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Abstract

We study nontrivial applications of the reduced basis method (RBM) for elec-
tromagnetic applications with an emphasis on scattering and the estimation
of radar cross section (RCS). The method and several extensions are explained
with two examples with different characteristics. Parameters that are allowed to
vary within the model include frequency, incident angle and measurement angle
as well as the geometry of the scatterers. With appropriate applications of the
empirical interpolation method (EIM), transformation of the domain, configu-
ration of perfectly matched layer, exponential convergence of the reduced basis
solution over the entire parameter domain is achieved. Moreover, we demon-
strate that this approach allows for the effective capture of the critical behavior,
in this case through shapes that minimize scattering. This further highlights
the robustness and quality of the greedy approximation and the reduced basis
method approach.

Keywords: Reduced Basis Method, Electromagnetic Scattering, Radar Cross
Section, Empirical Interpolation Method

1. Introduction

In many applications such as computational optimization, control and de-
sign, one is required to rapidly yet accurately predict some quantities of inter-
est under the variation of a set of parameters ν ∈ D ⊂ Rp. Here, se(ν) :=
ℓe(ue(ν); ν) ∈ C is an output of interest with ℓe being a functional and ue is the
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solution of a parametrized partial differential equation (PDE). Let us denote
the PDE in its weak form

ae(ue(ν), v; ν) = fe(v; ν), ∀ v ∈ Xe, (1)

where ae and fe are bilinear and linear forms, respectively, associated with the
PDE. We shall denote Xe as the space of the exact solution ue.

In practice, one could use a finite element (FE) discretization to approximate
the solution uN (ν) ≃ ue(ν). Hence, given ν ∈ D ⊂ RP , find uN (ν) ∈ XN

satisfying
aN (uN (ν), v; ν) = fN (v; ν), ∀v ∈ XN . (2)

An approximate value of the output of interest can be thus computed by sN (ν) :=
ℓN (uN (ν); ν) ∈ C. Here XN is the finite element space approximating Xe with
dim(XN )≡ N , aN (·, ·; ·) and mN (·; ·), m ∈ {f, l} are computable approxima-
tions of a(·, ·; ·) and m(·; ·), m ∈ {f, l}, respectively. We assume uN (ν) provides
a reference solution, referred to as the truth approximation, that is accurate
enough for all ν ∈ D. To ensure this, one must usually choose a very large N .
As a result, the cost to solve for the truth approximation is likely very high,
especially when the solution is needed for many instances of ν, in which case
the cost becomes prohibitive.

The RBM, introduced in [15, 9], offers a particularly well suited solution to
the challenges of this “many-query” scenario, aiming to improve the simulation
efficiency and reduce the overall computational cost. A fundamental observa-
tion and assumption utilized by RBM is that the parameter dependent solution
ue(ν) is very often not simply an arbitrary member of the infinite-dimensional
space Xe associated with the PDE, but rather it evolves on a lower-dimensional
manifold induced by the parametric dependence. Therefore, one can expect
that as ν (∈ D ⊂ Rq) varies, the set of all solutions ue(ν) can be well ap-
proximated by a finite and low dimensional vector space. In particular, the
RBM method proposes to approximate the solution of the PDE for an arbi-
trary value of the parameter ν ∈ D as a linear combination of solutions of
the same PDE for other adequately chosen parameters νi, i ∈ {1, . . . , N}, i.e.,
uN (ν) =

∑N
i=1 ci(ν)u

N (νi). The truth approximation problem is then replaced
by the following problem: find uN (ν) ∈ XN such that

aN (uN (ν), v; ν) = fN (v; ν), ∀v ∈ XN , (3)

where XN = span
{
uN (νi), i ∈ {1, . . . , N}

}
. As can be expected, the choice of

the initial set of parameters used to compute the basis functions appropriately
is crucial for the method to succeed. This is guided by the combination of a
rigorous a posteriori error estimators, also used to certify the quality of the
approximations, and a judicious greedy algorithm. We refer to [20, 17, 10, 6]
and also the review paper [19] and the extensive reference therein for detail.
Theoretically, exponential a priori convergence result of the reduced basis ap-
proximation is confirmed for a one dimensional parametric problem [14]. More
recently, exponential convergence of the greedy algorithm for continuous and
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coercive problems with parameters in any dimension has been established in [5],
and improved in [4].

The RBM becomes particularly valuable when the forms involved in the
PDE satisfy the so-called affine assumption, namely,

aN (u, v; ν) =

Qa∑
q=1

Θa
q (ν)a

N
q (u, v), mN (v; ν) =

Qm∑
q=1

Θm
q (ν)mN

q (v), (4)

where m ∈ {f, l}. In this case the computational strategy centers around split-
ting into offline and online parts. In the offline part (computations that are
performed once), the reduced basis space and various elements needed for the
error estimation is precomputed, at a cost scaling with N . In the online part,
where the reduced basis approximation is used to approximate the solution for
any new parameter, the computational cost depends only on N (the dimension
of the reduced basis space) and Qm, m ∈ {a, f, l} (the so-called complexity
of the forms) but not on N (the dimension of the FE space where the truth
approximation is computed). Since N ≪ N this introduces a potential for a
substantial computational saving.

In this paper, we consider problems of electromagnetic scattering in which a
valuable output of interest is the radar cross section (RCS) [12], measuring the
reflective strength of a target when illuminated by an electromagnetic source.
The design and optimization of this radar signature is naturally of great practical
and tactical importance, involving both material and geometric design options.
Other parameters to include are incident and observation wave angles and the
frequency. In general the linear and bilinear functionals associated with class of
problems do not satisfy the affine assumption (4). In consequence, an additional
approximation based on the EIM will be developed and applied [2, 10]. Reduced
basis method has been applied to 3D electromagnetic scattering problem. In-
spired by the subdomain residual method, the authors of [16] proposed a faster,
but non-rigorous, error estimate to deal with affine expansions with very large
number of terms.

What remains of this paper is structured as follows. In Section 2, we state
the general problem setting before introducing two specific scattering problems
that we shall use as benchmarks to illustrate the capabilities of the reduced
basis method for complex scattering and radar cross section prediction applica-
tions. These examples will involve parametric variations of frequency, incident
and observation angles and geometric variations, or combinations of these. In
Section 3, we briefly explain the computational strategy and offer some details
on the truth approximation solver and the greedy algorithm used to determine
the parameters enabling the construction of the reduced basis space [17, 20, 6].
The two test problems do not satisfy the affine assumption and we develop an
empirical interpolation method (EIM) that facilitates a reduced problem satisfy-
ing (4), ensuring an efficient off-line on-line computational strategy. Numerical
results illustrating the superior performance of reduced basis method for the
two non-trivial examples are presented in Section 4. Finally, we offer some
concluding remarks in Section 5.
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2. Presentation of the problem

In this section, we describe the setup and formulation of two non-trivial bench-
mark cases when the radar cross section is sought as the output of interest.
For the first case, the angular frequency and angle of the incident wave are
the parameters, while in the more challenging second case the parameter is the
shape of the scatterer. As we shall see, this necessitates the nontrivial geomet-
ric transformation and the corresponding application of perfectly matched layer
(PML).

In both cases, the electromagnetic waves are TM-polarized, i.e., the electric
and magnetic fields satisfy E = (0, 0, Ez) and H = (Hx,Hy, 0) in the Maxwell’s
equation. As a source, we consider an incident plane wave

Einc(x⃗) = eiωx⃗·d⃗.

Here, ω is the angular frequency and d⃗ ≡ d⃗(θi) := (− cos(θi),− sin(θi)) is the
direction of propagation that depends on θi, the angle of the incident wave.

The scattered field, generated by the incident wave, satisfies a set of equa-
tions (we assume ε = µ = 1 for the sake of simplicity):

iωEz =
∂Hy

∂x
− ∂Hx

∂y
in Ω, (5a)

iωHx = −∂Ez

∂y
in Ω, (5b)

iωHy =
∂Ez

∂x
in Ω, (5c)

Ez = −Einc on Γ. (5d)

The system is completed by requiring the scattered field to satisfy the so-called
Silver-Müller radiation condition at the infinity. Here, Ω is the domain outside
of the scatterer and Γ is the boundary of the scatterer. To enable tangible
computations, an exterior boundary sufficiently far away from the scatterer,
Γfar, is enforced to reduce the infinite domain to a finite one and artificial
boundary conditions will be applied on the exterior boundary Γfar. In this work,
either the fields (Ez,Hx,Hy) are assumed to satisfy the first order absorbing
boundary condition (on the first problem) as

(H × n) · ẑ =
√

ε
µEz, on Γfar, (6)

or we apply PML [3, 7, 1] on an annulus just inside of Γfar (on the second
problem).

Given the scattered field H and E, we can calculate the radar cross section
associated with this scattering process. We define the surface currents

J = n×H, and M = −n×E,
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and let

F (ω, θi, θr) =

√
ei

π
4

√
8πω

∮
(−ωµẑ · J − ωẑ ×M · r̂) eiωr̂·r̄′ dC. (7)

Here r̂, the unit vector for the observation direction, is equal to (cos(θr), sin(θr))
with θr being the observation angle. r̄′ is the vector from scatterer to the
integration contour which can be any closed contour surrounding the scatterer.
With the linear output functional (7) computed, the RCS (also called bi-static
RCS) is defined as

RCS(ω, θi, θr) = 2π
|F (ω, θi, θr)|2

|Einc|2
. (8)

A case of particular interest in practice is the monostatic RCS defined by
RCS(ω, θi, θr = θi) . Often, these magnitudes (quotients of powers) are mea-
sured in decibels (dB).

2.1. Open Cavity Benchmark

In the first problem to be considered, the scatterer is assumed to be a perfect
electric conductor (PEC) open cavity given by (see Figure 1 left)

Γ := [−1, 1]× {−1} ∪ [−1, 1]× {1} ∪ {−1} × [−1, 1].

The unbounded nature of the computational domain is enabled by a first order
absorbing boundary condition (often called the Silver-Müller boundary condi-
tion) at the boundary Γfar = {x⃗ ∈ R2 such that |x⃗| = 3}. The output of
interest is the radar cross section given by (8). For this application we consider
three parameters (ω, θi, θr) ∈ D = [π/2, 5π/2] × [0, 2π] × [0, 2π], namely, the
angular frequency, the angle of incidence and the angle of observation.

This is an interesting benchmark as a example of cavity scattering, being
an application area of considerable interest, and because it is well known that
even minor changes in the scattering of a cavity can lead to dramatic changes
in the scattered fields due to a variety of electromagnetic phenomena,e.g., quasi
resonant behavior.

2.2. Invisible Pacman Benchmark

The second scatterer we consider is a perfectly conducting 2D cylinder with
a cut-out wedge. The configuration is illustrated in Figure 1. Here, θW denotes
the angle of the wedge and is a critical parameter for this case. We will also allow
the observation angle θr and angular frequency ω to vary. A curvilinear PML [7]
is applied around Γfar to simulate the unbounded nature of the computational
domain.

An interesting phenomenon of this problem is that the scattered fields and
thus the RCS change dramatically with only a small change in the wedge angle
θW . In Figure 2, we show the RCS(ω = 10π, θi = 0, θr) in dB when θW =
0◦, 18.5◦ and 21.5◦. We note in particular the 22dB drop in the monostatic
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Figure 1: Geometry of the computational domain for the open cavity problem (left) and
invisible pacman problem (right).

scattering (when θr = 0) with just 3 degrees of change in θW rendering the
Pacman substantially less visible. One of the challenges in this work is to
demonstrate that reduced basis methods are capable of capturing such critical
behavior across variations in geometry and frequency.
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Figure 2: Radar cross sections for the Pacman, 10log10(RCS), versus observation angle θr.
Three cases with different wedge angles θW are plotted. In the three cases θi = 0 and ω = 10π.

2.2.1. Geometric Transformation

To apply the RBM with computational advantage, the parametric problem
needs to be written on a fixed domain. To address this, we transform the
problem on a domain depending on the angle θW to a parametric problem on
a fixed domain through a map from a reference domain with a fixed θrW to a
physical domain with a general θW .

Let (x, y) and (ρ, θ) be rectangular and polar coordinates on the reference

domain, and (x̂, ŷ) and (ρ̂, θ̂) be those on the physical domain. The mapping of
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the domain is achieved through a sequence of mappings with the first and last
being the standard transformation between polar and rectangular coordinates:(

x
y

)
→

(
ρ
θ

)
→

(
ρ̂ = ρ

θ̂ = fm(θ)

)
→

(
x̂
ŷ

)
. (9)

The function fm(·) in the second mapping is a continuous, piece-wise smooth
function that is one-to-one and such that fm([−π,−θrW ]) = [−π,−θW ], fm([−θrW , θrW ]) =
[−θW , θW ] and fm([θrW , π]) = [θW , π].

Let us first discuss the systems of equations on the physical domain. We omit
the ·̂ on all the variables and operators for simplification of notations. Under
the assumption of µ = 1, ϵ = 1, the TM-polarized system of time harmonic
Maxwell’s equations (5) can be rewritten using polar coordinate as

iωEz = 1
ρ

(
∂(ρHθ)

∂ρ − ∂Hρ

∂θ

)
,

iωHρ = − 1
ρ
∂Ez

∂θ ,

iωHθ = ∂Ez

∂ρ .

(10)

Next, we incorporate the perfectly matched layer to truncate the computational
domain. To achieve this, we follow [7] for the derivation under curvilinear
coordinate as a change-of-variable technique. For this, we define

ρ̃ =

{
ρ−

∫ ρ

a
iσ(s)
ω ds ρ ≥ a,

ρ ρ < a.

Applying the PML layer is then equivalent to replacing all ρ in (10) by ρ̃. Here,
σ is a piecewise quadratic C1−function of ρ (constant along the θ−direction).
It is identically zero in the non-PML region and monotonically increasing along
the ρ−direction from the PML/non-PML interface to the exterior boundary.

To simplify the system, we let

σ̄ =

{
1
ρ

∫ ρ

a
σ(s)ds ρ ≥ a,

0 ρ < a,

and obtain, after some manipulation, the polar coordinate system
−(iω + σ̄)Ez +

σ̄−σ
iω+σ

∂Hθ

∂ρ = 1
ρ

(
∂Hρ

∂θ − ∂(ρHθ)
∂ρ

)
,

(iω + σ̄)Hρ = − 1
ρ
∂Ez

∂θ ,

(iω + σ)Hθ = ∂Ez

∂ρ .

(11)

Converting to rectangular coordinate we recover, after some algebraic manipu-
lations, 

−(iω + σ)(iω + σ̄)Ez + A∇ ·

(
Hx

Hy

)
= 0,

∇Ez + A

(
Hx

Hy

)
= 0.

(12)
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Here,

A =

(
(σ − σ̄) sin θ cos θ −iω − σ̄ sin2 θ − σ cos2 θ

iω + σ̄ cos2 θ + σ sin2 θ (σ̄ − σ) sin θ cos θ

)
=(σ − σ̄)

(
sin θ cos θ sin2 θ
− cos2 θ − sin θ cos θ

)
+

(
0 −iω − σ

iω + σ 0

)
Finally, we obtain the parametric system on the reference domain to which

we apply the reduced basis method
−(iω + σ)(iω + σ̄)Ez + AJ−T∇ ·

(
Hx

Hy

)
= 0,

J−T∇Ez + A

(
Hx

Hy

)
= 0.

(13)

Here, J is the Jacobian matrix of the mapping,(
x
y

)
→

(
x̂
ŷ

)
,

given as

J =
∂(x̂, ŷ)

∂(x, y)
=

1

x2 + y2

(
xx̂+ f ′myŷ x̂y − f ′mxŷ
xŷ − f ′mx̂y yŷ + f ′mxx̂

)
.

3. The reduced basis method

In the following, we outline the procedure applied to build the reduced basis.

3.1. The truth approximation

We first describe the finite element method to solve the parametric systems
(5) and (13) that we want to approximate for a particular parameter choice.
We let

u =

 Ez

Hx

Hy

 v =

 v1
v2
v3


and, for a given a mesh Th, we use a discontinuous Galerkin method [11] to
solve both equations as in [6] but without the elimination of Ez since this can
not be done when the first order absorbing boundary condition or the PML
are present. Here, we omit the details (see e.g. [6, 11] for the details) of the
formulation and simply denote the resulting bilinear form as

aN (·, ·; θW ).

The truth approximation for the scattered field uN (ν) is then the solution of

aN (uN (θW ),v; θW ) = −aN (uI,v; θW ), ∀ v ∈ XN . (14)
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Here, we define the following finite element space

XN = {v ∈
(
L2(Th)

)3
: for all elements K ∈ Th,v|K ∈ (Pk(K))

3}, (15)

and uI is the incident field (eiωx⃗·d⃗,−d2 eiωx⃗·d⃗, d1 e
iωx⃗·d⃗)T .

Remark 1. The volume terms on the right hand side of (14) involves the in-
cident field and can be removed in practice since it automatically satisfies the
three first equations in (5) at the continuous level.

3.2. Construction of the reduced basis. The greedy algorithm

The next step in the approximation is to replace the approximation space
(15) for the DG formulation (14) by a lower dimensional space of the form (see
(3))

XN = span
{
uN (νi), i ∈ {1, . . . , N}

}
. (16)

As indicated previously, the selection of these parameters νi, i ∈ {1, . . . , N} is
crucial to achieve good approximation properties of the reduced space. This
selection is performed through a greedy algorithm, presented for completeness
in Figure 3 (see [17, 20, 6] for the details). The key point of the algorithm is
line 3 where the truth approximation, i.e., solution of the problem (14) or (2),
is compared with the reduced basis solution, recovered through (3)). The value
of the parameter for which a bound for this error is maximized is taken to be
the next parameter values.

In practice, the set D is replaced by a discrete training set Ξtrain. Moreover,
the a posteriori error estimator ∆N (ν), evaluated at low computational cost ,
is assumed to be a rigorous and optimal upper-bound of the error [17, 20, 6].

1 ≤ ∆N (ν)

∥uN (ν)− uN (ν)∥L2

≤ C (constant).

X1 = span
{
uN (ν1)

}
(with ν1 arbitrarily chosen) ;1

for N = 1, . . . , Nmax do2

νN = argmax
ν∈D

∆N (ν);
3

XN = span
{
uN (νi), i ∈ {1, . . . , N}

}
;4

end5

Figure 3: Algorithm to build the reduced basis space
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3.3. The empirical interpolation method

The bilinear and linear forms in our benchmark problems both contain func-
tions that are non-affine with respect to the parameter. For an example, the
linear form involved in the computation of the output (7) contains terms of the
form ∮

ψ(x) g(x; ν) dC, (17)

where

g(x⃗, ν) ≡ exp(-iωk⃗θr · x⃗)
= cos(ω(x cos θr + y sin θr))︸ ︷︷ ︸

g1(x,ν)

− i sin(ω(x cos θr + y sin θr))︸ ︷︷ ︸
g2(x,ν)

.

(18)
The affine assumption enables the offline-online computational strategy and is
hence a key part of computational efficiency of the scheme. When violated, one
idea is to approximate the function g(·; ·) in (17) by a linear combination of
functions with separate dependence of the parameter variable and the spatial
variable, i.e.,

g(x; ν) ≈ gM (x; ν) =
M∑

m=1

φM
m (ν)qm(x),

using the empirical interpolation method [2, 10]. This leads to an approximate
linear form clearly satisfying the affine assumption. The empirical interpolation
method is based on i) the expansion of the function g(·; ·) over a space accounting
for the parameter dependence and ii) a robust interpolation procedure. For
completeness of the paper we briefly present these two steps [2, 10].

Construction of the approximation space. To build an approximation space well
adapted to the parameter dependence we consider

W g
M := span (g(·; νgm), 1 ≤ m ≤M) .

The set of parameters Sg
M = {νgm, 1 ≤ m ≤M} is built hierarchically using the

greedy algorithm in Figure 4.
Given a set of parameters Sg

m (and its associated approximation space W g
m),

the next parameter νgm+1 is selected as the one where the difference between
g(·, ν) and its best approximation, measured through a suitable norm ∥ · ∥,

g∗M (·, µ) := argmin
z∈W g

M

∥g(·, µ)− z∥ , (19)

is maximized inW g
m In practice, the set D on line 4 is replaced by a training set

Ξg
train ⊂ D. In addition, we use a L2-type norm in such a way that computing

(19) amounts to the solution of a linear system.
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Sg
0 = ∅;1

W g
0 = {0};2

for M = 1, . . . ,Mmax do3

νgM = argmax
ν∈D

∥∥g∗M−1(·, ν)− g(·, ν)
∥∥

4

Sg
M = Sg

M−1 ∪ {νgM};5

W g
M = span (g(·, ν), ν ∈ Sg

M );6

end7

Figure 4: Algorithm to build the approximation space

Ig
0 = ∅;1

for M = 1, . . . ,Mmax do2

Compute gM−1(·; νgM ) ∈W g
M−1 interpolating3

g(·; νgM ) on the points Ig
M−1;

Compute rM (·) = g(·; νgM ) − gM−1(·; νgM );4

xgM = arg esssup
x∈Γ

|rM (·)|, Ig
M = Ig

M−1 ∪ {xgM};
5

qM (·) = rM (·)/rM (xgM );6

end7

Figure 5: Algorithm to compute the interpolation points
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Setting up the interpolation procedure. The interpolation points

Ig
M = {xgm, 1 ≤ m ≤M} ,

that are selected with the algorithm in Figure 5 lead to an efficient and ro-
bust interpolation. In addition, this procedure provides a new basis qm(·), m ∈
{1, · · · ,M} for the interpolation space such that the computation of the inter-
polation coefficients φM

m (ν) amounts to solving a triangular linear system.
Notice that the family of interpolation points is hierarchical. Moreover, the

algorithm is well defined unless rM (·) ̸= 0. This would, however, imply that the
interpolation procedure would be exact for all ν ∈ D when using M − 1 terms
on the expansion.

In practice, the search of the interpolation point xgM in line 5 is not performed
over Γ but on a finite number of points included in Γ (usually the nodes of a
mesh). Moreover, the two algorithms in Figures 4 and 5 are interwined, see
[2, 10]. That is, one more basis function qM (·) is added in each step together
with the next interpolation point νgM . Lastly, the best approximation error in
(19) is replaced by interpolation error as shown by line 3 of Figure 5.

4. Numerical Results

In this section, we discuss the numerical results for the two benchmark prob-
lems, seeking to confirm the high efficiency and good accuracy of the reduced
basis method applied to complex scattering problems.

4.1. Open Cavity Benchmark

The governing equations are solved using the discontinuous Galerkin method
with third order polynomials over a nonconforming mesh locally refined toward
the corners and tips of the scatterer. The total number of unknowns is 7520. In
Figure 6, we illustrate the fields when ω = 2π and θi = π/4.

The linear functional associated with the output of interest does not satisfy

Figure 6: Solution of the problem on the open cavity (from left to right: Ez , Hx and Hy) for
ω = 2π and θ = π/4.
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the affine assumption as discussed in Section 3.3). For this reason we begin by
checking the performance of the EIM used to interpolate the function g1(·; ·) in
(18) (the results for g2(·; ·) are similar) to recover an affine linear form.

4.1.1. Empirical Interpolation Method

The parametric space is in this case two dimensional with ν = (ω, θr) since
θi only appears in the right-hand side of the PDE. Thus we need to interpolate
g1(·; ·) on the boundary Γ where the output is computed. The approximation
space for this interpolation is obtained using the L2(Γ)-norm. Hence, the com-
putation of the best approximation (see (19)) amounts to solving a linear system
with size equal to the number of degrees of freedom on the boundary Γ. The
interpolation points are computed using the algorithm in Figure 5, where the
maximum is sought (for simplicity) among the nodes used by the approximation
and not in the entire Γ.

1-D parameter experiment. To begin, we only consider one parameter, the ob-
servation angle θr ∈ D := [0, 2π], while keeping the angular frequency fixed.
The empirical interpolation method amounts in this case to the approximation
of a plane wave with angular frequency ω and an arbitrary measurement an-
gle θr using a finite number of plane waves with the same angular frequency.
The results are displayed in Figure 7 for ω = 0.5π and ω = 2.5π. The greedy
search performed on the line 4 of the algorithm in Figure 4 is done over the
training set Ξtrain = {2πk/360}360k=0. The maximum dimension of the dis-
crete space Mmax is the smallest integer such that the best approximation error
ϵ∗M (ν) := ∥g(·, ν) − g∗M (·, ν)∥, is less than ϵ = 2.5 × 10−14 uniformly on Ξtrain.
In the first column of Figure 7 we illustrate the parameters Sg

Mmax
that are se-

lected by the algorithm, hence defining the approximation space. In the second
column we plot the corresponding interpolation points Ig

Mmax
that are selected

by the algorithm in Figure 5 for both configurations.
To test the quality of the approximation space W g

M and the greedy interpo-
lation procedure, we consider a random set of 1000 parameters Ξrnd uniformly
distributed in D. We compute

max
ν∈Ξrnd

∥g(·; ν)− g∗M (·; ν)∥ and max
ν∈Ξrnd

∥g(·; ν)− gM (·; ν)∥, (20)

and show these in the third column of Figure 7. Note that the first quantity
is the maximum error committed by the best approximation (projection) over
Ξrnd while the second quantity is the maximum error in which case the inter-
polation is used over Ξrnd. Both quantities show exponential decay when the
number of elements is increased. Moreover, the quality of the projection and
the interpolation is comparable, implying that the interpolation points are well
selected and the interpolation procedure is robust. As expected, for a higher
angular frequency we need more terms in the approximation to achieve a similar
accuracy.
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Figure 7: Empirical interpolation of the function g1(x; (ω, θr)) = cos(ω(x cos(θr) + y sin θr))
with θr ∈ [0, 2π] when ω = 0.5π (top) and ω = 2.50π (bottom) on Γ. In the first (resp. second)
column, we represent the set Sg

Mmax
(resp. the interpolation points Ig

Mmax
). The larger the

point is the earlier it has been chosen. Plotted in the third column are maxν∈Ξrnd
∥g(·; ν)−

g∗M (·; ν)∥ and maxν∈Ξrnd
∥g(·; ν)− gM (·; ν)∥.

2-D parameter experiment. We interpolate the function g1(·; ·) for the case
where both (ω, θr) varies on the set D = [0, 3π] × [0, 2π]. In this case the
empirical interpolation method approaches a plane wave with arbitrary (ω, θr)
in the given range by a linear combination of a finite number of plane waves.
The results are displayed in Figure 8. On the left we represent the parameters
selected by the greedy process on the line 4 of the algorithm in Figure 4, run over
the training set Ξtrain = {2πk/360}360k=0 × {3πk/100}100k=0. Note that the high
frequencies (where the function oscillates more) are preferred. In the middle we
represent the interpolation points selected by the algorithm in Figure 5.

To test the quality of the approximation space and the interpolation points
we evaluate the algorithm over a set of 40000 parameters randomly chosen in the
set [0, 2π]× [0, 3π], and compute the quantities in (20). The results are plotted
in Figure 8 on the right. We observe that with 15 terms the error begins to
decay exponentially. With about 25 terms a 10−5 accuracy is achieved. We also
observe that the larger the range of frequencies is, the higher the dimension of
the approximation space is needed. Hence, in applications where large ranges
are required, a computational strategy for splitting this range into smaller ones
to control overall online cost is interesting and perhaps even essential.

In the next section, when coupling the EIM with the RBM, we use a large
number of terms on the expansion (M = 35) in order to ensure a good approx-
imation uniformly across the parameter space.

4.1.2. RBM with EIM

Since the non-affinity only resides in the linear forms for this problem, we
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Figure 8: Empirical interpolation of the function g1(x; (ω, θr)) = cos(ω(x cos(θr) + y sin θr))
with (ω, θr) ∈ [0, 3π] × [0, 2π] on Γ. In the first (resp. second) column we represent the
set Sg

Mmax
(resp. the interpolation points Ig

Mmax
). The larger the point is the earlier

it has been chosen. Plotted in the third column are maxν∈Ξrnd
∥g(·; ν) − g∗M (·; ν)∥ and

maxν∈Ξrnd
∥g(·; ν)− gM (·; ν)∥.

only need to apply the empirical interpolation method on the linear forms.
Once we have obtained an affine expansion of the linear forms, the next step
of the offline computations consists of computing the reduced basis that will
be used in the online part. We recall that the output of interest depends on
three parameters (ω, θi, θr) ∈ D = [π/2, 5π/2] × [0, 2π] × [0, 2π]. We start by
splitting the parameter domain [8] into three sub-domains (corresponding to
low frequencies, medium frequencies and high frequencies) D = ∪3

i=1Di where

D1 =

[
π

2
,
3π

2

]
×[0, 2π]2, D2 =

[
3π

2
, 2π

]
×[0, 2π]2 and D3 =

[
2π,

5π

2

]
×[0, 2π]2.

This allows us to use different discretization spaces for the truth approximation
(for small values of ω a coarser mesh could be used) depending on the parameter
sub-domain. We apply the greedy algorithm 3 over the train sets

Ξtrain
1 =

{
π
2 + nπ

25

}25
n=0

×
{

2lπ
25

}25
l=0

×
{

2mπ
25

}25
m=0

⊂ D1,

Ξtrain
2 =

{
3π
2 + nπ

2·25
}25
n=0

×
{

2lπ
26

}26
l=0

×
{

2mπ
26

}26
m=0

⊂ D2,

Ξtrain
3 =

{
2π + nπ

2·26
}26
n=0

×
{

2lπ
27

}27
l=0

×
{

2mπ
27

}27
m=0

⊂ D3.

Note that the problem is more sensitive to parameter changes for large values ω.
The density of the train set is selected accordingly. In addition, the construction
of the reduced basis is independent on θr, which appears only in the linear form
associated to the output. This allows us to run the greedy algorithm over two-
dimensional sets.

In Figure 9, we show the parameters selected by the greedy algorithm in
the three cases (left), and the evolution of the maximum over the train sets
Ξtrain
i , i ∈ {1, 2, 3} of the a posteriori error estimator (right). We observe

exponential convergence of the a posteriori error estimator and see, as expected,
that the rate of convergence is lower when we consider larger parameter sets or
high values for ω.

Let us now test the quality of the reduced basis space in the online stage.
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Figure 9: Construction of the reduced basis when (ω, θi) is in [π/2, 3π/2] × [0, 2π] (in blue),
[3π/2, 2π] × [0, 2π] (in red) and [2π, 5π/2] × [0, 2π] (in green). On the left we represent the
parameters selected by RBM (the larger the markers the earlier they have been chosen). On
the right is shown the evolution of the maximum over the train sets Ξtrain

i , i ∈ {1, 2, 3} of
the a posteriori error estimator when the dimension of the reduced basis is increased.

MonoStatic RCS, Figures 10 and 11. We start by computing the monostatic
RCS in dB (i.e., we consider θr = θi) with (ω, θi) ∈ [π/2, 5π/2] × [0, 2π]. The
results are shown in Figure 10 (left). The logarithm in base 10 of the a posteriori
error estimator for the linear output F (·, ·, ·) is also plotted (right). Note that
depending on the sub-domain in which the parameter falls (D1, D2 or D3), a dif-
ferent reduced basis space is used. For both plots we perform the computations
over the following grid

Ξtest
1 =

{
π
2 + nπ

100

}100
n=0

×
{
( 2lπ360 ,

2lπ
360 )

}360
l=0

⊂ D1,

Ξtest
2 =

{
3π
2 + nπ

2·100
}100
n=0

×
{
( 2lπ360 ,

2lπ
360 )

}360
l=0

⊂ D2,

Ξtest
3 =

{
2π + nπ

2·100
}100
n=0

×
{
( 2lπ360 ,

2lπ
360 )

}360
l=0

⊂ D3,

which is not a subset of the training set. We have used 190, 220 and 250 elements
for the computations over Ξtest

1 , Ξtest
2 and Ξtest

3 respectively. We present, in
Figure 11, the monostatic RCS for ω ∈ {1.5708, 6.2832, 7.2257} computed with
two different number of elements on the reduced basis. We can observe that in
both cases the approximation is very good even if the output is less reliable with
a low number of elements on the basis. Adding a few elements to the reduced
basis space dramatically reduces the width of the confidence interval. Note that
these plots correspond to three different cuts of the monostatic RCS shown in
Figure 10 for the values of ω selected above.

We plot, in Figure 12, the bistatic RCS in dB for ω = 7.4693 and all possible
angles of incidence and measurement and the logarithm in base 10 of the a
posteriori error estimator for the output. For both plots we have performed the
computations over the following grid

Ξtest = {7.4693} ×
{

2lπ
360

}360
l=0

×
{

2mπ
360

}360
m=0

⊂ D3,
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Figure 10: Monostatic RCS (i.e. θr = θi) in dB (left) for (ω, θi) ∈ D̃1 ∪ D̃2 ∪ D̃3 with

D̃1 = [π/2, 3π/2] × [0, 2π], D̃2 = [3π/2, 2π] × [0, 2π] and D̃3 = [2π, 5π/2] × [0, 2π]. For each
of these three regions we compute a different reduced basis. Logarithm in base 10 of the
estimator for the output of interest is on the right. The computations have been done with
a reduced basis of dimension equal to 190 for (ω, θi) ∈ D̃1, 220 for (ω, θi) ∈ D̃2 and 250 for

(ω, θi) ∈ D̃3.

that is not a subset of the train set. In Figure 13 we present the monostatic
RCS and the bistatic RCS in dB for θi ∈ {0.0000, 1.2566}. We observe that the
convergence of the confidence region provided by the estimator rapidly shrinks
when the dimension is increased. Note that these plots correspond to the re-
striction of the plot 12 to the solid, dashed and dotted lines.
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Figure 11: From left to right, monostatic RCS in dB for ω ∈ {1.5708, 6.2832, 7.2257}. In
black, the output computed with the reduced basis method. The blue region is the confidence
region provided by the a posteriori error estimator. In the first row, we use 150, 150, and 180
bases respectively and the reduced basis output already provides a good approximation of the
actual output. However, the confidence region for some angles is rather wide. In the second
row, we enrich the reduced basis (from 150 to 180 and from 180 to 220) to certify the output.

Figure 12: Bistatic RCS in dB (left) for (θi, θr) ∈ [0, 2π]2 and ω = 7.4693, and logarithm in
base 10 of the estimator for the output of interest (right). The computations are done with a
RB dimension equal to 220.
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Figure 13: From left to right, monostatic RCS, bistatic RCS in dB with θi = 0.0000, and
bistatic RCS with θi = 1.2566 in dB. ω = 7.4693 in all cases. Plotted in black is the output
computed with the reduced basis method using 180 (top) and 220 (bottom) bases. The blue
region is the confidence region provided by the a posteriori error estimator. The RB dimension
is 180 (top) and 220 (bottom).
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4.2. Invisible Pacman Benchmark

For the Pacman scattering problem, we consider two parameters: angular
frequency ω and the wedge angle θW , and apply a reduced basis method to the
parametric equations (13) derived in Section 2.2. To emphasize the dependence
on the parameters, the radar cross section (RCS), equations (7) and (8), is
denoted by RCS(ω, θW , θi, θr). For an example, RCS(3π, 18.5◦, 0, θr) in the
caption of a figure means that the plot is the RCS versus observation angle θr
with frequency 3π, wedge angle 18.5◦, and incident angle 0.

The scatterer has a fixed diameter (5 wavelengths when ω = 10π) and we
have used a curvilinear PML [7] of fixed thickness, corresponding to 2.5 wave-
lengths away from the scatterer, in an annulus of width 1.5 wavelengths when
ω = 10π. The PML has a maximum damping coefficient 60.

4.2.1. Truth approximation

We begin by studying some aspects of the truth solver for the problem (13).
We fix θrW = 18.5◦, the reference angle for the wedge, throughout the paper.

When θW = 0, we have the exact solution to compare our result with. Here,
we solve the scattering problem for a cylinder with two frequencies: 3π, and 10π
and calculate the RCS. We see, from Figure 14, that the finite element solver is
highly reliable with relative error on the level of 10−3 for higher frequency and
10−4 for lower frequency.
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Figure 14: RCS for the cylinder 10log10(RCS(ω, 0, 0, θr)) with wave number ω = 3π for the
left and 10π for the right. From top to bottom: exact solution, approximation, relative error.

To test the efficiency of this PML applied to this problem, we compare
the RCS with that obtained by using only a first order absorbing boundary
condition, Silver-Müller boundary condition. It is evident from Figure 15 that
the application of the curvilinear PML improves the results. Here, the reference
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Figure 15: Left: comparison of the bistatic RCS (θW = 18.5◦), 10log10(RCS(10π, 18.5, 0, θr)),
with application of curvilinear PML and with a first order absorbing boundary condition.
Right: relative error of the computation with curvilinear PML.

is a proven solver for the Pacman scatterer on a square domain with rectilinear
PML and no geometric mapping.

Next, we study the effect of three possible forms of mapping fm(·) in (9).
We show here the resulting monostatic RCS in dB from the parametric solver
with θW = 21.5. In Figure 16, “P2P1P2” indicates that the polynomial de-
grees of the mapping on [−π,−θrW ], [−θrW , θrW ] and [θrW , π] are 2, 1, and 2
respectively; similarly “P2P2” degrees on [−π, 0] and [0, π]; “P1P1P1” degrees
on [−π,−θrW ]

∪
[θrW , π] and [−θrW , θrW ]. Naturally, we require fm(−π) = −π,

fm(−θrW ) = −θW , fm(θrW ) = θW , fm(π) = π for continuity and also demand
C1−regularity if there are additional degrees of freedom allowing us to do so
(first and second cases).
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Figure 16: Comparison of three different mappings

We observe that the “P1P1P1” mapping yields the best overall result. The
reason for this is found in the observation that this map ensures the most reg-
ularity in the physical domain. Hence, we shall use this mapping in the truth
solver.

4.2.2. RBM for one parameter without EIM

The interesting phenomenon described in Section 2.2 and exemplified by
Figure 2 suggest the study of the dependence of scattering on varying θW .
Therefore, we fix ω = 10π, treat θW as our parameter in this section and

21



develop a reduced basis method to the Pacman scattering problem. Here, we
set the parameter domain for θW to be [8.5◦, 28.5◦]. Contrary to the problem
treated in Section 4.1 where only the linear forms were non-affine, the bilinear
form for this problem is also non-affine thanks to its dependency on θW through
the geometric transformation. Note that only the parameter θW is responsible
for the non-affinity since the bilinear form is affine in ω (see equation (13)).
EIM will be applied in the next subsection where it is shown that it works well
for this problem and, as expected, does not degrade the quality of the RBM
solution. However, the results in this subsection are obtained without EIM for
simplicity.

The procedure of building the reduced basis space is standard and we omit
the details. The accuracy of the reduced basis solution is certified by the
residual-based a posteriori error estimate. The inf-sup number will not be-
come zero since this is an open problem. The resulting error estimate is cheap
to obtain online. It also guides the selection of the parameters and thus the
building of the reduced basis space in the greedy algorithm in 3. See e.g. [6, 19]
for details. For this example, this algorithm has been run over the train set
Ξtrain of size 257.

In Figure 17 we illustrate the 29 parameter instances that the reduced basis
method picks together with their orders. The first point is picked randomly
to start the greedy algorithm. It is also interesting to note that, in order to
capture the critical angles, the greedy algorithm does not necessarily select
points clustering around those angles. This underscores the strength of the
method and that its ability to capture the critical phenomenon does not rely on
sampling around the critical points in the parameter domain.

We plot, in Figure 18, the history of convergence of the RB solutions for the
worst of the 120 randomly selected parameter values. Exponential convergence
is clearly observed. Moreover, the error estimate decreases exponentially with
about the same rate. Thus, the effectivity index is roughly constant across the
many magnitudes of decrease in the RBM error. With only 20 bases, we obtain
an accuracy at the level of 10−5. Using the underlying mesh of our numerical
experiment, instead of solving systems of dimension above 200, 000 × 200, 000,
we only need to solve problems of dimension 60× 60.

Next, we study the monostatic scattering as a function of the wedge angle,
that is 10log10(RCS(10π, θW , 0, 0)). In Figure 19, we plot the truth approxima-
tion (in black) and the reduced basis approximations with up to only 11 basis
elements. We see that the curve with 11 bases and the truth cuve are “roughly
identical” to naked eyes. We also observe the dramatic effect of adding two
correct samples on the output.

As described in section 2.2 and shown here by the monostatic scattering
curve in Figure 19, there are several critical angles producing minimal mono-
static scattering. To visualize this phenomenon, we show, in Figure 20, the
electric fields corresponding to θW = 14.3◦, 18.5◦ and 21.5◦ degrees. The dif-
ference is easily noticeable around the wedge.

Finally, the error estimate provides bounds for the output computed by the
RBM. In Figure 21, we plot the RBM output together with the error bounds for

22



9.6 11.6 14.3 18.5 21.5

9.6 11.6 14.3 18.5 21.5
−15

−10

−5

0

5

10

15

Figure 17: The 29 θW ’s the greedy algorithm of the RBM picks to build the RB space. Top:
the higher the vertical line, the earlier that point was picked. Bottom: the points scattered
on the monostatic scattering curve 10log10(RCS(10π, θW , 0, 0)), the larger the marker, the
earlier it is selected.
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Figure 18: The worst case convergence history and the corresponding error estimate of the
RBM for 120 randomly selected parameter values.
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Figure 19: Using only 11 bases, we can obtain a very accurate plot of the monostatic scattering
(θi = θr = 0) respect to the wedge angle θW .

Figure 20: Real part (top), imaginary part (middle), and module (bottom) of the electric field
with θW = 14.3◦ (left), 18.5◦ (middle) and 21.5◦ (right).
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three different numbers of bases. We see that RBM output with just 17 bases
captures all essential behavior with a high level of confidence.
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Figure 21: Error bounds of the RB output, RCS(10π, θW , 0, 0), for three different number of
bases.

4.2.3. RBM for two parameters with EIM

In this section we consider two parameters in the invisible Pacman problem:
the angular frequency ω and the wedge angle θW . As pointed out in Section
4.2.2, both the bilinear form and the linear forms for this problem are non-affine
due to their dependency on θW through the geometric transformation. The
non-affinity attributed to θW is handled by EIM. To do that, every function
depending on θW in a non-affine way (for example all the components of the
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Jacobian matrix associated to the transformation) are expanded using a one-
dimensional empirical interpolation method [10]. EIM is applied in a similar
situation in [18, 13]. The number of expansion terms M is taken in {1, 2, 3}.
These numbers are quite small but note that it is applied to one-dimensional
functions and there are more than 60 such functions in the linear and bilinear
forms. This results in Qa and Qm around 200. In this case, a L∞(Ω)-norm best
approximation is considered. It is important to note that the RBM procedure
still needs to be applied to a two dimensional parameter domain.
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Figure 22: RBM with EIM for ω ∈ [3π, 5π] and θW ∈ [8.5◦, 28.5◦]: (a). The parameter
values selected by RBM to build the RB basis. The larger the marker, the earlier it has been
selected. (b). Convergence of the error with respect to the dimension of the RB space for
different number of magic points. (c). Convergence of the error estimate with respect to the
dimension of the RB space for different number of magic points.

We first test the method for (ω, θW ) ∈ [3π, 5π] × [8.5◦, 28.5◦]. In Figure 22
we show the parameter points selected by the RBM, the worst-case convergence
of the approximate solution (over the train set) of the RBM coupled with EIM
and its estimate. Exponential convergence is observed. Note that the green
curve corresponding to the case M = 1 is cut at the starting point of the
plateau where the interpolation error begins to dominate. Next, we compute
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Figure 23: RCS(ω, θW , 0, 0) in dB computed by the RBM with EIM for ω ∈ [π, 5π] and
θW ∈ [8.5◦, 28.5◦]. Top: 3D-plot; middle: top view; bottom: point-wise relative error of
RCS(ω, θW , 0, 0).
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the monostatic RCS, that is RCS(ω, θW , 0, 0). Plotted in Figure 23 (top) is the
approximation given by RBM for (ω, θW ) ∈ [π, 5π] × [8.5◦, 28.5◦]. The RBM
approximation is obtained by using 30 bases for [π, 3π]×[8.5◦, 28.5◦] and 30 bases
for [3π, 5π]× [8.5◦, 28.5◦]. We plot, in the middle, the top view of RCS. The two
regions in this parameter domain for the critical configurations that produces
very small RCS is clearly identified. At the bottom is the point-wise relative
error between this RB approximation and the truth approximation. Notice that
the minimum contour level is set to be 0.01 to show that the approximation
is very accurate except for small neighborhoods of parametric configurations
rendering the Pacman invisible. In these small neighborhoods, the errors are
substantial. We thus perform a new set of computations using 40 RB instead of
30. The result is in Figure 24 showing that the error is indeed getting smaller
and closely clustering around a few points.

The results in Figures 22 and 23 are obtained by using second order accurate
discontinuous Galerkin method for the efficiency of our calculation. This suffices
for frequency in [π, 5π] with the resulting truth approximations being accurate
enough. However, when the frequency is increased, we need high-order DG
scheme to produce more accurate truth approximation. This is clearly shown
by Figure 25 where the RB result is converging perfectly to (an inaccurate) DG
result if second order DG is used for ω = 10π.

Figure 24: Point-wise relative error RCS(ω, θW , 0, 0) in dB computed by the RBM using 40
bases for ω ∈ [π, 5π] and θW ∈ [8.5◦, 28.5◦].

Finally, we use a fourth order DG and the resulting RBM (coupled with
EIM) to consider the problem with (ω, θW ) ∈ [9.8π, 10π] × [8.5◦, 28.5◦]. The
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Figure 25: Comparison of the accuracy of RCS(10π, θW , 0, 0) in dB with truth approximations
computed by a second and a fourth order DG method for θW ∈ [8.5◦, 28.5◦].

Figure 26: RCS(ω, θW , 0, 0) in dB computed by the RBM (with 22 bases) with EIM for
ω ∈ [9.8π, 10π] and θW ∈ [8.5◦, 28.5◦].
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approximate RCS(ω, θW , 0, 0) is plotted in Figure 26 with 22 bases used. A
slice of this picture with ω = 10π shows comparable accuracy with the “RBM
with 11 Bases” curve in Figure 19. Although the complexity of the geometric
mapping and the system being in a vector form do lead to a large number of
terms for the affine decomposition, the resulting RBM coupled with EIM does
provide highly accurate approximations that converge exponentially to the truth
approximations.

5. Conclusion

In this paper, we have developed and applied reduced basis method to two
non-trivial electromagnetic scattering problems for which the radar signature is
an important output of interest. As we have discussed in detail, this develop-
ment has required the development and application of a variety of techniques
such as empirical interpolation, non-trivial geometric mapping, the inclusion of
perfectly matched layers into the formulation.

We have demonstrated that in spite of the need to combine these different
elements to ensure computational efficiency, exponential convergence of the re-
duced basis solution toward the truth finite element approximation is obtained
across the entire parameter domains. We also demonstrate that even with very
narrow critical behavior, the greedy approach captures this behavior very well,
even without requiring a dense sampling close to the critical parameter values.

Even with these advances, several challenges still lie ahead to further mature
the reduced basis methods for complex scattering applications. These are mainly
related to increasing the online efficiency, seeking to demonstrate substantial
speedup with as much as two to three orders of magnitude as seen in other
applications. The essential components to achieve this found in reducing the
complexity of the affine expansion recovered by the empirical interpolations
for geometrical parametric variations and the general computational challenges
associated with large parameter ranges or high-dimensional parameter domains.
We hope to report on such developments in future work.
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