Alterations in gene expression and a Scandinavian multiple sclerosis association study of the SNP rs4763655

To cite this version:
Helle Bach Søndergaard, Finn Sellebjerg, Jan Hillert, Tomas Olsson, Ingrid Kockum, et al.. Alterations in gene expression and a Scandinavian multiple sclerosis association study of the SNP rs4763655. European Journal of Human Genetics, 2011, 10.1038/ejhg.2011.88 . hal-00644721

HAL Id: hal-00644721
https://hal.science/hal-00644721
Submitted on 25 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Alterations in KLRB1 gene expression and a Scandinavian multiple sclerosis association study

of the KLRB1 SNP rs4763655

Helle Bach Søndergaard¹, Finn Sellebjerg¹, Jan Hillert², Tomas Olsson³, Ingrid Kockum³,
Magdalena Lindén³, Inger-Lise Mero⁴,⁵, Kjell-Morten Myhr⁶,⁷, Elisabeth G. Celius⁴, Hanne F.
Harbo⁴,⁸, Jeppe Romme Christensen¹, Lars Börnsen¹, Per Soelberg Sørensen¹, Annette Bang
Oturai¹.

Running title: KLRB1 expression and MS association

Keywords: multiple sclerosis; KLRB1; association study; CD161; case-control study.

¹Danish Multiple Sclerosis Center, Dept. of Neurology, Copenhagen, University Hospital
Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
²The Multiple Sclerosis Research Group, Dept. of Clinical Neuroscience, Centre for Molecular
Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
³Neuroimmunology, Dept. clinical neurosciences, Centre for Molecular Medicine, Karolinska
University Hospital, 171 76 Stockholm, Sweden.
⁴Dept. of Neurology, Oslo University Hospital, Ullevål, 0012 Oslo, Norway.
⁵Inst. of Immunology, Oslo University Hospital, Rikshospitalet, 0012 Oslo, Norway.
⁶The Norwegian multiple sclerosis registry and biobank, Department of Neurology, Haukeland,
University Hospital, 5021 Bergen, Norway.
⁷Dept. of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
⁸University of Oslo, 0012 Oslo, Norway.

Correspondence: Danish Multiple Sclerosis Center, Dept. of Neurology, Copenhagen, University
Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45 35456707; Fax:
+45 35456316; E-mail:hbs@rh.dk
Multiple sclerosis (MS) is a complex autoimmune disease affecting genetically susceptible individuals. A genome-wide association study performed by the International MS Genetics Consortium identified several putative susceptibility genes, among these the $KLRB1$ gene, represented by the single nucleotide polymorphism rs4763655. We could confirm a marginally significant association between rs4763655 and MS ($p=0.046$, OR=1.06 (1.00-1.13)) in a large Scandinavian case-control study of 5367 MS patients and 4485 controls. The expression of $KLRB1$ in blood from MS patients was higher compared with healthy controls ($p<0.001$), and the $KLRB1$ expression decreased significantly ($p<0.001$) after interferon-β treatment. $KLRB1$ was expressed in T cells and NK cells, and expression mainly decreased in NK cells in patients treated with interferon-β. Collectively our results indicate that $KLRB1$ gene expression is altered in MS and likely to be involved in the pathogenesis of the disease, whereas rs4763655 in $KLRB1$ seems to play a minimal role in MS susceptibility.
INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory disease that causes degradation of myelin sheaths and destruction of axons in the central nervous system (CNS). The aetiology of MS is not yet fully understood, but individuals that are genetically susceptible are thought to be triggered to develop MS by environmental factors, of which only a few have been identified, such as vitamin D-status, infectious mononucleosis (Epstein-Barr virus) and smoking1,2.

Recently, genome wide association studies (GWAS) have identified several gene loci associated with MS corroborated by large replication- and meta-analyses as recently reviewed3. Despite the overall minor contribution from each single nucleotide polymorphism (SNP), more than twelve gene loci are today identified at the genome wide significance level ($p<5\times10^{-7}$)3. Thus, beside the well known large contribution of the class II region of the major histocompatibility complex (MHC) to the risk at developing MS4, there is increasing evidence of a network of several gene loci with minor predisposing effects5.

In the GWAS performed by the International Multiple Sclerosis Genetic Consortium (IMSGC) a polymorphism (rs4763655) in the Killer Cell Lectin-like Receptor, subfamily B, member 1 (KLRB1) was found associated with MS and among the top-seventy-list of genes identified ($p=6.85\times10^{-4}$, OR=1.10 (1.04-1.17))6. Thus the associated KLRB1 gene SNP may be part of the network of genes with minor contributions to the development of MS. The KLRB1 gene variant is located in intron 1 of the KLRB1 gene that encodes the CD161/NKR-P1A protein, a C-type lectin receptor expressed on the surface of NK-cells and subtypes of T lymphocytes7. Importantly, CD161 is expressed on the surface of CD4+ T helper cells producing interleukin 17 (Th17 cells) that are involved in the pathogenesis in MS8 and on regulatory natural killer (NK)-cells (reviewed by Vivier
The KLRB1 gene is located on chromosome 12p12-13, and in humans it is found as a single homolog. CD161 binds to lectin-like transcript-1 (LLT1), expressed on activated antigen-presenting cells, found to elicit an inhibitory response on NK cell cytotoxicity. Whether CD161 has a co-stimulatory effect on T-cells, as previously suggested, is still being debated.

In this study we attempted to replicate the KLRB1 SNP association with MS in a Scandinavian population. Furthermore, we compared KLRB1 gene expression in 39 healthy controls and 39 untreated and 33 interferon (IFN)-β treated Danish MS patients and studied the relationship between KLRB1 genotype and disease course in more than 600 IFN-β treated Danish MS patients.

MATERIALS AND METHODS

Subjects

All included Scandinavian MS patients fulfilled the revised McDonald criteria for definite multiple sclerosis from 2005 and were randomly recruited by neurologists from multiple sclerosis centres. Informed consent was obtained from all participants and the local ethics board have approved the experimental protocols. Due to recruitment criteria all included patients and controls were Caucasian. Danish individuals were collected from the Danish MS Center in Copenhagen and controls consisted of healthy hospital staff members’ for the large majority consecutive blood donor controls from Copenhagen University Hospital. Norwegian patients were recruited at neurological clinics in the Oslo area or from the national MS register and Biobank. The Norwegian control samples were healthy blood donors recruited through the Norwegian Bone Marrow Donor Registry (http://www.nordonor.org/). Swedish patients were recruited at neurological clinics in the Stockholm area or were part of a national wide study (EIMS). The Swedish controls were either
healthy blood donors or population-based controls matched to newly diagnosed MS patients in the
EIMS study. For a detailed description of the cohort of untreated and IFN-β treated MS patients
used for gene expression analysis please see Krakauer and co-workers, 2008.14 Allele-specific gene
expression was investigated in 129 Caucasian healthy control subjects sampled in 2004 among
healthy staff personals and is part of the healthy controls used for genotyping (mean age (SD) 44.6
years (13.6), gender ratio 1.9).

Molecular genetic analysis
Genotyping of the \textit{KLRB1} SNP rs4763655 was performed on all Scandinavian individuals using
TaqMan® allelic discrimination. Predesigned primers and probes were obtained from Applied
Biosystems and genotyping protocols were followed as described by the manufacturer (Applied
Biosystems Inc., Foster City, CA, USA). PCR and end-point scoring were performed with a 7500
real-time PCR system. Genotype detection threshold was set at 90%. Genotype accuracy was
determined on 25% of plates from the Danish cohort (39 replicate samples), 5% of plates from the
Norwegian cohort (2 replicate samples) and 100% of plates from the Swedish cohort (42 CEPH
(Centre d’étude du polymorphisme humain) DNA samples that were replicated, at least 3 different
DNA samples on each 96 well plate). In addition 49 Danish and 33 Swedish samples were analyzed
on two separate days. All intra- and inter-assay replicates showed 100% genotype concordance. The
CEPH DNA samples had the same genotype as reported on the HapMap home page.

RNA isolation and expression analysis
Samples from MS patients treated with IFN-β (Avonex) were taken 9-12 hours after injection. RNA
was extracted from whole blood collected in PAXgene tubes (QIAGEN, Copenhagen, DK) using
the RNeasy Plus kit (QIAGEN) and reverse transcribed using the High Capacity cDNA RT kit
Real-time PCR was then performed on diluted cDNA template with assay specific primers and probes (KLRB1: Hs00174469_m1 and GAPDH: Hs99999905_m1) using TaqMan® technology and PCR amplifications were performed using a 7500 real-time PCR System (Applied Biosystems). An expression index was calculated by the $2^{-\Delta\Delta C_t}$ method for relative quantification, where data were normalized to the reference gene GAPDH and pooled total RNA from 50 healthy subjects was used as a calibrator. Log-transformed index values were analysed by an unpaired t-test. Kruskal-Wallis test was used for analysis of allele specific gene expression (Supp. Figure 1A,B).

Statistical analysis

Cohorts from Sweden, Norway and Denmark were tested for heterogeneity by the Breslow-Day test ($\chi^2 = 2.011, p=0.37$) before combined analyses. For the combined analysis Cochran-Mantel-Haenszel χ^2 test was used. Comparison of allele frequencies within each cohort was performed using PLINK v.1.07 (http://pngu.mgh.harvard.edu/purcell/plink/). Genotypes of KLRB1 rs4763655 SNP were analysed by a Kaplan-Meier analysis in relation to the clinical parameters progression (n=618) and relapse (n=608) of IFN-β treated MS patients. Test of equality between genotypes and clinical parameters were performed with Mantel-Cox analysis.

RESULTS AND DISCUSSION

We performed a replication study typing the KLRB1 SNP rs4763655 in a Scandinavian population comprising 5367 MS cases and 4485 controls from Norway, Sweden and Denmark. We limited our analyses to Scandinavian populations since these populations are genetically homogenous and, therefore, well suited to look for small genetic effects. Power calculations using Quanto v.1.2
(http://hydra.usc.edu/gxe/) demonstrated more than 80% power to replicate the MS association of rs4763655 at a significance level of 0.05, with an odds ratio set at 1.1. Controls from the three study populations were tested for deviation from Hardy-Weinberg equilibrium and none showed significant deviation ($p>0.25$). The overall KLRB1 rs4763655 SNP genotyping efficiency was >98%. Clinical characteristics for the three populations are shown in supplementary Table 1. The risk allele frequency (A allele) was high in MS cases in all three populations (Table 1), however only the Danish cohort showed a trend towards a significant association ($p=0.05$). The homogeneity of the odds ratios (OR) from the Scandinavian populations was tested by the Breslow-Day test excluding significant heterogeneity ($p=0.4$). This allowed for a combined Scandinavian analysis performed by the Cochran-Mantel-Haenszel test using PLINK v1.0717. The rs4763655 association with MS was replicated in the combined Scandinavian case-control analysis with nominal significance ($p=0.046$, OR=1.06 (1.00-1.13)) (Table 1). All replicate samples showed 100 percent genotype concordance and clear separation between genotype groups. However, not all plates contained replicates, and it cannot be entirely ruled out that genotyping errors might have occurred. Indeed, as the significance of the association was only marginal, it is still possible that variation in the distribution of genotypes in the different groups, either by chance or due to genotyping errors, might have influenced the results.

KLRB1 gene expression was measured in whole blood from 33 treated and 39 untreated Danish MS patients and we observed a 2.1-fold higher expression in blood cells from relapsing-remitting (RR) MS patients compared with 39 healthy controls ($p=4.1x10^{-6}$) (Figure 1). Furthermore, MS patients treated with IFN-β for more than 6 months had 3.8-fold lower expression than untreated MS patients ($p=2.2x10^{-12}$) (Figure 1), p-values are Bonferroni corrected since more targets were investigated in parallel studies18.
Bioinformatic analyses have suggested that rs4763655 may be located in a transcription factor site (analysis performed by using www.genomatix.de). If the KLRB1 risk-allele has an effect on the expression levels of KLRB1 we would anticipate seeing a difference in expression depending on KLRB1 genotype. Thus, we investigated KLRB1 gene expression and rs4763655 SNP genotypes in blood mononuclear cells from 129 healthy controls. KLRB1 expression was lowest in subjects with the AA genotype, but we did not observe significant differences in gene expression between the AA, AG and GG genotypes (Kruskal-Wallis test, \(p=0.179 \), see supplementary figure 1A).

Furthermore, comparing KLRB1 gene expression in rs4763655 SNP genotype groups in 34 MS cases did not show any statistically significant differences either (Kruskal-Wallis test, \(p=0.861 \), see supplementary figure 1B).

We then investigated KLRB1 expression in immunomagnetically-isolated sub-populations of mononuclear blood cells from untreated and IFN-\(\beta \) treated Danish MS patients (number of patients, \(n=4 \)). A substantial proportion of KLRB1 mRNA was derived from NK cells (65% in healthy subjects, (see supplementary figure 2), and IFN-\(\beta \) treatment reduced KLRB1 gene expression mainly in the NK cell population. These data indicate that CD161, the KLRB1 gene product, in MS patients may exert its function in NK-cells, in addition to the CD4\(^+ \) Th17 cells, previously reported to express CD161\(^8 \). Previous studies have shown that untreated MS patients\(^{19} \) and MS patients treated with IFN-\(\beta \)\(^{20} \) have a lower percentage of circulating NK cells, and other studies suggest that natural NK cells\(^{21} \) and regulatory NK cells induced by treatment with daclizumab can have regulatory functions in MS\(^{22} \).
It is uncertain whether the decrease in \textit{KLRB1} expression in NK cells from MS patients treated with IFN-β represents repression of gene expression directly by IFN-β, an indirect effect by changes in differential cytokine profiles23 or a simple decrease in the percentage of NK cell sub-populations that express CD161.

The pronounced effect of IFN-β treatment on gene expression led us to investigate the potential effect of \textit{KLRB1} rs4763655 genotypes on disease activity and progression in both untreated Danish MS patients and in 620 prospective collected Danish MS patients treated with IFN-β (clinical data are shown in supplemental Table 2). In untreated patients \textit{KLRB1} gene expression did not correlate with disease activity as assessed by magnetic resonance imaging with gadolinium contrast for detection of active lesions (data not shown). In IFN-β treated patients the \textit{KLRB1} genotype had no effect on disease activity measured as gadolinium enhancing lesions, on time to first relapse (Mantel-Cox \(p=0.92\)) or time to progression in EDSS in a Kaplan-Meier survival plot (Mantel-Cox \(p=0.83\)) (Figure 2 A, B).

In conclusion our findings demonstrate that the \textit{KLRB1} rs4763655 SNP is marginally associated with MS in a large combined Scandinavian analysis. Even with approximately 5000 MS patients and controls included, this study had limited power. We cannot exclude that another genetic variant in the vicinity of the rs4763655 SNP might be the true disease associated variant in this region. However, an LD plot generated from HapMap CEU data covering a region on chromosome 12 from 9.4 – 9.75 Mb did not show any LD to the nearest genes (supplementary Figure 3A,B). Expression of \textit{KLRB1} in healthy subjects was not significantly affected by the SNP, and the risk genotype did not influence clinical parameters after IFN-β treatment. Any direct evidence for a causal connection between the marginal association and \textit{KLRB1} gene expression levels was not observed. However,
we identified higher expression of *KLRB1* in blood from MS patients compared with healthy controls, and found that *KLRB1* expression decreased significantly after IFN-β treatment. *KLRB1* was expressed in T cells and NK cells, and expression mainly decreased in NK cells in patients treated with IFN-β. Indeed, the observed increased expression of *KLRB1* in MS patients, together with the substantial decrease observed in patients treated with IFN-β, indicate that the *KLRB1* gene product may be of importance in MS, possibly as a treatment target.

CONFLICT OF INTEREST

Helle Bach Søndergaard, Magdalena Lindén, Jeppe Romme Christensen, Elisabeth G. Celius, Ingrid Kockum, Inger-Lise Mero, Hanne F. Harbo and Lars Börnsen report no disclosures. Jan Hillert has received unrestricted research support from BiogenIdec, MercSerono and Bayer Schering. Tomas Olsson has received unrestricted research support from Biogen Idec, Merck Serono, Sanofi-Aventis and Bayer Schering. KM.Myhr has received honoraria for lecturing and travel expenses for attending meetings, and research support from Biogen Idec, Bayer, Merck Serono or sanofi-aventis. Finn Sellebjerg has received honoraria for consulting or lecturing, travel grants or research grants from Bayer-Schering, Biogen Idec, Merck Serono, Novo Nordisk, Sanofi-Aventis, Schering-Plough and Teva; Per Soelberg Sørensen has received funding, honoraria for consulting or lectureing or research grants from Baxter, Bayer-Schering, Biogen Idec, , BioMS Medical, Merck Serono, Novartis, Sanofi-Aventis and Teva. Annette B. Oturai received travel grants and speakers honoraria from Biogen-Idec, Bayer Schering Pharma and Merck-Serono.

ACKNOWLEDGEMENTS

The authors thank Joy Mendel-Hartvig, Vibeke Fuglholt and Marie Koefoed for excellent laboratory work. The Danish MS Society, the Warwara Larsen Foundation and the Johnsen
Foundation and The Danish Counsil for Strategic Research supported the Danish part of the study. The Research Council of Norway and South Eastern Norway Regional Health Authority supported the Norwegian part of the study. The Norwegian Bone Marrow Donor Registry is thanked for collaboration in establishment of the Norwegian control material and the Norwegian MS Register and Biobank is acknowledged for contribution of a proportion of the MS samples. Swedish Medical Research Council financed the Swedish part of the project (sample collection); from the Swedish Council for Working Life and Social Research, the fp6 EU program Neuropromise (LSHM-CT-2005-018637), Bibbi and Niels Jensens Foundation, Montel Williams Foundation, the Söderberg foundation, and the Swedish Association for Persons with Neurological Disabilities.

Supplementary information is available at European Journal of Human Genetics website.

References

3. Oksenberg JR, Baranzini SE. Multiple sclerosis genetics-is the glass half full, or half empty? *Nat Rev Neurol* 2010;6:429-37

17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. *American Journal of Human Genetics* 2007;**81**:559-75

FIGURES

Figure 1: Relative gene expression of *KLRB1* in MS patients and healthy controls.

Box-plots showing higher relative *KLRB1* expression in 39 MS patients compared with 39 healthy controls (*p*<0.001) and relative lower *KLRB1* expression in 33 interferon-beta treated MS patients compared with untreated MS patients (*p*<0.001). qPCR analysis was performed on MS patients and age and gender matched healthy controls.

Figure 2: Survival plots showing the relation between the *KLRB1* rs4763655 genotype and the clinical parameters progression and relapse.

A. The *KLRB1* genotype does not have an effect on progression among IFN-β treated patients. B. The *KLRB1* genotype does not change time to first relapse among IFN-β treated patients. AG, open circles; GG, closed circles; AA, rhombe.
<table>
<thead>
<tr>
<th>Population</th>
<th>N</th>
<th>AA</th>
<th>AG</th>
<th>GG</th>
<th>RAF cases</th>
<th>RAF control</th>
<th>Chi sqr</th>
<th>p-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norwegian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>1903</td>
<td>224</td>
<td>866</td>
<td>813</td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.34</td>
<td>0.023</td>
</tr>
<tr>
<td>Controls</td>
<td>1540</td>
<td>178</td>
<td>702</td>
<td>660</td>
<td>0.35</td>
<td>0.34</td>
<td>0.023</td>
<td>0.88</td>
<td>1.01 (0.91-1.11)</td>
</tr>
<tr>
<td>Swedish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>2246</td>
<td>273</td>
<td>1019</td>
<td>954</td>
<td>0.35</td>
<td>0.33</td>
<td>2.21</td>
<td>0.14</td>
<td>1.07 (0.98-1.18)</td>
</tr>
<tr>
<td>Controls</td>
<td>1820</td>
<td>193</td>
<td>821</td>
<td>806</td>
<td>0.35</td>
<td>0.33</td>
<td>2.21</td>
<td>0.14</td>
<td>1.07 (0.98-1.18)</td>
</tr>
<tr>
<td>Danish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>1218</td>
<td>159</td>
<td>584</td>
<td>475</td>
<td>0.37</td>
<td>0.34</td>
<td>3.76</td>
<td>0.053</td>
<td>1.13 (1.00-1.28)</td>
</tr>
<tr>
<td>Controls</td>
<td>1125</td>
<td>141</td>
<td>490</td>
<td>494</td>
<td>0.37</td>
<td>0.34</td>
<td>3.76</td>
<td>0.053</td>
<td>1.13 (1.00-1.28)</td>
</tr>
<tr>
<td>Combined analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4485</td>
<td>512</td>
<td>2013</td>
<td>1960</td>
<td></td>
<td></td>
<td>3.978</td>
<td>0.046</td>
<td>1.06 (1.001-1.13)</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scandinavian combined

Cases: 5367, 654, 2468, 2245
Controls: 4485, 512, 2013, 1960
Figure 1.