined by pi

1
and

pi
2
. These two lines should be parallel, but this can be false in intermediate steps and

should be contemplated by the way width is measured. A simple solution is to define

the width as the mean of the distance from each of the points of the strokes to the line

of the opposite side. Then,

widthi =
d(pi

1
, liA) + d(pi

2
, liA) + d(pi

3
, liB) + d(pi

4
, liB)

4
.

We will call ξ the mean width of all strokes. Now, the energy term for equal stroke

width is defined by

E(rwidth) =

n
∑

i=1

(

(

d(pi
1
, liA)−ξ

)2
+

(

d(pi
2
, liA)−ξ

)2
+

(

d(pi
3
, liB)−ξ

)2
+

(

d(pi
4
, liB)−ξ

)2
)

.

Using the same quasi-static assumption, we will assume that ξ is not (significantly)

modified by applying the correction term to point pi
j and we get the correction term

CT (rwidth, pi
j) = −2

(

d(pi
j , l

i
X)− ξ

)

~v,

where liX is liA for j to  or , and liB otherwise, and ~v is a normal vector from line liX
to point pi

j .
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[] P.J. Kellman and T.F. Shipley. A theory of visual interpolation in object perception.

Cognitive Psychology, ():–, .
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