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Abstract. Automatic code generation is an essential cornerstone of today’s model-driven approaches to
software engineering. Thus a key requirement for the success of this technique is the reliability and correctness
of code generators. This article describes how we employ standard model checking-based verification to check
that code generator models developed within our code generation framework Genesys conform to (temporal)
properties. Genesys is a graphical framework for the high-level construction of code generators on the basis of
an extensible library of well-defined building blocks along the lines of the Extreme Model-Driven Development
(XMDD) paradigm. We will illustrate our verification approach by examining complex constraints for code
generators, which even span entire model hierarchies. We also show how this leads to a knowledge base of
rules for code generators, which we constantly extend by e.g. combining constraints to bigger constraints,
or by deriving common patterns from structurally similar constraints. In our experience, the development
of code generators with Genesys boils down to re-instantiating patterns or slightly modifying the graphical
process model, activities which are strongly supported by verification facilities presented in this article.
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1. Introduction

Automatic code generation is a key feature of model-driven approaches to software engineering. It has several
advantages such as the elimination of manual coding errors, and it provides a fast track to a deployable and
testable system/application. Furthermore, it disburdens developers from writing boilerplate code, which is
often a highly repetitive and cumbersome task, and by doing this, it shifts the attention back to the primary
concern, the application-level logic. Of course, an indispensable requirement for the success of this approach
is the reliability and correctness of the corresponding code generators.

In [JMS08], we presented Genesys, a framework for the high-level construction of code generators along
the lines of the Extreme Model-Driven Development (XMDD, see Sect. 2) paradigm. In this framework, code
generators are modeled on the basis of an extensible library of well-defined building blocks. We showed that
constructing code generators this way offers several advantages, such as the high potential for reuse: The
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Fig. 1. XMDD with jABC & Genesys

building blocks, as well as whole parts of code generators covering features or aspects like error-handling or
input/output-related tasks, can easily be reused for constructing new code generators. This enables short
development cycles and a fast evolution of the generation library. We also showed that the approach perfectly
integrates with other classical, well-established concepts, such as bootstrapping from the field of compiler
construction.

In this article we focus on another advantage. The XMDD approach comprises model checking-based
[CGP01, QS82] verification, which can be applied to the code generators: As the code generators are realized
as formal models, they are amenable to such techniques. This enables us to check code generation rules or
constraints, e.g. guaranteeing the complete processing of all input data or the correct order of generation
steps. Genesys contains a large and steadily growing library of such constraints, which greatly improves the
overall quality and reliability of the code generators.

In [JMS08], we already briefly motivated the use of model checking in Genesys with several simple example
constraints. As the main contribution of this article, we want to elaborate on this by examining more complex
constraints for code generators, which even span entire model hierarchies. We also show how we constantly
extend our knowledge base for code generation by e.g. combining constraints to bigger constraints, or by
deriving common patterns from structurally similar constraints. For our experiments, we used the model
checker GEAR [BMRS07a, BMRS07b] to check whether the code generators conform to the constraints,
which we specified graphically using the FormulaBuilder [JMS06, JMS08].

In our experience, the development of code generators with Genesys boils down to re-instantiating pat-
terns or slightly modifying the graphical process model. These activities are strongly supported by the
application of model checking presented in this article, as it helps leveraging the increasing body of domain
knowledge during code generator construction.

In the following sections, we first will describe jABC, which is a basic framework that enables the
development according to XMDD (Sect. 2). Afterwards, we present Genesys, which is based on the jABC
(Sect. 3), and we briefly recapitulate the main ideas presented in [JMS08]. Sect. 4 outlines the verification
facilities of the jABC, which we apply to check the property conformance of Genesys’ code generators.
Subsequently Sect. 5, the main section, describes and exemplifies the verification of code generators along
an elaborate example. Finally, we discuss some related work (Sect. 6), before we conclude with Sect. 7.

2. The jABC Framework

The code generation framework Genesys is an integral part of jABC, which follows the ideas of Extreme Model-
Driven Development (XMDD) [MS08]. XMDD is a new development paradigm designed to continuously
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Fig. 2. The user interface of jABC

involve the customer/application expert throughout the whole system’s life cycle. In technical practice, user-
level models are successively enriched and refined from the user perspective, until a sufficient level of detail
is reached. At this level, elementary services, solving tasks at the application level, can be implemented.
The realization of the individual services should typically be simple and is often based on functionality
provided by third-party and standard software systems. As the continuously enriched model is the central
and sole artifact of this methodology, which comprises all relevant information including documentation,
access policies, versioning, etc., we also call this the “One-Thing Approach” [SN07, MS09].

jABC is a flexible framework designed to support systematic development according to the XMDD pa-
radigm (see Fig. 1). It allows users to develop service-oriented systems by composing reusable building
blocks into flow graph structures, called Service Logic Graphs (SLG). The building blocks are called Service
Independent Building Blocks (SIBs) [ITU93, IT92], and may represent a single atomic service or also a whole
subgraph (i.e. another SLG, called features in Fig. 1). Thus SLGs can be hierarchical, which facilitates the
refinement along the lines of the One-Thing Approach. This also grants a high reusability not only of the
building blocks, but also of the models themselves, within larger systems. Besides SIBs and hierarchical
SLGs, there are constraints defining e.g. the structure of the underlying meta model, global frame conditions
and business rules, and which can be verified by formal methods like model checking (see Sect. 4). Finally,
the modeled SLG can be compiled to a stand-alone running system. This compilation part is the task of
Genesys. Furthermore, an extensible set of jABC plugins provides additional functionality that adequately
supports all the activities needed along the development lifecycle.

Fig. 2 shows a screenshot of jABC’s user interface. The GUI consists of three main parts (indicated by
the numbers):
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1. the project & SIB explorers, which enable the user to browse available jABC projects and the library of
building blocks that can be used for modeling,

2. the graph canvas, which is used for composing SLGs, and
3. the inspectors, which provide detailed information about selected SIBs and may be used by plugins to

add further functionality.

Several application domains have been successfully covered with the jABC, including complex supply chain
management with IKEA [HMM+08], modeling and execution of bioinformatics workflows [MKS07], the
Semantic Web Service challenge [KMSN08], dataflow analysis of Java programs [LMS06a], a management
framework for remote intelligent configuration of systems [BM06], online decision support systems [KM06]
and graphical construction of game strategies [BJM09]. These projects were very different in nature, never-
theless we observed a surprisingly high potential of synergy, which was due to the XMDD approach.

In the following sections, we will elaborate on how SIBs and SLGs are defined, constructed and organized.

2.1. Service Independent Building Blocks (SIBs)

A SIB is an abstract and generic representation of some service or functionality. In order to provide con-
figurability, each SIB contains a set of formal parameters. Via those parameters, a SIB’s behavior can be
customized depending on the current context of use. In a model, SIBs are then wired based on the pos-
sible results of their execution, reflected by a list of outgoing branches. Roughly speaking, branches can
be considered the “exits” of a building block. SIBs and their constituents are described using simple Java
classes.

For the graphical representation to the jABC user, each SIB consists of an icon and a documentation
of its constituents and its purpose. Furthermore, SIBs are semantically classified in terms of taxonomies. A
taxonomy is a directed acyclic graph: sinks represent SIBs, which are atomic entities in the taxonomy, and
intermediate nodes represent groups, that is sets of modules satisfying some basic property (expressed as
predicates). This structure is freely defined by domain experts, who organize, label and preconfigure SIBs
so that they fit the actual domain.

A SIB’s implementation (i.e. its execution behavior) is realized by one or more service adapters. Each
service adapter contains execution code for a particular SIB. In most cases, this includes data type conversions
and calls to third-party libraries that implement the runtime functionality of the SIB. As a SIB’s execution
behavior may be different depending on the execution environment, an arbitrary number of service adapters
can be assigned to one SIB. For instance, imagine a SIB that reads in customer data for a shop application:
in a staging or testing environment, this information might come from a text file containing dummy data,
whereas in a live scenario the customer data might be stored in a database system. These different behavioral
patterns would be realized by two service adapters, one for the staging system and one for the live system.
Service adapters assure that the execution of a SIB is entirely platform-independent: the same SIB may be
executable in a standard Java environment, a .NET setup and on a mobile phone, if it provides corresponding
service adapters. Thus from the modeling perspective, the usage of a SIB completely virtualizes the target
platform on which it will be executed.

Fig. 2 contains an example of a SIB and its constituents. In the canvas (2), we highlighted a SIB instance
labelled “Write Method Header”. This is an instance of the SIB “RunVelocity”, which can be found inside the
taxonomy displayed in the SIB explorer (1). In this taxonomy, the SIB is labeled as part of the “Script SIBs”,
which in turn are classified as “jABC Common SIBs”. The latter denotes a big SIB library that is shipped
with jABC, and that provides ready-made SIBs for very general, typically quite low-level functionality useful
for almost any application [The08]. The task of the “RunVelocity” SIB is to employ the Velocity template
engine [Apa07] to evaluate a template, which is specified by setting one of the SIB’s parameters. Such a
template is written in the Velocity Template Language (VTL), and is basically a textual skeleton containing
placeholders which are filled with dynamic content as soon as the SIB is executed. Afterwards, the result
of the evaluation is pushed into the so-called execution context. For the scope of this article, it is sufficient
to think of the execution context as a shared memory, which allows SIBs to communicate with each other
during the execution.

As visible from the SIB inspector in Fig. 2 (3), the “RunVelocity”-SIB takes three parameters:
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• template: The Velocity template to be evaluated. In the case of the “Write Method Header” instance,
this template is used to generate the signature and first lines of a Java main method.

• result : The key which is used to store the evaluation result in the execution context. For “Write Method
Header”, this key is bufferMethod.

• append : If this boolean flag is set to true, and if there is already a buffer in the execution context
identified by the key “result”, the evaluation result is appended.

Furthermore, the SIB has two branches (not visible in Fig. 2): default, if the template was evaluated
successfully, and error, if the template could not be evaluated (e.g. because of syntax errors). As most of
Genesys’ code generators are template-based, the “RunVelocity” SIB is used very frequently in this context.

2.2. Service Logic Graphs (SLGs)

In the jABC, Service Logic Graphs (SLGs) are internally modeled as Kripke Transition Systems (KTS,
[MOSS99]) whose nodes represent elementary SIBs and whose edges represent branching conditions (see Fig.
2):

Definition 1 (Kripke Transition System, KTS). A KTS (V,AP, I, Act,→) consists of a set of nodes
V and a set of atomic propositions AP describing basic properties for a node. The interpretation function
I : V → 2AP specifies which propositions hold at which node. A set of action labels Act is used to designate
branching conditions. The possible transitions between nodes are given by the relation → ⊆ V ×Act× V .

Through this non-standard abstraction in our model we obtain a separation of concerns between

• the control-oriented modeling layer, where the user is not troubled with implementation details while
designing or evaluating the applications, and

• the underlying data-oriented communication mechanisms enforced between the participating subsystems,
which are hidden in the SIB implementation.

As a key characteristic, jABC facilitates hierarchical design. SLGs are allowed to make full use of other
already existing SLGs (cf. [SMBK97] for a detailed discussion). Fig. 3 shows an example of a hierarchical
SLG with a three-level hierarchy: SIBs with a green dot in the middle (e.g. “GenerateSIBGraphCells”) are
so-called macros which reference a submodel and thus realize hierarchy. Just like any other SIB, such a
macro has parameters (model parameters) and outgoing branches (model branches). The parameters of a
macro can be mapped to (selected) parameters of the underlying SIBs. Similarly, the set of (un-set) outgoing
branches of the underlying SIBs defines the outgoing branches of the macro. For a detailed description of
the hierarchical SLG in Fig. 3 please refer to Sect. 3. Please note that, in contrast to comparable approaches
like e.g. the Business Process Execution Language (BPEL, [OAS07]), a big advantage of SLGs is their direct
and clean formal semantics.

3. The Genesys Framework

Once the SLG of a system or application is fully designed and all SIBs are implemented, it is ready for
deployment. The SLG has to be transformed into an executable and deployable artifact, usually a piece of
code in a desired programming language suitable for a particular execution environment. This is the task of
Genesys [JMS08], which provides means for the construction of highly specialized code generators that are
made available to the user via a jABC plugin.

Furthermore, Genesys is a framework that enables the construction of code generators along the lines
of XMDD. Accordingly, all code generators in Genesys are themselves designed and built as SLGs within
the jABC. In [JMS08], we already described this concept, and we also discussed the various advantages
arising from it, such as the possibility of bootstrapping and a high potential for reuse of already existing
components. As the focus of this article is rather on the verification of Genesys’ code generators, we will
only provide a short overview of the main ideas and concepts presented in [JMS08].



6 Sven Jörges, Tiziana Margaria and Bernhard Steffen

Bootstrapping & Evolution Via a jABC plugin called Tracer [SMN+06], SLGs can be directly executed
(animated), which enables rapid prototyping and debugging of modeled systems. In other words: the Tracer
is an interpreter for SLGs, which also enables the immediate execution of code generators modeled in jABC.
This allows us to perform bootstrapping: by tracing a code generator’s SLG, we can apply this code generator
to itself and gain the same code generator, implemented in another language. The further evolution then
mostly boils down to simple parameterization: As currently most of the generators provided by Genesys are
template-based, the typical way to build a new generator is to modify the templates (that is, to parametrize
the SIBs) of an existing generator accordingly.

Reuse of Components In [JMS08], we described the genealogy of Genesys’ code generators, showing how
the different generators emerged from each other. Corresponding to the ideas of XMDD, a rich pool of
existing components accelerates the development of new code generators. These components can be:

• SIBs, which mostly come from jABC’s Common SIBs (see 2.1), or in rare cases have to be newly imple-
mented, and

• SLGs, which model features or aspects that are reusable among different code generators.

For instance, we derived a code generator for C# by almost entirely reusing a code generator for Java
Servlets. Besides parameterization of contained SIBs and SLGs (e.g. modification of templates to contain
C# rather than Java syntax), virtually no modifications of the SLG’s workflow were necessary.

Extruders & Pure Generators During the early development of Genesys, we recognized that the code
generators can be divided into two different classes: Extruders and Pure Generators. These classes differ in
the applied strategies for mapping SLGs into executable source code, as well as in the extent to which jABC
features are required for the execution of the generated source code.

Generators belonging to the Extruder class simply use the Tracer for the execution of the generated
code. This is perfectly possible as the Tracer provides an API for interpreting SLGs without the jABC user
interface. Furthermore, Extruders directly use jABC’s graph data structures to represent the SLGs in the
generated code. Both, the use of the Tracer as well as the use of jABC’s data structures, cause the generated
code to depend on the jABC framework during compilation and runtime. Furthermore, the execution with
the Tracer causes some runtime overhead. All this may be problematic for application domains with strong
performance requirements or memory limitations as it is often the case for embedded systems.

The big advantage of Extruders is their simplicity, as they support all advanced Tracer features, like
e.g. thread and event handling. Furthermore, Extruders automatically profit from every new Tracer feature.
For Pure Generators, neither the jABC Tracer nor the jABC Framework are required. They solely base
on functionality provided by the considered runtime environment, like e.g. the Java Runtime Environment
(JRE). Moreover, code produced by Pure Generators is usually smaller and faster. These advantages come of
course at a rather high price: to profit from complex Tracer features, they need to be specifically programmed.

Fig. 3 shows a hierarchical SLG that models a part of a code generator for Java classes. This SLG is
shared by all code generators following the Extruder approach and targeting a Java-based platform (such
as the Java Standard Edition, JSE). The depicted SLG hierarchy is responsible for processing the input
SLGs for which code will be generated. In the Extruder approach, a Java method is generated for each input
model. Each method then contains code for all constituents of an SLG, e.g. for SIBs, parameters, edges, etc.
When such a method is executed, it basically reconstructs the corresponding SLG using jABC’s graph data
structures, which is understood by and passed to the Tracer. Please note that the depicted SLG hierarchy is
truncated for the sake of presentability. This is sufficient as our example focuses on the generation of code
for SIB parameters, leaving out all the other constituents of an SLG.

The SLG marked with number 1 in Fig. 3 first iterates over all input models (SIB “Next Model”). Via
an instance of the “RunVelocity” SIB introduced in Sect. 2.1, it then generates the header of the method
(“GenerateMethodHeader”). Afterwards, there are two macros (see Sect. 2.2) containing further SLGs that
generate code for the SIBs (the SLG marked with 2), for the SLG’s edges and for its model parameters.
Finally, another “RunVelocity” SIB is used to generate the remainder of the method (“GenerateMethod-
Footer”).

SLG 2 is responsible for generating code for all SIBs contained in an input model. First, the current
input model and its SIBs are retrieved. Afterwards, the SLG simply iterates over the SIBs (“Next SIB
Graph Cell”), and generates code for each by calling SLG 3, which is again embedded via a macro.



Assuring Property Conformance of Code Generators via Model Checking 7

Fig. 3. A hierarchical code generator SLG (shared by all Extruders)

SLG 3 first retrieves the current model, the current SIB and its parameters. Then it iterates over the SIB’s
parameters (“Next SIB Parameter”) and generates corresponding code via “RunVelocity” SIBs, depending
on whether the current parameter is a normal SIB parameter (“GenerateSIBParameter”) or exported as a
model parameter (“Generate SIB Model Parameter”).

For this article, it is not necessary to understand all details of this code generation process. The modus
operandi of all Genesys code generators is pretty standard: The generator reads the input models and then
iterates all contained elements in order to retrieve all information necessary to produce corresponding code.
However, the example in Fig. 3 provides an impression of how such generation processes are expressed as
jABC models, and finally forms the basis for the case study presented in the following sections.

Besides the advantages given above, the Genesys approach to the development of code generators also
enables the use of sophisticated verification techniques like model checking, which we already motivated
in [JMS08]. In Sect. 5, we will further elaborate on how we used model checking to assure the property
conformance of code generators.

4. Model Verification

As visible from Fig. 1, safeguarding the consistency and compatibility during the integration of a system is key
to the XMDD paradigm. Thus constraints or business rules, which usually arise from the given application
domain, have to be defined. While assembling a global system SLG from SIBs, macros and other SLGs,
these constraints have to checked continuously, in order to ensure that the created system is executable and
translatable to working code.

For the verification of SLGs, we distinguish between local and global constraints. jABC allows to check
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Fig. 4. Checking local constraints with the LocalChecker

both types of constraints via corresponding tools (jABC plugins), the LocalChecker and the model checker
GEAR. In the following, we will briefly introduce both types of constraints and the respective check tools.

4.1. Checking Local Constraints with the LocalChecker

Local constraints relate to specific parts of the application, i.e. to its components. In the context of SLGs,
these components are the SIBs used for modeling. Constraints for SIBs usually have to do with e.g. correct
parameterization, the valid assignment of branches etc.

Such simple local conditions are verified using the LocalChecker [SMN+06] plugin of jABC. The check
conditions are explicitly implemented in the Java class representing a SIB. If conditions are not fulfilled
while modeling, the LocalChecker immediately informs the user with messages categorized according to
their severity, e.g. as warnings, errors or fatal errors, as displayed on the left side of Fig. 4. This ensures the
correct usage of building blocks and thus prevents common modeling mistakes.

For assuring the correct appliance of SIBs in Genesys’ code generators, we enforce the use of all standard
checks that are provided out-of-the-box by the LocalChecker. This impedes common modeling errors such
as edges without any targets (which is tantamount to a breach in the execution flow), missing branch
assignments (leading to inaccessible execution paths) or the use of SIBs which are not suitable for building
code generators (because they e.g. originate from another, incompatible application domain).

An important example of using local checks is the “RunVelocity” SIB. As already outlined in Sect. 2.1,
this SIB takes a Velocity template as a parameter. One necessary local check of course is to check for the
bare existence of a corresponding template, another application is to check the validity of the template’s
syntax. A result from the latter check is visible in Fig. 4: The first message in the inspector on the left reports
a syntax error in the Velocity template belonging to the SIB “Generate Main Method Header”, which can
be found in the SLG on the right. Fig. 4 also exemplifies several other messages typically emitted by the
LocalChecker. As a further example, we use local checks to control whether certain project guidelines are
followed properly. For instance, SIBs which are not documented always lead to a warning.

4.2. Checking Global Constraints with GEAR

In contrast to local constraints, global constraints usually span the entire application, sometimes even the
whole domain or frame conditions enforced by the corresponding meta model. The ideas formulated by
such constraints seem often very simple, as they mostly require the consistency between actions taken at
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different points of the configuration or functioning of the system, e.g. in order to guarantee well-formedness,
executability etc.

Take for instance the “RunVelocity” SIB we presented in Sect. 2.1, which demands a Velocity template
as a parameter. Of course, it is essential for a code generator which e.g. generates Java code, that only SIBs
that specify Java Templates are used - a constraint which has to be satisfied in order for the code generator
to work properly.

If the system is designed in a model-driven way, there are automated ways of proving this consistency
of actions. Model checking [CGP01, QS82] is a powerful approach to automatic verification of behavioral
models, as it provides an effective way to determine whether a given system model is consistent with a
specified (temporal) property. The jABC framework incorporates this technique via the model checker GEAR
[BMRS07a, BMRS07b], which is integrated as a plugin. Intuitively, any system modeled as SLGs can be
verified with this tool: As described in Sect. 2.2, SLGs can be seen as KTS including atomic propositions
and actions. Please note that the results presented below are not restricted to the use of GEAR - any
model checker such as SPIN [Hol03] or SMV [CGP01] could be easily integrated into jABC using its plugin
mechanism.

Global constraints usually are defined using appropriate formalisms. In the case of GEAR, these are
temporal logics, for example CTL (Computation Tree Logic). As we will use CTL for textually describing
the constraints that are to be discussed later on in Sect. 5, we will now briefly introduce the logic.

CTL can be used to formulate temporal constraints of a model which e.g. are concerned with the reacha-
bility of certain states. For the specification of such formulas CTL offers the path quantifiers A and E as well
as the temporal operators F, U (and its weak variant WU ), X and G. CTL belongs to the branching-time
logics, i.e. its temporal operators quantify over computation paths that start in a specific state of the model.
CTL formulas can be constructed as follows (p represents atomic propositions):

φ ::= p | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E[φ1Uφ2]

The intuition behind these operators is as follows: the validity of an atomic proposition p is checked relative
to a valuation function associating atomic propositions with states. The following two operators are the
standard negation and disjunction, while

• EXφ requires φ to hold in one successor state,
• EGφ requires φ to hold continuously along one leaving path, and
• E[φ1Uφ2] requires φ1 to hold until φ2 eventually holds along one leaving path.

For the formal semantics of CTL formulas please refer to [CGP01].
With the help of the minimal grammar given above, all the other CTL operators can easily be constructed

[CGP01]:

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2

AXφ ≡ ¬EX(¬φ) EFφ ≡ E[true U φ]
AGφ ≡ ¬EF (¬φ) AFφ ≡ ¬EG(¬φ)

A[φ1 U φ2] ≡ ¬E[¬φ2 U (¬φ1 ∧ ¬φ2)] ∧ ¬EG(¬φ2) A[φ1 WU φ2] ≡ ¬E[¬φ1 U ¬φ2]
E[φ1 WU φ2] ≡ ¬A[¬φ1 U ¬φ2]

The A[φ1 WU φ2] will be used in the complex constraints discussed in Sect. 5. It denotes a weak variant of
the until operator, that requires φ1 to hold until φ2 holds along all leaving paths. Please note that in contrast
to the strong until operator, φ2 is not required to occur in cases where φ1 continues to hold indefinitely.

GEAR also supports the specification of constraints using other logics like e.g. Allen’s Temporal Logic
(ATL, [All83]). Internally, these input logics are mapped to modal µ-calculus [Koz83]. Furthermore, GEAR’s
input syntax is extensible via so-called macros (not to be confused with macro SIBs that are used for
hierarchical SLGs!). Basically, a macro is an abbreviation or a pattern that represents a specific formula,
thus leading to more readable and concise formulas. For instance, GEAR’s macro mechanism is used to
incorporate the property specification patterns proposed by Dwyer et. al. [DAC99], and it is also used for
mapping CTL and ATL to modal µ-calculus.

To further ease the specification of constraints, a tool called the FormulaBuilder [JMS06, JMS08] enables
users to model the constraints themselves as SLGs. Users can thus create both the system and the constraints
in the same environment. As such graphically modeled constraints are a special kind of SLG, we call them
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Fig. 5. Verifying the Java Class Extruder with GEAR & the FormulaBuilder

formula graphs. In comparison to normal SLGs there are two restrictions on formula graphs. First, as formula
graphs reflect the syntactic structure of constraints, they usually are trees or directed acyclic graphs. Second,
only specific SIBs, called Formula Building Blocks (FBBs) can be used to model constraints this way. FBBs
represent the parts of a formula, i.e. operators, operands, etc. The FormulaBuilder provides a large library
of FBBs for creating constraints, including logical, arithmetic, comparison and set operators as well as all
specification patterns and other GEAR macros. Furthermore, jABC’s hierarchy feature allows the creation
of composite constraints and new patterns. We will elaborate on this later on in Sect. 5.

Fig. 5 shows an example of how we use GEAR and the FormulaBuilder for checking the Java Class
Extruder, whose topmost SLG is depicted on the bottom right of the image. The graph on the top right
represents a constraint that will be translated by the FormulaBuilder into the following formula meaning
“From an iterator that processes SLGs, an iterator that processes SIBs has to be reachable via the ’next’
branch.”:

IterateSLGs ⇒ < next > EF (IterateSIBs)

In this formula, < conditions > φ indicates the diamond operator (originating from Hennessy-Milner logic
[HM85, Mil89]), while conditions represents an (optional) set of branch names. The given formula is true, if
φ holds for at least one of the successor states reachable via a branch specified in conditions.

This formula graph can be dragged into the GEAR inspector depicted on the bottom left of Fig. 5.
It is then added to the constraint library of the Java Class Extruder and translated on-the-fly by the
FormulaBuilder, each time the constraint is required. Via the GEAR inspector and while modeling, the user
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is always able to check whether all constraints attached to an SLG and its sub-models are currently satisfied.
In the following section, we will discuss more complex constraints used to verify Genesys’ code generators.

5. Checking the Property Conformance of Code Generators

As the main contribution of this article, this section will focus on how we use jABC’s verification facilities
(outlined in Sect. 4) to support quality and reliability in the Genesys framework.

Sect. 4.1 already exemplified the application of the LocalChecker in the context of Genesys. In the follow-
ing, we will concentrate on the verification of code generators via the model checker GEAR. In [JMS08] we
already provided some simple example constraints that motivated the usage of model checking-based verifi-
cation in the context of Genesys. We will further elaborate on this by examining more complex constraints,
which span entire model hierarchies.

These constraints are part of a library of requirements which apply to all SLGs contained in Genesys.
Since the publication of [JMS08], this library of constraints has been steadily growing. This is due to the
fact that new code generators usually raise new constraints, which then are added to the library and often
can even be reused and recombined for checking other code generators. The following sections will also show
how we modularized constraints in order to broaden their applicability.

As motivated in [JMS08], jABC’s integrated model checker GEAR (see Sect. 4.2) enables checking global
constraints that address the well-formedness of the SLGs contained in Genesys. These constraints are col-
lected in a library, which serves as a corpus of rules and guidelines for constructing code generators. There
are several occasions which cause this library to grow steadily, e.g.:

• A new code generator is developed and raises new constraints.
• A bug that traces back to a modeling mistake which has been found in a code generator. A new constraint

is then added to the library to assure that such mistakes will not happen again.
• Existing constraints are recombined to form new, in most cases stronger and more strict, constraints.

As depicted in Fig. 5 at the top left, the library is organized according to the constraint’s semantics. This
structure is inspired by the structure of the well-known specification pattern system presented by Dwyer
et. al in [DAC99]. Accordingly, most constraints are currently distinguished by whether they say something
about the occurrence of actions (“actionOccurrence”) or the relative order (“actionOrder”).

5.1. Occurrence Constraints

Fig. 6 shows three example constraints belonging to the category actionOccurrence. The depicted formula
graphs represent the following constraints (translated into natural language and into a syntax close to
GEAR’s input syntax; the numbering corresponds to Fig. 6):

(1) All errors are handled or at least logged, otherwise the generation fails or finishes successfully :

< error > true ∨ GenerationSuccessful ∨ GenerationFailed ∨ Log

(2) No proxy SIBs:

absenceglobally(SIB.isProxySib) ∧ absenceglobally(SIB.isReplaced)

(3 & 4) SIB InitCodeGeneration is used and is a start SIB without any predecessors:

existenceglobally(SIB.class == .∗InitCodeGeneration)

∧ ((SIB.class == .∗InitCodeGeneration)⇒ (SIB.isStartSib ∧ [ ]false))

In constraint (1), the subformula using the diamond operator demands that every node in the SLG has an
outgoing edge labeled with the branch error and pointing to a valid successor, while GenerationSuccessful,
GenerationFailed and Log are atomic propositions. An early version of this constraint has already been
published in [JKPM07], but during the further evolution of Genesys, it has been refined by adding the
special cases of logging and the successful (error-free) code generation.

Example (2) is a constraint which is not only applicable to code generators, but to all kinds of executable
SLGs. It refers to a jABC feature that ensures the integrity of SLGs, even if required SIBs cannot be loaded
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Fig. 6. Three constraints from the category actionOccurrence: (1) ”All errors are handled or at least logged, otherwise the
generation fails or finishes successfully.”, (2) ”No proxy SIBs.”, (3) & (4) SIB InitCodeGeneration is used and is a start SIB
without ay predecessors.

(e.g. because a SIB has been deleted, or the current user simply does not have access to a SIB). In such a
case jABC replaces the affected SIBs by so-called proxy SIBs. Via these placeholders, the user is able to do
all modeling work as usual: the affected SLGs can be loaded, and the parameters and branches of proxy SIBs
can be edited. However, when it comes to the code generation for an SLG, it must not contain any proxy
SIBs because they lack the required execution code. To ensure that no such placeholders are contained in
an SLG, constraint 2 uses GEAR macros to check two cases:

• SIB.isReplaced is true if a SIB has been automatically replaced by a proxy SIB.
• SIB.isProxySib is true if a user misapplied a proxy SIB for modeling (which was technically possible in

earlier versions of jABC).

The constraint demands that these two cases do not occur in all SLGs by using the specification pattern
“Absence” with the scope “globally” [DAC99]. This pattern means “P has to be false globally” and translates
to the CTL formula AG(!P).

The formula graphs 3 and 4 in Fig. 6 exemplify the use of hierarchy when modeling constraints with
the FormulaBuilder. Formula graph 4 corresponds to the formula SIB.isStartSib ∧ [ ]false, which is true
for any start SIBs without any predecessors (usually applies to the very first SIB of an SLG hierarchy). In
this formula, SIB.isStartSib again is a GEAR macro, while [ ] (resp. BOXB in formula graph 4) is the
backward variant of the box operator. By using jABC’s hierarchy feature, this formula graph is embedded
into formula graph 3 in order to produce a new constraint.

The constraint composed of graphs 3 and 4 demands the use of a SIB called InitCodeGeneration, which
is obligatory for all code generators. This SIB initializes several data structures and helper functionality essen-
tial for any code generation process, e.g. for impeding the multiple generation of identifier names (which usu-
ally leads to uncompilable code). For this purpose, the constraint uses SIB.class == .∗InitCodeGeneration
which is true for all SIBs whose class name matches the regular expression .∗InitCodeGeneration. Further-
more, another specification pattern is used: “Existence” with scope “globally” means “P has to become true
globally” and translates to AF (P). Via the embedded formula graph 4, the constraint additionally demands
that InitCodeGeneration is the very first SIB of any code generator.
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Fig. 7. Two constraints from the category actionOrder: (1) ”After it is initialized, the generator either finishes successfully or
fails.”, (2) ”The extrusion phase has to be executed before the generation terminates.”

When comparing the formula graphs 3 and 4 in Fig. 6 with the corresponding textual formula given above
in (3 & 4), the benefit of the graphical representation becomes apparent. Due to the structural reuse that is
typical for directed acyclic graphs and the hierarchy features, formula graph representations are particularly
beneficial for defining increasingly complex formulas.

5.2. Order Constraints

Fig. 7 shows two examples from the actionOrder category, which represent the following constraints:

(1) After it is initialized, the generator either finishes successfully or fails:

(GenerationSuccessful ∨ GenerationFailed) respondstoglobally Initialization

(2) The extrusion phase has to be executed before the generation terminates:

Extrusion precedesglobally GenerationTerminated

Constraint (1) uses the specification pattern “Response” with scope “globally” to specify the allowed out-
comes of a generation run, once the code generator has been initialized. This pattern means “S globally has
to respond to P” and translates to AG(P ⇒ AF (S)).

The constraint in example (2) is concerned with the order of phases in the generation run. It assures
that the extrusion phase, which contains the processing of the input models and the code generation itself,
is definitely executed before the generation is terminated. Again, a specification pattern is used: It is called
“Response” with scope “globally”, means “S globally has to precede P” and translates to A[¬P WU S].

5.3. Deriving Patterns & Composing Constraints

As many requirements for code generators lead to very similar formulas, new patterns can often be derived
from structural similarities of the corresponding formula graphs.

For instance, imagine a constraint that should ensure the complete treatment of all the constituents of
the SLGs that serve as an input for a code generator. A corresponding constraint must not only check that
for every input SLG all contained SIBs are guaranteed to be processed, but also the SIB’s parameters and
branches, etc. It appeared that all these checks follow a similar new pattern, which we call Handle By. It is
partly based upon “Precedence” and thus belongs to Dwyer et. al.’s class of “Order patterns”. Basically, the
new pattern adds to “Precedence” the possibility to describe conditional cause-effect relationships. In the
description style of [DAC99], the pattern’s intent is:

Definition 2 (Intent of “Handle By”). “To describe cause-effect relationships between a pair of events/
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Fig. 8. The “Handle By” pattern with scope “before”, meaning “Handle every A by P before Q”.

states on certain conditions. Under certain conditions, an occurrence of the first, the cause, must be handled
by an occurrence of the second, the effect.”

In its current version, the pattern only exists with the scope “before”, as other scopes were not required
yet. In textual form, this version of the pattern is to be read as “Handle every A by P before Q”. The formula
graph in Fig. 8 shows the pattern, which is basically modeled as an incomplete formula graph with:

• one model branch P (indicated in Fig. 8 by a dotted arrow) as well as
• three model parameters A, Q and conditions.

As A and Q are currently realized as parameters of the pattern, these slots can only be filled by atomic
propositions, not by entire formulas (as it is the case with P). This basically was an intentional and pragmatic
decision, as in all our scenarios, A and Q had always been atomic propositions. Nevertheless the pattern could
be quickly and easily adjusted for supporting formulas in the slots A and Q. conditions provides a list of
branch names that represent the conditions under which A will be handled by P.

To use the pattern, it can be simply embedded into a formula graph using jABC’s hierarchy feature, as
depicted by the left graph in Fig. 9. The nodes labelled 1 to 3 of this graphs use the “Handle By” pattern
in the before scope. For instance, node 1 instantiates the pattern with:

• the atomic proposition NextModel as the cause,
• node 2 as the effect,
• “next” as the branch condition, and
• the atomic proposition GenerationTerminated for the “before” scope.

Besides using hierarchy to simplify constraints via the use and creation of patterns, constraints can be
combined with and embedded into each other to capture big requirements of whole SLG hierarchies. All code
generators in Genesys are hierarchical SLGs, with a typical code generator model forming a hierarchy of
around 20 SLGs, each of them containing around 20 SIB. This means that a typical code generator consists
of about 400 SIBs.

An example of a composite constraint is depicted in Fig. 9. It elaborates on the idea outlined above:
checking a complete processing of all SLGs that serve as an input to a code generator. This should ensure
that no information is lost or forgotten when generating code from a hierarchical SLG. The constraint focuses
on the generation of code for SIB parameters and contains the following requirements:

(1) Handle every input SLG before the generation terminates, by
(2) handling every SIB before handling the next SLG, by
(3) handling every SIB parameter before handling the next SIB, by
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(4) generating code for either a “normal” SIB parameter or for a model parameter before handling the next
SIB parameter.

As a textual formula, this constraint would translate to (again in a syntax close to GEAR’s input syntax):

AG(NextModel⇒ [next](
AG(NextSIB⇒ [next](
AG(NextSIBParameter⇒ [next](
A[!NextSIBParameter WU (GenerateSIBParameter ∨ GenerateModelParameter)]

)) ∧A[¬NextSIB WU NextSIBParameter]
)) ∧A[¬NextModel WU NextSIB]

)) ∧A[¬GenerationTerminated WU NextModel]

This formula certainly is not very intuitive, and it is rather laborious for a user to create and understand
it. When modeling the constraint explicitly as a formula graph, as depicted on the right side of Fig. 9, it
gets much more concise due to the consequent use of jABC’s hierarchy feature, and of specification patterns
like “Precedence”. Furthermore, if patterns like “Handle By” can be identified and created in the fashion
exemplified above, the constraints become simple, revealing the true intent of the designer.

By combining and embedding constraints this way, Genesys’ constraint library for code generators grows
rapidly, and the constraints tend to be more and more concise and effective.

6. Related Work

There are various approaches that aim at assuring the reliability of automatic code generation. A ”verifying
compiler”, as proposed by Tony Hoare and Jay Misra in their grand challenge [HM05, Hoa03], is one possible
solution to achieve this goal. According to this approach, the compiler is able to determine the correctness
of the problem by using additional information, like e.g. assertions or annotations, in the source code.

A lot of research has been done on this, e.g. taking the form of proof-carrying code [Nec97, App01] or
evidence-based approaches [DF06]. Other work aims at verifying the compiler itself, like e.g. the Verifix
project [GZ99], or at validating the translation especially for optimizing compilers [Nec00]. In contrast to
these rather analytical techniques, constructive approaches postulate a more systematic development process,
e.g. based on the adoption of accepted standards [SWC05] or the generation of code from specifications
[CG05].

All these approaches have in common that they work more or less on the source code level. As all code
generators in the Genesys framework are modeled as SLGs, the verification approach presented in this article
is applied on the design or process level, which is one of the key ideas of the XMDD paradigm. This allows
us to formulate constraints which are not only applicable to one code generator, but to whole families of
code generators.

Our graphical way of constructing constraints or rules is also comparable to several related research
projects which are concerned with simplifying the specification of such properties. For instance, the Propel-
System [SACO02] tries to increase the precision of Dwyer et. al.’s specification patterns by offering additional
options to cover alternatives in the behavior that is to be specified. The patterns are presented by means of
two complementary views: the first is based on a restricted subset of natural language called DNL (disciplined
natural language), the other uses finite-state automata for visualization. As the formula graphs used in our
solution are based on SLGs, we profit from the powerful hierarchy mechanisms that allow us to easily derive
new, more precise and even domain-specific patterns.

Beside the specification pattern system, there are also other approaches that try to simplify the spec-
ification of formulas. Graphical Interval Logic (GIL) [DKM+94] provides a graphical notation which can
be used to model temporal properties of a system. Here intervals serve for the definition of contexts in
which particular properties hold. Other projects like e.g. Prosper [Hol99] or Attempto Controlled English
[FSS98] try to employ restricted (“controlled”) versions of natural language for the specification of proper-
ties. Our approach uses the specification patterns as a fundament, because due to their parameterizablity
and reusability they fit well into the concept of SIBs and are suitable as components of SLGs.



16 Sven Jörges, Tiziana Margaria and Bernhard Steffen

Fig. 9. A constraint checking for the complete handling of input SLGs, using the new “Handle By” pattern

7. Conclusion and Future Work

We have presented our approach to the model checking-based verification of code generators in Genesys.
Genesys is a framework for the high-level construction of code generators along the lines of the Extreme
Model-Driven Development (XMDD) paradigm. In our experience, the development of code generators with
Genesys boils down to re-instantiating patterns or slightly modifying the graphical process model. These
activities are strongly supported by our verification facilities, which help leveraging the increasing body of
domain knowledge in terms of constraints, features and patterns during code generator construction. We
have shown how we support the build-up of this body of knowledge along the construction and structuring
of a complex constraint, which enforces a certain notion of completeness of the code generation process.
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Currently, we are also investigating data flow analysis via model checking (DFA-MC [Ste91, LMS06b]) as
a technique for further increasing the quality of our code generators. Interestingly, DFA-MC is applicable for
us on the component level as well as on the process level. As our components, the SIBs, are Java classes, we
can directly use DFA-MC on them, just as described in [LMS06b]. At the process level, we need to annotate
the contained components with data flow information to be able to perform such analyses. This is part of the
corresponding domain modeling, which typically requires manual effort, but we also envisage the support by
further analyses or by employing a systematic way of incorporating service-level agreements.

To complement our verification facilities, we also envision a more seamless combination of code generation
and testing. It is e.g. imaginable to attach test cases (themselves modeled as SLGs [NSM+01]) to the SLGs
of a modeled application. Along with the source code for the application, the code generators could then
also translate the test cases to source code for a common testing framework like e.g. JUnit [Obj07] as part
of the quality management process - again modeled with the jABC framework.
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