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ABSTRACT
A general goal concerning fundamental linear algebra prob-
lems is to reduce the complexity estimates to essentially the
same as that of multiplying two matrices (plus possibly a
cost related to the input and output sizes). Among the bot-
tlenecks one usually finds the questions of designing a recur-
sive approach and mastering the sizes of the intermediately
computed data.

In this talk we are interested in two special cases of lattice
basis reduction. We consider bases given by square matri-
ces over K[x] or Z, with, respectively, the notion of reduced
form and LLL reduction. Our purpose is to introduce ba-
sic tools for understanding how to generalize the Lehmer
and Knuth-Schönhage gcd algorithms for basis reduction.
Over K[x] this generalization is a key ingredient for giving a
basis reduction algorithm whose complexity estimate is es-
sentially that of multiplying two polynomial matrices. Such
a problem relation between integer basis reduction and inte-
ger matrix multiplication is not known. The topic receives a
lot of attention, and recent results on the subject show that
there might be room for progressing on the question.

Fundamental problems in linear algebra. Many matrix
problems over a field K can be solved in O (̃nω) if ω is the ex-
ponent for matrix multiplication (see e.g. [2]). Over the last
decade it became clear that the corresponding cost bounds,
O (̃nωδ) and O (̃nωβ), for multiplying matrices of degree
δ in K[x]n×n or with entries having bit length β in Z

n×n,
may also be reached for symbolic problems. We refer for ex-
ample to Storjohann’s algorithms for the determinant and
Smith form [21], and to the applications of polynomial ap-
proximant bases in [9]. The cost bounds have been recently
improved for the characteristic polynomial [11] or matrix
inverse [22]. However, as well as for integer LLL reduction,
the question of reaching the bounds O (̃nωβ) (O (̃n3β) for
inversion) remains open for these problems.
Lattices. A polynomial lattice Λx of dimension d of K[x]n

is the set of the polynomial combinations of d linearly inde-
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pendent vectors b1, . . . , bd of K[x]n. The latter vectors form
a basis of the lattice and define a matrix B ∈ K[x]n×d. Any
lattice admits an infinity of bases, but one may identify spe-
cial ones, called minimal, with the smallest possible degrees.
The matrix corresponding to a minimal basis, with degrees
δ1, . . . , δd, is said to be in reduced form and is “orthogonal”.
We mean that up to a column scaling its leading coefficient
matrix is full rank, and the orthogonality defect is

∆x(b1, . . . , bd) =
Q

j 2δj /2deg det(Λx) = 1.

The polynomial situation is simpler than its number the-
oretic analogue for which it is much harder to compute min-
imal quantities. A lattice Λ of Z

n is the set of the integer
combinations of a basis b1, . . . , bd in Z

n. We consider the
relaxed notion of reduction introduced by Lenstra, Lenstra
and Lovász in [14]. The lengths of the vectors of a LLL re-
duced basis are not minimal but fairly small. Among other
properties, the lengths and the orthogonality defect satisfy

∆(b1, . . . , bd) =
Q

j ‖bj‖/ det(Λ) ≤ 2O(d2).

The problem of finding a reduced basis of a lattice given
by an arbitrary basis is called basis reduction. We focus
on the two above particular cases for non singular matri-
ces. A more general setting would be reduction for discrete
subgroups of R

n and free modules of finite rank. A rich
litterature and the wide spectrum of applications of basis
reduction show the importance of the domain. For the poly-
nomial case we may refer to Kailath [10] and system theory
references therein. About LLL and stronger reductions we
may refer to Lovász [15] and the contributions in [16].

Basis reduction. Two matrices A and B whose columns
form a basis of a given lattice are equivalent, i.e. B = AU
with U unimodular. A typical approach for computing a re-
duced B from a non reduced A is to apply successive trans-
formations. Over K[x], the transformations correspond to
dependencies in coefficient matrices, and decrease the col-
umn degrees. In the integer case, geometrical informations
are obtained from orthogonalizations over R for decreasing
the column norms. The basic transformations consist in re-
ducing vectors or matrices against others, and vice versa.
Reduction algorithms are seen as generalizations of Euclid’s
gcd or continued fraction algorithm (see [7] and seminal ref-
erences therein). The intermediately computed bases play
the role of “remainders”, and the successive basic transfor-
mations performed on the bases play the role of “quotients”.

Lehmer’s & Knuth-Schönhage algorithms. Lehmer’s
modification of Euclid’s algorithm [13], and Knuth’s [12] and
Schönhage’s [19] algorithms, have been a crucial progress.
Their idea is to employ the fact that for small quotients,
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truncated remainders suffice to compute the quotient se-
quence. Via an algorithm that multiplies two integers of
size β in µ(β) operations, this has led to the bit complexity
estimate O(µ(β) log β) for the gcd problem. Through some
analogies between recent algorithms over K[x] and Z, we will
see how similar recursive approaches may be developed for
reduction.

Reduced form over K[x]. Beckermann and Labahn [1]
has given a key generalization of the Knuth-Schönhage al-
gorithm for Padé approximants. As a consequence one may
show [9] that reconstructing a univariate and proper matrix
fraction CB−1 from its expansion, with B column reduced of
degree O(δ), can be done in O (̃nωδ) field operations. This
may be applied to computing a reduced form B of a non sin-
gular matrix A, by reconstructing a fraction CB−1 from an
appropriate (proper) segment of the expansion of A−1 [4].
We will see that it follows that the reduction of a non singu-
lar A ∈ K[x]n×n of degree δ can be performed within about
the same number O (̃nωδ) of operations as that of multiply-
ing two matrices of degree δ in K[x]n×n. The corresponding
algorithm of Giorgi et al. [4] is randomized. A deterministic
algorithm is given in [5] where the problem of reducing A
is reduced to the problem of reducing the Hermite form H
of A. The latter problem may be solved in O (̃nωδ) via a
partial linearization of H, and using the algorithm designed
in [4] for fraction reconstruction via approximants.

These reduction approaches work in two phases. A first
phase transforms the problem into a“simpler”—with a small
degree solution—matrix approximant problem (either via a
fraction or the Hermite normal form). The second phase
inherits the approximation method of [1], and works by re-
currence on the approximation order. (The process may be
decomposed into successive matrix factorizations over K.)

LLL reduction over Z. For an insight into LLL reduc-
tion algorithms we may refer to the contributions of Nguyen
(Ch. 2), Schnorr (Ch. 4), and Stehlé (Ch. 5) in [16]. We focus
on the cost with respect to the integer bit size β, with the
aim of obtaining a bit complexity estimate O (̃Poly(n)β).

We will present the gradual strategy of [8, 17] for designing
a Lehmer-like algorithm in the following special case (see
also [18]). Assume that B0 is LLL reduced, and let σ =
diag(%, 1, . . . , 1) where % > 1. We call lift-reduction of B0 the
problem of reducing σkB0, k ∈ N. The lift-reduction of [17]
is a recurrence on the order k of the lifting, and implements
the lift-reduction as k successive elementary steps. (Bi+1

is a reduced basis of σBi.) With this setting, the Knuth-
Schönhage algorithm may be generalized for the task of lift-
reducing [17]. The truncation process of the successive bases
(“remainders” ) relies on an LLL reduction definition that
resists perturbation, and takes advantage of the numerical
quality of the reduced bases that are fairly well conditioned
(see [3]). The multi-dimensionality of lattice reduction leads
to the manipulation of significantly differing magnitudes in
the transformations themselves. The problem may be solved
by truncating also the transformations. (Unlike the integer
gcd case where the quotients are not truncated.)

We will see how to use lift-reduction for the LLL reduction
of A in time quasi-linear in β [17] (non singular case). Lift-
reduction is specialized to reducing a lift/shift of an already
reduced basis. For example, appropriate reduced bases for
calling the lift-reduction can be created iteratively from the
Hermite form of A. The above approach takes a matrix point

of view. An alternative approach to LLL reduction in time
O (̃Poly(n)β) has been recently obtained [6], by using the
2-dimensional Knuth-Schönhage algorithm from [20, 23].

Acknowledgment. We are grateful to Damien Stehlé for
his help during the preparation of this talk.
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[3] X.-W. Chang, D. Stehlé, and G. Villard. Perturbation
analysis of the QR factor R in the context of LLL lattice
basis reduction. Math. Comp., to appear.

[4] P. Giorgi, C. Jeannerod, and G. Villard. On the complexity
of polynomial matrix computations. In Proc. ISSAC,
Philadelphia, PA, pages 135–142. ACM Press, Aug. 2003.

[5] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote.
Triangular x-basis decompositions and derandomization of
linear algebra algorithms over K[x]. J. Symbolic Comput.,
to appear.

[6] G. Hanrot, X. Pujol, and D. Stehlé. Personal
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