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INVERSE SPECTRAL POSITIVITY FOR SURFACES

PIERRE BÉRARD AND PHILIPPE CASTILLON

Abstract. Let (M, g) be a complete non-compact Riemannian sur-
face. We consider operators of the form ∆ + aK − q, where ∆ is the
non-negative Laplacian, K the Gaussian curvature, q a non-negative
function, and a a positive real number. We address the question “What
conclusions on (M, g) and q can one draw from the fact that the operator
∆ + aK − q is non-negative” and we improve earlier results in particular
in the cases a = 1

4
and a ∈ (0, 1

4
).

MSC(2010): 58J50, 53A30, 53A10.

Keywords: Spectral theory, positivity, minimal surface, constant mean
curvature surface.

1. Introduction

Let (M, g) be a complete non-compact Riemannian surface. In the sequel,
we will always implicitly assume that M is connected and orientable. We
denote by ∆ the non-negative Laplacian, by K the Gaussian curvature and
by µ the measure associated with the metric g.

In this paper, we consider operators of the form ∆ + aK − q, where a is a
positive parameter and q a non-negative function. Such operators appear
naturally when one studies minimal (or constant mean curvature) immer-
sions. Let us mention two examples. The Jacobi (stability) operator of an
isometric minimal immersion M # R3 into Euclidean 3-space is ∆ + 2K.
More generally ([10], Section 3), the Jacobi operator of a minimal immer-

sion M # M̂3 into a 3-manifold with scalar curvature Ŝ can be written as
∆ + K − (Ŝ + 1

2 |A|2), where |A| is the norm of the second fundamental form
of the immersion.

More precisely, this paper is concerned with the following question: What
conclusions on the Riemannian surface (M, g), and on the function q, can
one draw from the fact that the operator ∆ + aK − q is non-negative on
(M, g) ? i.e. from the fact that the associated quadratic form is non-
negative on Lipschitz functions with compact support in M (or equivalently
on C1-functions with compact support),

(⋆) 0 ≤
∫

M

(
|df |2 + aKf2 − qf2)

dµ ∀f ∈ Lip0(M).

Our first result is the following.
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Theorem 1.1. Let (M, g) be a complete non-compact Riemannian surface,
and let q be a non-negative locally integrable function on M. Assume that
the operator ∆ + aK − q is non-negative on M, and that either

(i) a ∈ (1
4 , ∞), or

(ii) a = 1
4 , and (M, g) has subexponential volume growth, or

(iii) a ∈ (0, 1
4), and (M, g) has ka-subpolynomial volume growth, with

ka = 2 + 4a
1−4a

Then,

(A) The surface (M, g) has at most quadratic volume growth and is con-
formally equivalent to C or to C

• with the standard metrics.
(B) The function q is integrable on (M, g) and

∫
M q dµ ≤ 2πa χ(M).

(C) If M is a cylinder, then (M, g) has at most linear volume growth and
q ≡ 0.

Definitions. Let x ∈ M , and let V (r) denote the volume of the geodesic
ball B(x, r) for the metric g. We say that (M, g) has subexponential volume
growth if

lim sup
r→∞

ln V (r)

r
= 0.

We say that (M, g) has polynomial volume growth of degree at most k if

lim sup
r→∞

V (r)

rk
< ∞.

We say that (M, g) has k-subpolynomial volume growth if

lim sup
r→∞

V (r)

rk
= 0.

These definitions do not depend on the choice of the point x ∈ M . Note
that if (M, g) has polynomial volume growth of degree at most k, then it
has k′-subpolynomial volume growth for any k′ > k.

Remarks

(1) Theorem 1.1 improves several known results (see the short historical
account below). In particular, Case (i) was first treated in [4], with
q ≡ 0; Cases (ii) and (iii) were first considered in [9], under stronger
assumptions on (M, g).

(2) The assumptions and conclusions in the theorem are optimal, see
Section 3.2 for more details.

(3) The main new idea in the proof of Theorem 1.1 is to introduce the
function χ̂(t) := sup{χ

(
B(s)

)
| s ∈ [t, ∞)}, the supremum of the

Euler-Poincaré characteristics of open geodesic balls with radius at
least t, whose jumps describe the large scale topology of M , see
Section 2. We also introduce new functions to test the positivity of
the quadratic form (⋆), see Lemmas 2.4 and 2.5.

(4) Theorem 1.1 can be extended to the case in which the operator
∆ + aK − q is only assumed to have finite index. The conclusions,
under the assumptions (i), (ii) or (iii), are that (M, g) is conformally
equivalent to a closed Riemannian surface with a finite number of
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points removed, and that q is integrable over (M, g). We refer to
Section 4 for a precise statement and its proof.

(5) Another interesting situation, with applications to minimal and cmc

surfaces, occurs when the potential q has a positive lower bound,
i.e. c = inf q > 0. Theorem 1.1 can be extended to this situation,
improving the results of [7]. We refer to [1] for the details.

(6) Theorem 1.1 does not mention the case in which M is closed. We
recall the arguments of [10]: when M is closed, one can plug the con-
stant function 1 into (⋆), and conclude that 0 ≤

∫
M q ≤ 2πaχ(M).

If q does not vanish identically, then M is conformally equivalent to
a round sphere. If χ(M) = 0, then q ≡ 0. In this case, ∆ + aK ≥ 0
and the constant function 1 minimizes the associated quadratic form
because

∫
M K = 0. It follows that (∆+aK)1 = 0, and hence K ≡ 0,

i.e. (M, g) is a flat torus.

Short historical account on Theorem 1.1. The idea behind the proof of
Theorem 1.1 goes back to [19] in which A. Pogorelov proves that orientable
stable minimal surfaces in R

3 are planes. For this purpose, he shows that
a complete simply-connected surface, with non-positive curvature and non-
negative operator ∆ + 2K, must be parabolic. Another proof consists in
showing that such a simply-connected surface cannot be conformally equiv-
alent to the unit disk. This method appears in [3, 10]. In the latter paper,
D. Fischer-Colbrie and R. Schoen prove that there is no complete metric g

on the unit disk D, with ∆g + aKg ≥ 0 for some a ≥ 1. They show that
the set I(D, g) = {a ≥ 0 | ∆g + aKg ≥ 0} is a closed interval, and they
ask what is the value of the supremum of I(D, g). This question motivated
[4] and the present paper. Pogorelov’s result was extended to the case in
which ∆ + aK ≥ 0 for some a > 1

4 by S. Kawai [14]. A more general setting

(general topology and curvature, a > 1
2) was considered by R. Gulliver and

B. Lawson in [12]. A. Pogorelov’s method was improved by T. Colding and
W. Minicozzi [5] and, later on, by Ph. Castillon [4] who first proved Case
(i) in Theorem 1.1 (with q ≡ 0). Cases (ii) and (iii) were first considered by
J. Espinar and H. Rosenberg in [9], under more restrictive assumptions on
(M, g). Case (i), with a potential q, was treated in [9] and [17] which also
contain applications to constant mean curvature surfaces in 3-manifolds.

To motivate our next theorem, we recall the following result due to D. Fischer-
Colbrie and R. Schoen ([10], their Theorem 3 reformulated for our purpose),

Theorem. Let N be a complete oriented 3-manifold of non-negative scalar
curvature. Let M be an oriented complete non-compact stable minimal sur-
face in N . Then M is conformally equivalent to the complex plane or to a
cylinder. If M is a cylinder, and the absolute total curvature of M is finite,
then M is flat and totally geodesic.

They also point out (Remark 2, p. 207) that “the assumption of finite total
curvature should not be essential”. This is indeed the case: see [21], proof
of Theorem 2, and [18] for a proof using L2 harmonic 1-forms. The proof
of the preceding theorem involves the operator ∆ + K. In the framework of
the present paper, we can prove,
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Theorem 1.2. Let (M, g) be a complete non-compact 2-dimensional cylin-
der. Assume that the operator ∆ + aK is non-negative on (M, g), and that
either,

(i) a > 1
4 , or

(ii) a = 1
4 , and (M, g) has subexponential volume growth, or

(iii) a ∈ (0, 1
4), and (M, g) has ka-subpolynomial volume growth, with

ka = 2 + 4a
1−4a

.

Then, (M, g) is flat, i.e. K ≡ 0.

Remark. Case (i) in Theorem 1.2 appears in [20], Section 3.3 under the
assumption that a ≥ 1; in [9], Theorem 6.3, under the restrictive assumption
that

∫
M K+ dµ is finite; in [8] with a different proof. Note that Theorem 1.1

and Theorem 1.2, with a = 1, imply that the answer to the question raised
by D. Fischer-Colbrie and R. Schoen in [10] is positive.

The next theorem provides an intrinsic version of the optimal length esti-
mate of L. Mazet [15]. Note that this is a local result, we do not need M

to be complete. It applies when M is a stable constant mean curvature
surface, possibly with boundary, isometrically immersed into a simply con-

nected space form M̂ , see Corollary 6.2. Our proof follows the same ideas
as in Mazet’s paper. We clarify the argument by applying a transplantation
method.

Theorem 1.3. Let (M, g) be a Riemannian surface (possibly with boundary
∂M). Assume that the curvature satisfies K ≤ α2 for some α > 0. Let J be
the operator J = ∆ + aK − c, with a ∈ [1

2 , ∞) and c ≥ (a + 2)α2.

(i) If J is non-negative in a geodesic ball B(x, R) contained in M \∂M ,
then R ≤ π

2α
.

(ii) Assume that the geodesic ball B(x, π
2α

) is contained in M \ ∂M . If

J is non-negative in this ball, then c = (a + 2)α2, K ≡ α2 and
B(x, π

2α
) is covered by the hemisphere S2

+(α2) in the sphere with

constant curvature α2.

In the proof of this theorem, we will use the following classical result. Let

ρ : (M̂, ĝ) → (M, g) be a Riemannian covering. Let V be a locally integrable

function on M , and let V̂ = V ◦ρ. According to [10], Theorem 1, ∆+V ≥ 0

on (M, g) implies that ∆̂ + V̂ ≥ 0 on (M̂, ĝ). It is a natural question to
investigate under which conditions the converse statement holds. A partial
answer is given by Proposition 2.5 in [17]. As a matter of fact, one can

show that the converse statement holds provided that the group π1(M̂) is
co-amenable in the group π1(M). We defer the precise statement and its
proof to [2] because they rely on techniques and ideas different from those
used here.

The paper is organized as follows. In Section 2, we fix the notations and state
some technical lemmas to be used later on. The proof of Theorem 1.1 is given
in Section 3.1; the fact that the assumptions and conclusions in the theorem
are optimal is explained in Section 3.2. The extension of Theorem 1.1 to
finite index operators is given in Section 4. The proofs of Theorems 1.2 and
1.3 are given in the subsequent sections.
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2. Notations and preliminary results

In this section, we fix some notations which will be used throughout the
paper, and we state some preliminary results.

2.1. Notations. In this paper, unless otherwise stated, (M, g) denotes a
complete non-compact Riemannian surface. We also assume that M is con-
nected and orientable.

2.1.1. The non-negative Laplacian for the metric g will be denoted by ∆,
the Gauss curvature by K and the Riemannian measure by µ.

2.1.2. Let be given a reference point x0 in M . We let r(x) denote the
Riemannian distance from the point x to the point x0. We let B(s) denote
the open geodesic ball with center x0 and radius s. For t < s, we let C(t, s)
denote the open set C(t, s) = B(s)\B(t). The volume of the ball B(s) is
denoted by V (s), the length of the boundary of B(s) by L(s). The length
function is a priori only defined for s ∈ R+\E, where the set of exceptional
values E is closed, of Lebesgue measure zero. On the set R+\E, the function
L is C1 and satisfies the inequality (see [11]),

(1) L′(t) ≤ 2πχ
(
B(t)

)
−

∫

B(t)
K dµ,

where χ
(
B(t)

)
is the Euler-Poincaré characteristic of the ball B(t). As a

matter of fact, the function L can be extended to R+. This follows from
the work of F. Fiala [11], P. Hartman [13] and K. Shiohama and M. Tanaka
[22, 23]. More precisely, there exist two real functions H, J defined on R+,
with H absolutely continuous on any compact subset, and J non-decreasing,
such that H(s) − J(s) coincides with L(s) when s is not in E. The set E

and the function J are defined in terms of the cut locus of the point x0. The
(extended) function L is not continuous in general ([13], Figure 1). However,
it satisfies,

(2) L(t+) = L(t) and L(t−) ≥ L(t), ∀t > 0.

Furthermore, the function V is differentiable almost everywhere, and V ′(s) =
L(s). From the formula L = H − J , one can deduce that

(3) L(b) − L(a) ≤ L(b−) − L(a) ≤
∫ b

a
L′(t) dt, whenever 0 ≤ a < b.

Remark. In Fiala’s paper, M = R
2 and g is real analytic. In this case, the

set E is discrete. Hartman’s paper considers the case (R2, g), with g smooth.
The papers of Shiohama and Tanaka deal with the general case in which M

may have finite or infinite topology. All these papers rely on a sharp analysis
of the cut locus of a simple closed curve, and on the differential inequality
(1) satisfied by the length function L away from the exceptional set E. This
was initiated by Fiala, refined by Hartman and later by Shiohama-Tanaka
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to take into account the transitions from a real analytic to a smooth metric,
and from R

2 to a general surface M .

2.1.3. We introduce the total curvature of the ball B(s) to be

G(s) =

∫

B(s)
K(x) dµ(x).

2.1.4. We denote by χ
(
B(s)

)
the Euler-Poincaré characteristic of the open

ball B(s). We introduce the function

(4) χ̂(s) = sup{χ
(
B(t)

)
| t ∈ [s, ∞)}.

Both functions are continuous to the left. The function χ̂ is a non-increasing
function from [0, ∞) to Z. It has at most countably many discontinuities.
We write them as a sequence, finite possibly empty, or infinite tending to
infinity,

(5) {tj}N
j=1 = {0 < t1 < t2 < · · · < tn < · · · },

with N ∈ N ∪ {∞}, N = 0 when the sequence is empty, and N = ∞ when
it is infinite. Note that this sequence depends on the reference point x0.

At the discontinuity tn, n ≥ 1, the function χ̂ has a jump

(6) ωn = χ̂(t−
n ) − χ̂(t+

n ), with ωn ∈ N, ωn ≥ 1.

Therefore,

(7)

{
χ̂(s) = 1 for s ∈ [0, t1], and

χ̂(s) = 1 −
(
ω1 + · · · + ωn

)
≤ −(n − 1) for s ∈ (tn, tn+1].

The function χ̂ somehow controls the large scale topology of M as the fol-
lowing lemma shows.

Lemma 2.1. Let (M, g) be a complete Riemannian surface. Let {tj}N
j=1

be the discontinuities of the function χ̂, with jumps {ωj}. Let χ(M) be the
Euler-Poincaré characteristic of M , with χ(M) = −∞ if M does not have
finite topology. Then

1 −
N∑

n=1

ωn ≤ χ(M).

Proof. We apply Lemma 1.4 in [4].
⋄ If M has finite topology, then there exists a value s0 such that χ

(
B(s)

)
≤

χ(M) for all s ≥ s0. By (7), this implies that 1− ∑N
n=1 ωn ≤ χ̂(s0) ≤ χ(M).

⋄ Otherwise, χ
(
B(s)

)
tends to minus infinity when s tends to infinity, so

does χ̂(s), and formula (7) implies that 1 − ∑N
n=1 ωn = −∞. �
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2.1.5. As mentioned earlier, the Euler-Poincaré characteristic of balls is
related to the length function and to the total curvature of balls. More
precisely, we have the inequalities,

(8)





For all 0 ≤ a < b,

L(b−) − L(a) ≤ 2π(b − a) sup{χ
(
B(s)

)
| s ∈ [a, b]} −

∫ b
a G(s) ds,

L(b−) − L(a) ≤ 2π(b − a)χ̂(a) −
∫ b

a G(s) ds,

which follow by integrating the inequality (1) satisfied by L′(t) for t ∈
]0, ∞[\E ([11], p. 326-328; [13], Proposition 6.1; [22], Proposition 3.7). Note
that we can substitute L(b−) by L(b) in (8), because of inequality (2)

2.2. Technical lemmas. Definition. Let 0 ≤ R < S. We say that a
function ξ : [R, S] → R is admissible in the interval [R, S] if

(9)

{
ξ is C1 and piecewise C2 in [R, S],

ξ ≥ 0, ξ′ ≤ 0 and ξ′′ ≥ 0.

The next two lemmas extend Lemma 1.8 in [4], whose proof uses the method
of [5].

Lemma 2.2. For all 0 ≤ a < b, and for all admissible functions ξ on [a, b],

(10)





∫
C(a,b) K(x)ξ2(

r(x)
)

dµ(x) ≤ ξ2G
∣∣∣
b

a
− 2πχ̂(a)ξ2

∣∣∣
b

a
+ (ξ2)′L

∣∣∣
b−

a

−
∫

C(a,b)(ξ
2)′′

(
r(x)

)
dµ(x).

Note that in the right-hand side of (10) one can substitute (ξ2)′L
∣∣b−

a
by

(ξ2)′L
∣∣b
a
, using (2) and the fact that ξ′ is non-positive.

Proof. We sketch the proof for completeness. First assume that ξ is C2.
By the co-area formula,

∫

C(a,b)
Kξ2(r) dµ =

∫ b

a
ξ2(t)G′(t) dt,

where G(t) is the total curvature of the ball B(t). Introduce the function

H(t) :=
∫ t

a G(s) ds, and integrate the preceding equality by parts twice to
get,

∫

C(a,b)
Kξ2(r) dµ = ξ2G

∣∣∣
b

a
− (ξ2)′(b)H(b) +

∫ b

a
H(t)(ξ2)′′(t) dt.

One can estimate H in the right-hand side using (8) and the signs of ξ and
its derivatives. After some computations and applying the co-area formula
once more, one obtains,

∫

C(a,b)
Kξ2(r) dµ ≤

{
ξ2G − 2πχ̂(a)ξ2 + (ξ2)′L

}∣∣∣
b

a
−

∫

C(a,b)
(ξ2)′′(r) dµ.

This proves the lemma when ξ is C2. The fact that the lemma holds for C1

and piecewise C2 functions ξ follows by cutting the interval into subintervals
in which ξ is C2. Apply the preceding method in each sub-interval (c, d) ⊂
(a, b) using an inequality similar to (8) with χ̂(a) in place of χ̂(c); use the fact
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that ξ and χ̂ are non-increasing, and the inequality L(t−) ≥ L(t+) = L(t)
to conclude. �

Taking into account the discontinuities {tn}n≥1 of the function χ̂, see Sec-
tion 2.1, formula (7), we have the following lemma.

Lemma 2.3. Let {tj}N
j=1 be the discontinuities of the function χ̂. Define

the index N(R) to be the largest integer n such that tn ≤ R. Let t0 = 0.
Let ξ be an admissible function in the interval [R, Q]. Then,

(11)





∫
C(R,Q) Kξ2(r) dµ ≤ 2π

[
ξ2(R)χ̂(tN(R)) − ξ2(Q)χ̂(tN(Q))

− ∑N(Q)
n=N(R)+1 ωnξ2(tn)

]

+ξ2G
∣∣∣
Q

R
+ (ξ2)′L

∣∣∣
Q

R
−

∫
C(R,Q)(ξ

2)′′(r) dµ.

Taking R = 0 and assuming that ξ(Q) = 0, we have the inequality

(12)





∫
B(Q) Kξ2(r) dµ ≤ 2π

{
ξ2(0) − ∑N(Q)

n=1 ωnξ2(tn)
}

−
∫

B(Q)(ξ
2)′′(r) dµ.

In particular, assuming that ξ(Q) = 0, we have the inequality

(13)

∫

B(Q)
K(x)ξ2(r) dµ ≤ 2πξ2(0) −

∫

B(Q)
(ξ2)′′(r) dµ.

Proof. To prove (11), split the integral
∫

C(R,Q) Kξ2(r) dµ into a sum,

∫

C(R,Q)
=

∫

C(R,tN(R)+1)
+

N(Q)−1∑

n=N(R)+1

∫

C(tn,tn+1)
+

∫

C(tN(Q) ,Q)
,

apply Lemma 2.2 and use (7). To establish the last two inequalities, use the
fact that ξ(Q) = 0 and G(0) = L(0) = 0. �

The next two lemmas provide admissible functions which we will plug into
(⋆) later on.

Lemma 2.4. Fix 0 < R < 5R < Q, and define the function ξα,β,R,Q by

ξα,β,R,Q(t) =

{
e(1− t

2R
)2

for 0 ≤ t ≤ R,

β
(
e−αt − e−αQ

)
for R ≤ t ≤ Q.

Then, there exists a unique choice α(R, Q), β(R, Q) of the parameters α, β

such that the corresponding function ξR,Q is admissible in the interval [0, Q].
Furthermore,

1 ≤ 4R α(R, Q) ≤ 2 and 1 ≤ β(R, Q) ≤ 10.

Lemma 2.5. For a ∈ (0, 1
4), let α = 2a

1−4a
and β = a

1−4a
. For 0 < R < Q

and 0 < δ, ǫ, let ξδ,ǫ,R,Q be the function,

(14) ξ(t) =





(1 + t
R

)−β , for t ∈ [0, R],

δ
(
(1 + ǫt)−α − (1 + ǫQ)−α

)
for t ∈ [R, Q].
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There exists a positive constant C(α, β) > 1, such that for For 0 < R ≤
C(α, β)R < Q, there is a unique choice δ(R, Q) and ǫ(R, Q) of the parame-
ters δ, ǫ, such that the function ξR,Q defined by equation (14) is admissible
in the interval [0, Q]. Furthermore, there exist positive constants c1, c2 such
that

1 ≤ 6R ǫ(R, Q) ≤ 2 and c1 ≤ δ(R, Q) ≤ c2.

We leave the proofs of these lemmas to the reader.

3. Proof and optimality of Theorem 1.1

3.1. Proof of Theorem 1.1. In Step 1, we make some preparation. In
Step 2, we prove that M is homeomorphic to C or to C

•, and that q is
integrable and satisfies

∫
M q dµ ≤ 2πaχ(M). We can actually finish the

proof of the theorem in the Case (i). In Step 3, we prove that (M, g) has
at most quadratic volume growth and, under the assumption that M is a
cylinder, that it has at most linear volume growth. Steps 2 and 3 both follow
from adequate choices of test functions (using Lemma 2.4 and 2.5) in the
stability condition (⋆), depending on the case at hand (i), (ii) or (iii).

3.1.1. Step 1. We choose an admissible function ξ on [0, Q], with ξ(Q) = 0,
and we apply the stability condition (⋆) to the Lipschitz function ξ(r), where
r is the Riemannian distance to some given point x0 ∈ M . We obtain,

(a) 0 ≤
∫

B(Q)
qξ2(r) dµ ≤

∫

B(Q)

{
(ξ′)2(r) + aKξ2(r)

}
dµ.

Because ξ is admissible in [0, Q] and ξ(Q) = 0, we can apply Lemma 2.3,
inequality (12), and we obtain.

(b)





∫
B(Q) qξ2(r) dµ + 2πa

∑N(Q)
n=1 ωnξ2(tn) ≤ 2πaξ2(0)

+
∫

B(Q)

{
(1 − 2a)(ξ′)2(r) − 2a(ξξ′′)(r)

}
dµ,

where we have used the notations of Lemma 2.3. Inequality (b) holds for all
admissible functions ξ in [0, Q] which vanish at Q.

Recall (Section 2.1.4) that the points of discontinuity of the function χ̂ form

a sequence {tn}N
n=1 which is either finite possibly empty, or infinite tending

to infinity, with stopping index N ∈ N ∪ {∞}.

We fix N to be either the stopping index N , if N ∈ N, or any fixed integer
otherwise. We also fix some R, with 0 < R < Q. For Q is large enough,
Q > tN and Q ≥ C(ξ)R, inequality (b) implies that

(c)





∫
B(R) qξ2(r) dµ + 2πa

∑N
n=1 ωnξ2(tn) ≤ 2πaξ2(0)

+
∫

B(Q)

{
(1 − 2a)(ξ′)2(r) − 2a(ξξ′′)(r)

}
dµ,

where this inequality holds for any admissible function ξ in [0, Q] vanishing
at Q, and for any fixed N and R as above.

The idea is now to apply (c) to a function ξ which is well adapted to the
case at hand, (i), (ii) or (iii), and to the assertion we want to prove.
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3.1.2. Step 2. We will now show that M is homeomorphic to C or to C
•

and that q in integrable over (M, g). We consider the cases (i), (ii) and (iii)
separately.

Case (i) Here, a ∈ (1
4 , ∞). Choose ξ(t) = (1− t

Q
)α for t ∈ [0, Q], with α ≥ 1.

Then,

(d1) (1 − 2a)(ξ′)2 − 2aξξ′′ = −α[(4a − 1)α − 2a]

Q2 (1 − t

Q
)2α−2.

We now fix some α > 2a
4a−1 and plug the above equality into inequality (c)

and obtain, for all R and N fixed,

(e1)





∫
B(R) q ξ2(r) dµ + 2πa

∑N
n=1 ωnξ2(tn)

+α[(4a−1)α−2a]
Q2

∫
B(Q)(1 − r

Q
)2α−2 dµ ≤ 2πa.

Note that the three terms in the left-hand side of (e1) are non-negative. In
particular, we obtain that

N∑

n=1

ωn(1 − tn

Q
)2α ≤ 1.

Letting Q tend to infinity, we obtain that

N∑

n=1

ωn ≤ 1

for any fixed N as above, hence N ≤ 1 and ω1 = 1 if N = 1. This proves

that 0 ≤ 1 − ∑N
n=1 ωn and hence, by Lemma 2.1, that M is homeomorphic

to either C or C
•.

From (e1) and the previous conclusions, we can choose N = N and we
obtain,

(1 − R

Q
)α

∫

B(R)
q dµ ≤ 2πa

(
1 −

N∑

n=1

ωnξ2(tn)
)
.

Letting Q tend to infinity and using Lemma 2.1, this proves Assertion (B)
in the Case (i).

From (e1), we finally infer that there exists a positive constant Cα such that

Q−2V (
Q

2
) ≤





Cα, if M ∼ C,

Cα

{
1 − (1 − t1

Q
)2α

}
, if M ∼ C

•,

where ∼ stands for “homeomorphic”. Indeed, if M ∼ C
•, we have ω1 = 1.

This proves that (M, g) has at most quadratic volume growth in general,
and at most linear volume growth when χ(M) = 0.

Note that this completes the proof of Theorem 1.1 in the Case (i). In the
next steps, we will concentrate on the cases (ii) and (iii).

Case (ii). Here a = 1
4 and (M, g) has subexponential volume growth. We

choose ξ(t) = e−αt − e−αQ in [0, Q] for some α > 0. Then,

(d2) (1 − 2a)(ξ′)2 − 2aξξ′′ =
1

2
α2e−αQe−αt.
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Plugging (d2) into (c), we obtain, for all R and N fixed,

(e2)

∫

B(R)
qξ2(r) dµ +

π

2

N∑

n=1

ωnξ2(tn) ≤ π

2
ξ2(0) +

1

2
α2e−αQ

∫

B(Q)
e−αr dµ.

We have the following lemma,

Lemma 3.1. If (M, g) has subexponential volume growth, then for any pos-
itive α,

lim
Q→∞

e−αQ

∫

B(Q)
e−αr dµ = 0.

We leave the proof of the lemma to the reader.

Let Q tend to infinity in (e2), and use Lemma 3.1 to obtain,

(f2)

∫

B(R)
qe−αr dµ +

π

2

N∑

n=1

ωne−2αtn ≤ π

2
,

and inequality (f2) holds for all α > 0 and N, R as above. Letting α tend
to zero, we can conclude as in Case (i) that M is homeomorphic to C or to
C

•, and that q is integrable, with
∫

M q dµ ≤ π
2 χ(M).

Note that, unlike in Case (i), we cannot, at this stage, obtain quadratic
volume growth (see Step 3).

Case (iii). Here a ∈ (0, 1
4) and (M, g) has ka-subpolynomial volume growth,

with ka = 2+ 4a
1−4a

. We choose ξ(t) = (1+ ǫt)−α − (1+ ǫQ)−α in [0, Q], with

α = 2a
1−4a

and some ǫ > 0. Then,

(d3) (1 − 2a)(ξ′)2 − 2aξξ′′ = 2aα(α + 1)ǫ2(1 + ǫQ)−α(1 + ǫt)−α−2.

Plugging (d3) into (c), we obtain,

(e3)

∫
B(R) qξ2(r) dµ + 2πa

∑N
n=1 ωnξ2(tn) ≤ 2πaξ2(0)

+2aα(α + 1)ǫ2(1 + ǫQ)−α
∫

B(Q)(1 + ǫr)−α−2 dµ.

We have the following lemma,

Lemma 3.2. Let (M, g) be a Riemannian surface with ka-subpolynomial
volume growth, with ka = 2 + 4a

1−4a
. Then, for α = 2a

1−4a
and any ǫ > 0,

lim
Q→∞

(1 + ǫQ)−α

∫

B(Q)
(1 + ǫr)−α−2 dµ = 0.

We leave the proof of this lemma to the reader.

Since both terms in the left-hand side of (e3) are non-negative, letting Q

tend to infinity and using Lemma 3.2, we obtain,

(f3)

∫

B(R)
q(1 + ǫr)−2α dµ + 2πa

N∑

n=1

ωn(1 + ǫtn)−2α ≤ 2πa,

and inequality (f3) holds for any ǫ > 0. Letting ǫ tend to zero, we obtain,

∫

B(R)
q dµ + 2πa

N∑

n=1

ωn ≤ 2πa,
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and we can conclude as in the previous cases that M is homeomorphic to C

or to C
• and that Assertion (B) holds.

3.1.3. Step 3. We now show that (M, g) has at most quadratic volume
growth, and at most linear volume growth when χ(M) = 0. We have already
dealt with Case (i) in Step 2. We now consider Cases (ii) and (iii).

Case (ii). Here, a = 1
4 and (M, g) has subexponential volume growth. We

choose the function ξ to be ξR,Q as given by Lemma 2.4,

ξ(t) =





e(1− t
2R

)2
, for t ∈ [0, R]

β(e−αt − e−αQ), for t ∈ [R, Q],

with 0 < R < 5Q and α, β given by the lemma, so that ξ is admissible
in [0, Q] and vanishes at Q. We apply (c) again (making q ≡ 0 which is
sufficient for our estimates). For this purpose, we compute,

(p2) (ξ′)2 − ξξ′′ =





− 1
2R2 e2(1− t

2R
)2

, for t ∈ [0, R]

α2β2e−αQe−αt, for t ∈ [R, Q],

and we obtain,

(q2)





1
4R2

∫
B(R) e2(1− r

2R
)2

dµ ≤ π
2

{
e2 − ωe2(1−

t1
2R

)2}

+1
2α2β2e−αQ

∫
C(R,Q) e−αr dµ,

where ω = 0 if M ∼ C and ω = 1 if M ∼ C
•, and we have chosen R > t1.

We fix R > t1 and we let Q tend to infinity, using the fact that α and β

remain controlled and that the second term in the right-hand side of (q2)
goes to zero when Q tends to infinity because (M, g) has subexponential
volume growth (Lemmas 2.4 and 3.1). Finally, we obtain,

R−2V (R) ≤ C
{
1 − ωe−

t1
R

(2−
t1
2R

)} ≤ C,

for some constant C independent of R. This gives at most quadratic volume
growth in general, and at most linear volume growth when χ(M) = 0.

Case (iii). Here, a ∈ (0, 1
4) and (M, g) has ka-subpolynomial volume growth,

with ka = 2 + 4a
1−4a

. We choose the function ξ to be ξR,Q as given by
Lemma 2.5,

ξ(t) =





(1 + t
R

)−β , for t ∈ [0, R], β = a
1−4a

,

δ
{
(1 + ǫt)−α − (1 + ǫQ)−α

}
, for t ∈ [R, Q], α = 2a

1−4a
,

with 0 < R ≪ Q and δ, ǫ given by the lemma, so that ξ is admissible in [0, Q]
and vanishes at Q. We apply (c) again (making q ≡ 0 which is sufficient for
our estimates). For this purpose, we compute,

(p3) (1 − 2a)(ξ′)2 − 2aξξ′′ =





− aβ
R2 (1 + t

R
)−2β−2, for t ∈ [0, R],

2aα(α + 1)δ2ǫ2(1 + ǫQ)−α(1 + ǫt)−α−2,

for t ∈ [R, Q],
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and we obtain,

(q3)





aβ
R2

∫
B(R)(1 + r

R
)−2β−2 dµ ≤ 2πa

{
1 − ω(1 + t1

R
)−2β

}

+2aα(α + 1)δ2ǫ2(1 + ǫQ)−α
∫

C(R,Q)(1 + ǫr)−α−2 dµ,

where ω = 0 if M ∼ C and ω = 1 if M ∼ C
•, and where we have chosen

R > t1. We fix R > t1 and we let Q tend to infinity, using the fact that δ and
ǫ remain controlled and that the second term in the right-hand side of (q3)
goes to zero when Q tends to infinity because (M, g) has ka-subpolynomial
volume growth (Lemmas 2.5 and 3.2). Finally, we obtain,

R−2V (R) ≤ C
{
1 − ω(1 +

t1

R
)−2β

}
≤ C,

for some constant C independent of R. This gives at most quadratic volume
growth in general and at most linear volume growth when χ(M) = 0.

3.1.4. Conclusion. In the three cases (i), (ii) and (iii), we have proved,

⋄ M is homeomorphic to C or to C
• (Step 2),

⋄ (M, g) has at most quadratic volume growth, and hence ([4], Propo-
sition 2.3) (M, g) is conformally equivalent to C or to C

• (Step 3),
⋄ q is integrable and

∫
M q dµ ≤ 2πaχ(M); in particular, q ≡ 0 when

χ(M) = 0 (Step 2),
⋄ (M, g) has at most linear volume growth when χ(M) = 0.

The proof of Theorem 1.1 is therefore complete. �

3.2. The assumptions and conclusions in Theorem 1.1 are optimal.

⋄ The example of the hyperbolic plane shows that Assertion (A) in Theo-
rem 1.1 cannot hold when a = 1

4 without an extra assumption on (M, g).

⋄ The examples of the hyperbolic planes of curvature −c2, c > 0, show that
the assumptions in Case (ii) are optimal.

⋄ Consider the unit disk D with the conformal metric hα =
( 2

1−|z|2
)2α|dz|2

for α ≥ 1. The metric h1 is the hyperbolic metric with constant curvature
−1. When α > 1, the metric hα is a complete conformal metric on D, with
negative curvature. A simple computation shows that it has polynomial
volume growth of degree 2 + 1

α−1 . Given a complete Riemannian surface

(M, g), let a+(M, g) denote the supremum of the numbers a such that ∆ +
aK ≥ 0. It is proved in [4] that this supremum is achieved (Proposition 1.1)
and that a(α) := a+(D, hα) is equal to 1

4α
(Proposition 4.3). It follows that

the volume growth of (D, hα) is polynomial with degree equal to 2+ 4a(α)
1−4a(α) .

This shows that the assumptions in Case (iii) are optimal.

4. Generalization to finite index

Theorem 4.1. Let (M, g) be a complete non-compact Riemannian surface.
Let q be a locally integrable, non-negative function on M . Assume that the
operator ∆+aK −q has finite index on M . Assume furthermore that either,

(i) a > 1
4 , or

(ii) a = 1
4 , and (M, g) has subexponential volume growth, or
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(iii) a ∈ (0, 1
4), and (M, g) has ka-subpolynomial volume growth, with

ka = 2 + 4a
1−4a

.

Then, (M, g) has finite topology and at most quadratic area growth. In
particular, (M, g) is conformally equivalent to a closed Riemannian surface
with finitely many points removed. Furthermore, the function q is integrable
on (M, g).

Proof. We first recall what “finite index” means. Let Ω be a smooth,
relatively open compact domain in M . By elliptic theory, the operator
∆ + aK − q has finitely many negative eigenvalues in Ω (with Dirichlet
boundary conditions on ∂Ω). Call Ind(Ω) the number of these negative
eigenvalues. This is a non-decreasing function of Ω with respect to inclusion.
If sup

{
Ind(Ω)

∣∣ Ω ⋐ M
}

is finite, then we say that the operator ∆ + aK − q

has finite index in M .

It is a well-known fact that if ∆ + aK − q has finite index on M , then it is
stable outside a compact set, i.e. that

(a) 0 ≤
∫

M

(
|df |2 + aKf2 − qf2)

dµ,

for any Lipschitz function f with compact support in M \ B(R0), for some
positive radius R0 (see [6] for a proof and for a converse statement). Choose

(b) 0 < R0 < R1 := R0 + 1 < R2 := R0 + 2 < R < Q,

and a function ξ which is admissible in the interval [R2, Q] and vanishes at
Q. Define the function η as follows,

(c) η(t) =





0, for t ∈ [0, R1],

ξ(R2)(t − R1), for t ∈ [R1, R2],

ξ(t), for t ∈ [R2, Q].

We shall choose ξ later on, depending on the assumptions we are working
with –Cases (i), (ii) or (iii)– as in the proof of Theorem 1.1. Consider
the function η(r). This is a Lipschitz function with compact support in
M \ B(R0) and we can therefore plug it into (a). Using (c), we find that,

(d)
0 ≤

∫
C(R2,Q) qξ2(r) dµ ≤

∫
C(R2,Q)

{
(ξ′)2(r) + aKξ2(r)

}
dµ

+C1ξ2(R2),

for some constant C1 which depends only on a, the geometry of (M, g) and
the values of K in the ball B̄(R2).

We now apply Lemma 2.3 in [R2, Q] and we define the indices N2 and N(Q)
by the inequalities

tN2 ≤ R2 < tN2+1 and tN(Q) ≤ Q < tN(Q)+1,

so that we can plug (11) into (d) and we obtain the inequality,

(e)





∫
C(R2,Q) qξ2(r) dµ + 2πa

∑N(Q)
n=N2+1 ωnξ2(tn) ≤

∫
C(R2,Q)

{
(1 − 2a)(ξ′)2(r) − 2a(ξξ′′)(r) dµ

}

+C2

(
ξ2(R2) + (ξ′)2(R2)

)
,



INVERSE SPECTRAL POSITIVITY FOR SURFACES 15

for some positive constant C2 which only depends on a, on the geometry of
(M, g) and the values of K in B̄(R2).

We can now proceed from inequality (e) as we proceeded from inequality
(b) in the proof of Theorem 1.1. We leave the details to the reader. �

5. Proof of Theorem 1.2

By Theorem 1.1, we already know that (M, g) has at most linear volume
growth, so that Theorem 1.2 follows from the following proposition.

Proposition 5.1. Let (M, g) be a complete cylinder with 2-subpolynomial
volume growth. If, for some a > 0, the operator ∆ + aK is non-negative on
M , then the Gaussian curvature K is non-negative.

Indeed, assuming the proposition, we can apply Cohn-Vossen’s theorem and
conclude that 0 ≤

∫
M K dµ ≤ 2πχ(M), so that indeed, K ≡ 0.

Proof. For some a > 0, we have

(a) 0 ≤
∫

M

(
|df |2 + aKf2

)
dµ, ∀f ∈ Lip0(M).

Choose some x ∈ M . We want to prove that κ := K(x) ≥ 0. We fix this
point x and we take the distance function and the geodesic balls with respect
to this point.

⋄ According to the assumption that M is a cylinder, the function χ̂(t) (con-
sidering balls centered in x) has at least one discontinuity at some t1 > 0
(which depends on the choice of x), with ω1 ≥ 1.

⋄ Let 0 < α < 1 and 0 < R < t1 < Q. Define the function ξ (with
parameters α, R, Q) to be

(b) ξ(t) =





1 − α t
R

for t ∈ [0, R],

(1 − α) Q−t
Q−R

for t ∈ [R, Q].

⋄ Use the function ξ(r) to test the positivity condition (a). Straightforward
computations give

(c)

∫

B(Q)
(ξ′)2(r) dµ =

α2

R2 V (R) +
( 1 − α

Q − R

)2(
V (Q) − V (R)

)
.

Applying Lemma 2.3 to the ball B(R) and to the set C(R, Q), another
computation yields





∫
B(Q) Kξ2(r) dµ ≤ −2α2

R2 V (R) + 2(1 − α) R−αQ
R(Q−R) L(R)

+2π
(
1 − ω1(1 − α)2(Q−t1

Q−R
)2

)

−2( 1−α
Q−R

)2
(
V (Q) − V (R)

)
,
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and hence, since ω1 ≥ 1,

(d)





∫
B(Q) Kξ2(r) dµ ≤ −2α2

R2 V (R) + 2(1 − α) R−αQ
R(Q−R) L(R)

+2π
(
1 − (1 − α)2(Q−t1

Q−R
)2

)

−2( 1−α
Q−R

)2
(
V (Q) − V (R)

)
.

Finally, we obtain that for a > 0 and the above choice (b) of ξ,

(e)





0 ≤
∫

B(Q)

(
(ξ′)2(r) + aKξ2(r)

)
dµ ≤ (1 − 2a)α2 V (R)

R2

+(1 − 2a)
( 1−α

Q−R

)2
(
V (Q) − V (R)

)
+ 2a(1 − α)R−αQ

Q−R
L(R)

R

+2πa
(
1 − (1 − α)2(Q−t1

Q−R
)2

)
.

⋄ Inequality (e) holds for all choices of α ∈ (0, 1) and 0 < R < t1 < Q.
Recall that the cylinder is assumed to have 2-subpolynomial volume growth.
Letting Q tend to infinity, we find that

(f)





0 ≤
∫

B(Q)

(
(ξ′)2(r) + aKξ2(r)

)
dµ ≤

(1 − 2a)α2 V (R)
R2 − 2aα(1 − α)L(R)

R

+2πaα(2 − α),

for all α ∈ (0, 1) and R ∈ (0, t1).

⋄ We now use the classical expansions for the length and area of small
geodesic balls B(x, R),

(g)





L(R) = 2πR
(
1 − κ

6 R2 + R2ǫ1(R)
)
,

V (R) = πR2
(
1 − κ

12R2 + R2ǫ2(R)
)
,

where κ is the value of the curvature at x.

⋄ Plugging (g) into (f), we find that

(h)





0 ≤ α2 + κR2

12 α
(

8a − (1 + 6a)α
)

+ αR2
(
(1 − 2a)αǫ2(R) − 4a(1 − α)ǫ1(R)

)
.

Dividing by α and letting α tend to zero gives

0 ≤ 2κ

3
R2(

1 + ǫ(R)
)
,

which implies that κ := K(x) ≥ 0. �

6. Proof of Theorem 1.3

Let us first consider the case of the sphere with constant curvature α2,
M0 = S2(α2). In the sequel, the subscript 0 refers to M0. Let J0 = ∆0 +
aα2 − c. The operator J0 is non-negative in the ball B0(R) if and only
if the first Dirichlet eigenvalue of the Laplacian ∆0 in this ball satisfies
λ1

(
B0(R)

)
≥ c − aα2. Since c ≥ (a + 2)α2, it follows that J0 non-negative

in the ball B0(R) implies that λ1
(
B0(R)

)
≥ λ1

(
B0( π

2α
)
)
, and hence that
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R ≤ π
2α

, because λ1
(
B0(R)

)
is a decreasing function of R. If J0 ≥ 0 in

B0( π
2α

), then c = (a+2)α2, since all previous inequalities become equalities.
Recall that the first Dirichlet eigenfunction for the Laplacian ∆0 in the
hemisphere B0( π

2α
) is cos(αr0), up to a scaling factor, where r0 is the distance

function to a point on the sphere.

Proof of Theorem 1.3. Recall that this theorem is of a local nature. We first
state a lemma.

Lemma 6.1. Let (M, g) be a Riemannian surface. Assume that the curva-
ture satisfies K ≤ α2 for some α > 0. Let J be the operator J = ∆+aK −c,
with a ∈ [1

2 , ∞) and c ≥ (a+2)α2. Assume furthermore that the ball B(x, π
2α

)
is contained in M , for some x ∈ M . Then the least eigenvalue of the op-
erator J with Dirichlet boundary conditions in this ball is non-positive. If
J has least Dirichlet eigenvalue 0 in the ball B(x, π

2α
), then c = (a + 2)α2,

K ≡ α2 and B(x, π
2α

) is covered by the hemisphere S2
+(α2) in the sphere

with constant curvature α2.

Clearly, the lemma implies the theorem. Indeed, Assertion (i) follows from
the lemma and from the monotonicity of eigenvalues with respect to domain
inclusion. Assertion (ii) follows immediately.

Proof of the lemma.
⋄ First observe that we can reduce to the case a ∈ [1

2 , 2]. Indeed, if a > 2,

then for any a′ ∈ [1
2 , 2], we can write

∆ + aK − c = ∆ + a′K + (a − a′)K − c ≤ ∆ + a′K − c′,

where c′ = c + (a′ − a)α2 ≥ (a′ + 2)α2. Moreover, if c′ = (a′ + 2)α2, then
c = (a + 2)α2.

⋄ Assume that a ∈ [1
2 , 2]. Let A := π

2α
. Because K ≤ α2, the map expx :

TxM → M is a local diffeomorphism on the ball D(0, A). Let g̃ = exp∗
x g be

the pulled-back metric to TxM . Let µ1 be the least Dirichlet eigenvalue of
∆+aK−c in B(x, A). Then, ∆+aK−c−µ1 ≥ 0 in B(x, A) and hence, there
exists a positive function u : B(x, A) → R such that (∆ + aK − c− λ1)u = 0
(see [10]). Let ũ = u ◦ expx. Because expx is a local isometry, we have

(∆̃ + aK̃ − c − µ1)ũ = 0 and hence the least Dirichlet eigenvalue µ̃1 of

∆̃ + aK̃ − c satisfies µ̃1 ≥ µ1. To show that µ1 is non-positive, it suffice
to show that µ̃1 is non-positive. We have reduced to the simply-connected
case.

⋄ We now work in the simply-connected disk D(0, A), with a metric (also
denoted) g such that K ≤ α2. We denote by L(r) the length of ∂D(0, r)
for this metric and we let L0(r) be the corresponding length on the sphere,

L0(r) = 2π
sin(αr)

α
. By Bishop’s comparison theorem, we have that

(a) L(r) ≥ L0(r).

We now use Pogorelov’s trick. Let ξ : [0, A] → R be a C2 function such that
ξ(0) = 1 and ξ(A) = 0. We compute the quadratic form Q associated with
J = ∆ + aK − c on the function ξ(r), where r is the geodesic distance to 0
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in D(0, A). We also introduce the total curvature of D(0, r),

(b) G(r) =

∫

D(r)
K dµ,

with respect to the Riemannian measure in D(0, A). Applying the co-area
formula,

Q(ξ(r)) =
∫

D(0,A)
(
|dξ(r)|2 + (aK − c)ξ2(r)

)
dµ

=
∫ A

0

(
(ξ′)2 − cξ2)

L dt + a
∫ A

0 G′ξ2 dt,

and we compute the second integral in the right-hand side by integration by
parts,

(c) Q(ξ(r)) =

∫ A

0

(
(ξ′)2 − cξ2

)
L dt − a

∫ A

0
G(ξ2)′ dt.

By the Gauss-Bonnet formula, we have G(t) = 2π−L′(t) so that (c) becomes,
after another integration by parts,

Q(ξ(r)) =

∫ A

0

(
(ξ′)2 − cξ2 − a(ξ2)′′

)
L dt + 2πa.

Finally, we obtain

(d) Q(ξ(r)) =

∫ A

0

(
(1 − 2a)(ξ′)2 − 2aξξ′′ − cξ2

)
L dt + 2πa,

for any function ξ : [0, A] → R which is C2 and such that ξ(0) = 1 and
ξ(A) = 0.

We now use the test function η(r) = cos(αr) in formula (d), where r is the
Riemannian distance to the center of the ball, i.e. we transplant the first
eigenfunction of the hemisphere to a function on the ball D(0, A).

Q(η(r)) =

∫ A

0

(
(1 − 2a)α2 sin2(αt) + (2aα2 − c) cos2(αt)

)
L(t) dt + 2πa,

and hence

(e) Q(η(r)) ≤
∫ A

0

(
(1 − 2a)α2 sin2(αt) + (a − 2)α2 cos2(αt)

)
L(t) dt + 2πa,

where we have used the fact that c ≥ (2+a)α2. Recall that a ∈ [1
2 , 2]. Using

the inequality (a), we find that

(f)





Q(η(r)) ≤ 2πa

+
∫ A

0
(
(1 − 2a)α2 sin2(αt) + (a − 2)α2 cos2(αt)

)
L0(t) dt.

The right-hand side of (f) is zero because this is the value of the quadratic
form of the operator J0 = ∆ − 2α2 on the hemisphere S2

+(α2) = B0( π
2α

).
We conclude that Q(η(r)) ≤ 0 and hence that the least Dirichlet eigenvalue
of ∆ + aK − c in D(0, A) is non-positive, as stated in the lemma. If this
eigenvalue is zero, then Q(η(r)) = 0, and we must have equality in both

(e) and (f), i.e. c = (2 + a)α2 and L(t) ≡ 2π
sin(αt)

α
. We then deduce that

G(t) ≡ 2π(1 − cos(αt)). Since K ≤ α2, integrating K we find that K ≡ α2

and hence we conclude that D(0, A) = S2
+(α2). This proves the lemma. �

As a corollary of Theorem 1.3, we obtain Mazet’s estimates.
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Corollary 6.2. Let (M, g) # (M̂ , ĝ) be an isometric immersion with con-
stant mean curvature H in a simply connected space form with constant
sectional curvature κ. Assume furthermore that H2 + κ > 0 and that the
immersion is (strongly) stable. Then,

dg(x, ∂M) ≤ π

2
√

H2 + κ
,

where dg(x, ∂M) is the distance from x ∈ M with respect to the metric g to
the boundary of M , with equality if and only if M is the hemisphere of a

sphere of mean curvature H in M̂ .

Proof. The Jacobi operator of the immersion is J = ∆ − |A|2 − R̂ic(n),
where A is the second fundamental form of the immersion and n the unit
normal along the immersion. By the Gauss equation, we find that J = ∆ +
2K −4(H2 +κ) and that K = H2+κ− 1

4(k1 −k2)2, where ki are the principal

curvatures. We can apply Theorem 1.3 with a = 2 and α2 = H2 + κ. For
the equality case, note that equality implies that M is totally umbilic. �

Remarks.

(1) This corollary provides a unified proof of Theorem 3.1 and Corol-
lary 3.2 in Mazet’s paper [15], without using Lawson’s correspon-
dence.

(2) The proof of Theorem 1.3 is simpler than that of Theorem 3.1 in
[15], but it uses the same idea which goes back to A. Pogorelov [19].
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