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Introduction

Many background subtraction methods have been developed in video-surveillance to detect moving objects [START_REF] Elhabian | Moving object detection in spatial domain using background removal techniques -state-of-art[END_REF][3] [START_REF] Bouwmans | Background modeling using mixture of gaussians for foreground detection: A survey[END_REF]. These methods have different common steps: background modeling, background initialization, background maintenance and foreground detection. The background modeling describes the kind of model used to represents the background. Once the model has been chosen, the background model is initialized during a learning step by using N frames. Then, a first foreground detection is made and consists in the classification of the pixel as a background or as a foreground pixel. Thus, the foreground mask is applied on the current frame to obtain the moving objects. After this, the background is adapted over time following the changes which have occurred in the scene and so on. The last decade witnessed very significant contributions in background modeling via unsupervised subspace learning [START_REF] Bouwmans | Subspace learning for background modeling: A survey[END_REF] due to their robustness to illumination changes. The first approach developed by Oliver et al. [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF] consists in applying Principal Component Analysis (PCA) on N images to construct a background model, which is represented by the mean image and the projection matrix comprising the first p significant eigenvectors of PCA. In this way, foreground segmentation is accomplished by computing the difference between the input image and its reconstruction. The main limitation of this method appears for the background maintenance because it is computationally intensive to perform model updating using the batch mode PCA. Moreover without a mechanism of robust analysis, the outliers or foreground objects may be absorbed into the background model. In this context, some authors proposed different algorithms of incremental PCA. The incremental PCA proposed by Rymel et al. [START_REF] Rymel | Adaptive eigenbackgrounds for object detection[END_REF] need less computation but the background image is contamined by the foreground object. To solve this, Li et al. [START_REF] Li | An integrated algorithm of incremental and robust pca[END_REF] proposed an incremental PCA which is robust in presence of outliers. However, when keeping the background model updated incrementally, it assigned the same weights to the different frames. Thus, clean frames and frames which contain foreground objects have the same contribution. The consequence is a relative pollution of the background model. To solve this, Skocaj et al. [START_REF] Skocaj | Weighted and robust incremental method for subspace learning[END_REF] used a weighted incremental and robust. The weights are different following the frame and this method achieved a better background model. However, the weights were applied to the whole frame without considering the contribution of different image parts to building the background model. To achieve a pixel-wise precision for the weights, Zhang and Zhuang [START_REF] Zhang | Adaptive weight selection for incremental eigen-background modeling[END_REF] proposed an adaptive weighted selection for an incremental PCA. This method performs a better model by assigning a weight to each pixel at each new frame during the update. Wang et al. [START_REF] Wang | Adaptive eigenbackground for dynamic background modeling[END_REF] used a similar approach using the sequential Karhunen-Loeve algorithm. Recently, Zhang et al. [START_REF] Zhang | Robust foreground segmentation using subspace based background model[END_REF] improved this approach with an adaptive scheme. All these incremental methods avoid the eigen-decomposition of the high dimensional covariance matrix using approximation of it and so a low decomposition is allowed at the maintenance step with less computational load. However, these incremental methods maintain the whole eigenstructure including both the eigenvalues and the exact matrix. To solve it, Li et al. [START_REF] Li | Fast robust eigen-background updating for foreground detection[END_REF] proposed a fast recursive and robust eigenbackground maintenance avoiding eigen-decomposition. This method achieves similar results than the incremental PCA [START_REF] Li | An integrated algorithm of incremental and robust pca[END_REF] at better frames rates. In another way, Yamazaki et al. [START_REF] Yamazaki | Detection of moving objects by independent component analysis[END_REF] and Tsai et al. [START_REF] Tsai | Independent component analysis-based background subtraction for indoor surveillance[END_REF] proposed to use the Independent Component Analysis (ICA) which is a variant of PCA in which the components are assumed to be mutually statistically independent instead of merely uncorrelated. This stronger condition allows remove the rotational invariance of PCA, i.e. ICA provides a meaningful unique bilinear decomposition of two-way data that can be considered as a linear mixture of a number of independent source signals. The ICA model was tested on traffic scenes [START_REF] Yamazaki | Detection of moving objects by independent component analysis[END_REF] and show robustness in changing background like illumination changes. Recently, Chu et al. [START_REF] Chu | A basis-background subtraction method using non-negative matrix factorization[END_REF] used a Non-negative Matrix Factorization algorithm to model dynamic backgrounds and Bucak et al. [START_REF] Bucak | Incremental subspace learning and generating sparse representations via non-negative matrix factorization[END_REF] preferred an Incremental version of the Non-negative Matrix Factorization (INMF) which presents similar performance than the incremental PCA [START_REF] Li | An integrated algorithm of incremental and robust pca[END_REF]. In order to take into account the spatial information, Li et al. [START_REF] Li | Robust foreground segmentation based on two effective background models[END_REF] used an Incremntal Rank-(R1,R2,R3) Tensor (IRT). Results [START_REF] Li | Robust foreground segmentation based on two effective background models[END_REF] show better robustness to noise. The Table 1 shows an overview of the background modeling based on subspace learning. However, these different approaches are unsupervised subspace learning methods. Indeed, it doesnt need to label data. Recently, White et al. [START_REF] White | Automatically tuning background subtraction parameters using particle swarm optimization[END_REF] proved that the Gaussian Mixture Model (GMM) [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] gives better results when some coefficients are determined in a supervised way. Following this idea, we propose to use a supervised subspace learning for background modeling. Thus, the Maximum Margin Criterion (MMC) offers a nice framework. It was proposed by Li et al. [START_REF] Li | Efficient and robust feature extraction by maximum margin criterion[END_REF] and it can outperform PCA and Linear Discriminant Analysis (LDA) on many classification tasks [START_REF] Wang | Feature extraction by maximizing the average neighborhood margin[END_REF]. MMC search for the projection axes on which the data points of different classes are far from each other meanwhile where data points of the same class are close to each other. As the original PCA and LDA, MMC is a batch algorithm and so it requires that the data must be known in advance and be given once altogether. Recently, Yan et al. [START_REF] Yan | Immc: incremental maximum margin criterion[END_REF] have proposed incremental version of MMC which is suitable to update online the background model. The rest of this paper is organized as follows: In the Section 2, we firstly remind the Incremental Maximum Margin Criterion (IMMC). In the Section 3, we present our method using subspace learning via IMMC for background modeling. Then, a comparative evaluation is provided in the Section 4. Finally, the conclusion is given in Section 5. This section reminds briefly the principle of IMMC developed in [START_REF] Yan | Immc: incremental maximum margin criterion[END_REF]. Suppose the data sample points u(1), u(2), ..., u(N ) are d-dimensional vectors, and U is the sample matrix with u(i) as its i th column. MMC [START_REF] Li | Efficient and robust feature extraction by maximum margin criterion[END_REF] projects the data onto a lower-dimensional vector space such that the ratio of the inter-class distance to the intra-class distance is maximized. The goal is to achieve maximum discrimination and the new low-dimensional vector can be computed as y = W T u where W ∈ R d×p is the projection matrix from the original space of dimension d to the low dimensional space of dimension p. So, MMC [START_REF] Li | Efficient and robust feature extraction by maximum margin criterion[END_REF] aims to maximize the criterion:

J(W ) = W T (S b -S w )W (1) 
where

S b = c i=1 p i (m i -m)(m i -m) T (2) S w = c i=1 p i E(u i -m i )(u i -m i ) T (3)
are called respectively the inter-class scatter matrix and the intra-class scatter matrix and c is the number of classes, m is the mean of all samples, m i is the mean of the samples belonging to class i and p i is the prior probability for a sample belonging to class i. The projection matrix W can be obtained by solving:

(S b -S w )w = λw (4)
To incrementally maximize the MMC criterion, Yan et al. [START_REF] Yan | Immc: incremental maximum margin criterion[END_REF] constraint W to unit vectors, i.e. W = [w 1 , w 2 , ...w p ] and w T k w k = 1. Thus the optimization problem of J(W ) is transformed to:

max p k=1 w T k (S b -S w )w k (5)
subject to w t k w k = 1 with k = 1, 2, ..., p. W is the first k leading eigenvectors of the matrix S b -S w and the column vectors of W are orthogonal to each other. Thus, the problem is learning the p leading eigenvector of S b -S w incrementally.

Updating incrementally leading eigenvectors

Let C = S b +S w be the covariance matrix, then we have J(W ) = W T (2S b -C)W , W ∈ R d×p . Then maximizing J(W ) means to find the p leading eigenvectors of 2S b -C.

The inter-class scatter matrix of step n after learning from the first n samples can be written as below,

S b (n) = c j=1 p j (n)(m j -m(n))(m j (n) -m(n)) T (6)
and

S b = lim n→∞ 1 n n i=1 S b (i) (7) 
On the other hand,

C = E(u(n) -m)(u(n) -m) T (8) = lim n→∞ 1 n n i=1 (u(n) -m(n))(u(n) -m(n)) T (9)
2S b -C should have the same eigenvectors as 2S b -C + θI where θ is a positive real number and I ∈ R d×d . From ( 7) and ( 9) we have the following equation:

2S b -C + θI = lim n→∞ 1 n n i=1 A(i) = A ( 10 
)
where

A(i) = 2S b (i) -(u(i) -m(i))(u(i) -m(i)) T + θI, A = 2S b -C + θI.
The general eigenvector form is Ax = λx, where x is the eigenvector of matrix A corresponding to the eigenvalue λ. By replacing matrix A with the MMC matrix at step n, an approximate iterative eigenvector computation formulation is obtained with ν = λx.

ν(n) = 1 n n i=1 (2 c j=1 p j (i)Φ j (i)Φ j (i) T (11) -(u(i) -m(i))(u(i) -m(i)) T + θI)x(i)
where

Φ j (i) = m j (i) -m (i), v (n)
is the n step estimation of v and x (n) is the n step estimation of x. Once the estimation of ν is obtained, eigenvector x can be directly computed as

x = ν/||ν||. Let x (i) = ν (i -1) /||ν (i -1)
||, then the incremental formulation is the following:

ν(n) = n -1 n ν(n -1) (12) 
+ 1 n (2 c j=1 p j (n)α j (n)Φ j (n) -β(u(n) -m(n)) + θν(n -1))/||ν(n -1)|| where α j (n) = φ j (n) T ν(n-1) and β(n) = (u(n)-m(n)) T ν(n-1), j = 1, 2, ..., c.
For initialization, ν(0) is equal to the first data sample.

Updating incrementally the other eigenvectors

To compute the (j + 1) th eigenvector, its projection is substracted on the estimated j th eigenvector from the data,

u j+1 1 n (n) = u j 1 n (n) -(u j 1 n (n) T ν j (n))ν j (n) ( 13 
)
where

u 1 1 n (n) = u 1 n (n).
The same method is used to update m j i (n) and m j (n), i = 1, 2, ..., c. Since m j i (n) and m j (n) are linear combinations of x j li (i), where i = 1, 2, ..., k, and l i ∈ 1, 2, ..., C. Φ i are linear combination of m i and m, for convenience, only Φ is updated at each iteration step by:

Φ j+1 ln (n) = Φ j ln (n) -(Φ j ln (n) T ν j (n))ν j (n) (14) 
In this way, the time-consuming orthonormalization is avoided and the orthogonal is always enforced when the convergence is reached.

Application to background modeling

The Figure 1 shows an overview of the proposed approach. The background modeling framework based on IMMC includes the following stages: (1) Background initialization via MMC using N frames (N = 30 pratically) (2) Foreground detection (3) Background maintenance using IMMC. The steps (2) and (3) are executed repeatedly as time progresses. Denote the training video sequences S = I 1 , ...I N where I t is the frame at time t. Let each pixel (x,y) be characterized by its intensity in the grey scale and asssume that we have the ground truth corresponding to this training video sequences, i.e we know for each pixel its class label which can be foreground or background. Thus, we have:

S b = c i=1 p i (m i -m)(m i -m) T ( 15 
)
S w = c i=1 p i E(u i -m i )(u i -m i ) T ( 16 
)
where c = 2, m is the mean of the intensity of the pixel x,y over the training video and m i is the mean of samples belonging to class i and p i is the prior probability for a sample belonging to class i with i ∈ {Background, F oreground}. Then, we can apply the batch MMC to obtain the first leading eigenvectors which correspond to the background. The corresponding eigenvalues are contained in the matrix L M and the leading eigenvectors in the matrix Φ M . Once the leading eigenbackground images stored in the matrix Φ M are obtained and the mean µ B too, the input image I t can be approximated by the mean background and weighted sum of the leading eigenbackgrounds Φ M . So, the coordinate in leading eigenbackground space of input image I t can be computed as follows:

w t = (I t -µ B ) T Φ M ( 17 
)
When w t is back projected onto the image space, a reconstructed background image is created as follows:

B t = Φ M w T t + µ B ( 18 
)
Then, the foreground object detection is made as follows:

|I t -B t | > T ( 19 
)
where T is a constant threshold.

Once the first foreground detection is made, we apply the IMMC to update the background model using [START_REF] Zhang | Robust foreground segmentation using subspace based background model[END_REF] and [START_REF] Yamazaki | Detection of moving objects by independent component analysis[END_REF]. The class label for each pixel is obtained using the foreground mask.

Remark: Note that the IMMC can be applied directly at time t=1 but it is less robust than to use firstly the batch algorithm on N frames and then to apply the IMMC to update the background.

Experimental Results

For the performance evaluation, we have compared our supervised approach with the unsupervised subspace learning methods PCA, INMF and IRT using the Wallflower dataset provided by Toyama et al. [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF]. This dataset consists in a set of images sequences where each sequence presents a different type of difficulty that a practical task may meet: Moved Object (MO), Time of Day (TD), Light Switch (LS), Waving Trees (WT), Camouflage (C), Bootstrapping (B) and Foreground Aperture (F). The performance is evaluated against handsegmented ground truth. Three terms are used in evaluation: False Positive (FP) is the number of background pixels that are wrongly marked as foreground; False Negative (FN) is the number of foreground pixels that are wrongly marked as background; Total Error (TE) is the sum of FP and FN. The Table 2 shows the performance in term of FP, FN and TE for each algorithm. The corresponding results are shown in Table 3. As we can see, the IMMC gives the lowest TE followed by the IRT, the INMF and the PCA. Secondly, we have compared our supervised approach with the state of the art algorithms: SG [START_REF] Wren | Pfinder : Real-time tracking of the human body[END_REF], MOG [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] and KDE [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF]. As we can see on the Table 2 and Table 3, our algorithm gives better results particularly in the case of illumination changes. The results for SG, MOG and PCA comes from [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF]. The results for the INMF was provided by their authors [START_REF] Bucak | Incremental subspace learning and generating sparse representations via non-negative matrix factorization[END_REF]. The KDE was implemented in Microsoft Visual C++ and the IRT and IMMC was implemented in Matlab.

Conclusion

In this paper, we have proposed to model the background using a supervised subspace learning called Incremental Maximum Criterion. This approach allows to initialize robustly the background and to upate incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach. Indeed, IMMC outperforms the supervised PCA, INMF and IRT. For future investigations, supervised subspace learning methods such as Linear Discriminant Analysis (LDA) and Canonical Correlation Analysis (CCA) seem to be very interesting approaches. For example, LDA exists MOG [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF] KDE [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF] PCA [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF] INMF [START_REF] Bucak | Incremental subspace learning and generating sparse representations via non-negative matrix factorization[END_REF] IRT [START_REF] Li | Robust foreground segmentation based on two effective background models[END_REF] IMMC Table 3. Results on Wallflower dataset [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF] 
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 1 Fig. 1. Overview of the proposed approach
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 1 Subpace Learning for background modeling: An Overview

	Subspace Learning -Methods	Authors -Dates
	Principal Components Analysis	
	Batch PCA	Oliver et al. (1999) [6]
	Incremental PCA	Rymel et al. (2004)[7]
	Incremental and Robust PCA	Li et al. (2003)[8]
	Weighted Incremental and Robust PCA	Skocaj et al. (2003)[9]
	Adaptive Weighted Incremental and Robust PCA Zhang and Zhuang (2007)[10]
	Independent Component Analysis	
	Batch ICA	Yamazaki et al. (2006)[14]
	Incremental ICA	Tsai and Lai (2009) [15]
	Independent Component Analysis	
	Batch NMF	Chu et al. (2010)[16]
	Incremental NMF	Bucak et al. (2007)[17]
	Independent Component Analysis	
	Incremental Rank-(R1,R2,R3) Tensor	Li et al. (2008)[18]

2 Incremental Maximum Margin Criterion (IMMC)

in several incremental versions as incremental LDA using fixed point method [START_REF] Chen | An incremental linear discriminant analysis using fixed point method[END_REF] or sufficient spanning set approximations [START_REF] Kim | Incremental linear discriminant analysis using sufficient spanning set approximations[END_REF]. In the same way, Partial Least Squares (PLS) methods [START_REF] Rosipal | Overview and recent advances in partial least squares[END_REF] give a nice perspective to model robustly the background. Table 2. Performance Evaluation on Wallflower dataset [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF]