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The Multivariate Point Null Testing Problem:

A Bayesian Discussion

Miguel A. Gómez-Villegas and Beatriz González-Pérez

Departamento de Estad́ıstica e Investigación Operativa, Facultad de CC.

Matemáticas, Universidad Complutense de Madrid. Madrid, 28040, Spain

Abstract

In this paper the problem of testing a multivariate point hypothesis is considered.

Of interest is the relationship between the p-value and the posterior probability. A

Bayesian test for simple H0 : θ = θ0 versus bilateral H0 : θ 6= θ0, with a mixed prior

distribution for the parameter θ, is developed. The methodology consist on fixing a

sphere of radius δ around θ0 and assigning a prior mass, π0, to H0 by integrating the

density π(θ) over this sphere and spreading the remainder, 1−π0, over H1 according

to π(θ). A theorem that shows when the frequentist and Bayesian procedures can

give rise to the same decision is proved. Then, some examples are revisited.
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1 Introduction

Let f (x1, · · · , xn|θ) (θ = (θ1, · · · , θm) unknown) the likelihood of a sample

(X1, · · · , Xn) . For a specified θ0 = (θ01, · · · , θ0m) we want to test

H0 : θ = θ0 versus H1 : θ 6= θ0. (1)

As usual, we use the following mixed prior distribution to test (1)

π∗ (θ) = π0IH0 (θ) + (1− π0) π (θ) IH1 (θ) . (2)

For a proper metric d and a value of δ sufficiently small, consider

H0δ : d (θ0, θ) ≤ δ, versus H1δ : d (θ0, θ) > δ.

Denote B (θ0, δ) =
{

θ ∈ Θr,
∑m

i=1 (θi − θ0i)
2 ≤ δ2

}
. Gómez-Villegas, Máın

and Sanz (2007) propose to compute π0 by means of

π0 =
∫
B(θ0,δ)

π (θ) dθ. (3)

By this way, π0 is the probability assigned to H0, through π∗(θ), and H0δ,

through π(θ), the Kullback-Leibler discrepancy between π(θ) and π∗(θ) goes

to zero as δ goes to zero, and the posterior probability of the null is

Pπ∗ (θ0|x1, · · · , xn) =
[
1 +

1− π0

π0

η (x1, · · · , xn)
]−1

, (4)

η (x1, · · · , xn) =

∫
Θ f (x1, · · · , xn|θ) π (θ) dθ

f (x1, · · · , xn|θ0)
. (5)

Suppose that H0 is rejected when Pπ∗ (θ0|x1, · · · , xn) ≤ 1/2. On the other

hand, if Λ (x1, · · · , xn) = supθ∈Θ f (x1, · · · , xn|θ)/f (x1, · · · , xn|θ0) is the test
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statistic, then the associated p-value,

p (x1, · · · , xn) = P (Λ (X1, · · · , Xn) > Λ (x1, · · · , xn) |θ0) , (6)

can be approximated by P (χ2
m > 2 ln Λ (x1, · · · , xn)). In this case, H0 is re-

jected when p (x1, · · · , xn) ≤ p∗, for a level of significance p∗. The aim is to

find conditions for δ in order that, when p∗ is fixed, whatever (x1, · · · , xn) ∈ χ,

the same decision is reached with both methods. In section 2, a theorem that

shows when both approaches are agree is proved. In section 3 some relevant

examples are revisited. Conclusions and comments are included in section 4.

2 Comparison between both approaches

In parametric testing of a simple null hypothesis, as opposed to the one-sided

(see Casella and Berger , 1987), Bayesian and frequentist procedures can give

rise to different decisions (see Lindley , 1957; Berger and Sellke , 1987; Berger

and Delampady , 1987, among others). In most of the Bayesian approaches, the

infimum of a Bayesian evidence measure over a wide class of priors is computed

and is substantially larger than the p-value. Other important references are Oh

and Dasgupta (1999), Gómez-Villegas and Sanz (2000), Sellke, Bayarri and

Berger (2001), Gómez-Villegas, Máın and Sanz (2002) and Gómez-Villegas

and González-Pérez (2005, 2006).

2.1 Preliminaries

In this section we introduce some definitions and results in order to prove a

characterization theorem of the agreement between both methods to test (1).
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Definition 2.1 Let π (θ) be the prior about θ. T = T (X1, · · · , Xn) is a suffi-

cient statistic to test H0 : θ ∈ Θ0, versus H1 : θ ∈ Θ1, with Θ0 ∩ Θ1 = φ and

Θ0 ∪Θ1 = Θ, if Pπ (Θ0|x1, · · · , xn) = Pπ (Θ0|t), when T (x1, · · · , xn) = t.

Note that the Bayes factor η given in (5) is a sufficient statistic to test the

multivariate point null given in (1) when the mixed prior (3) is used. In fact,

with this prior choice, if T is a suficient statistic to test (1), then there is a

function g : R → R such that g (T ) = η. Moreover, the usual definition of

sufficient statistic is not equal to this new concept of sufficient statistic to

test. If T is a sufficient statistic then T verifies definition 2.1. The reciprocal

is not true. We introduce the next concept in order to compare two statistics.

Definition 2.2 Let T1 = T1 (X1, · · · , Xn) and T2 = T2 (X1, · · · , Xn) be uni-

variate statistics. T1 is an increasing tendency statistic with respect to T2 in

a value T1 = t if sup
T1(x1,···,xn)<t

T2 (x1, · · · , xn) ≤ inf
T1(x1,···,xn)≥t

T2 (x1, · · · , xn) .

Proposition 2.1 If T1 = h (T2) and h : R → R is a non-decreasing monotonous

function, then T1 is an increasing tendency statistic with respect to T2 for any

value T1 = t. Furthermore, when h is a strictly increasing function, then

sup
T1(x1,···,xn)<t

T2 (x1, · · · , xn) = inf
T1(x1,···,xn)≥t

T2 (x1, · · · , xn) = h−1 (t) .

2.2 Agreement between frequentist and Bayesian approaches

Theorem 2.1 Suppose that we wish to test (1) with the prior distribution

given in (2) and π0 as in (3). If Λ is an increasing tendency statistic with

respect to η in Λ = λ∗, then for p∗ = Pθ0 {Λ ≥ λ∗} there is an interval of

values of π0 = π0 (δ), I = I (p∗, n) = (`1, `2), where both methods are agree.
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Proof Define Aη (κ) = {(x1, · · · , xn) , η (x1, · · · , xn) = κ}. Pπ∗ (θ0|κ) > 1/2 is

verified when π0 > κ(κ + 1)−1. π0 (κ) = κ(κ + 1)−1 is a strictly increasing

function. Moreover, if λ1 < λ2, then p (λ1) = Pθ0 {Λ ≥ λ1} ≥ Pθ0 {Λ ≥ λ2} =

p (λ2). If Λ is an increasing tendency statistic with respect to η in Λ = λ∗ then

κ∗ = sup(x1,···,xn), p>p∗ η = supΛ<λ∗ η ≤ infΛ≥λ∗ η = inf(x1,···,xn), p≤p∗ η = κ∗ and

`1 = π0 (κ∗) = sup(x1,···,xn), p>p∗ π0 (η) ≤ inf(x1,···,xn), p≤p∗ π0 (η) = π0 (κ∗) = `2.

are verified for p∗ = Pθ0 {Λ ≥ λ∗}. Consider π0 ∈ (`1, `2). If (x1, · · · , xn) ∈

Aη (κ), κ < κ∗ ≤ κ∗, then π0 > `1 > κ(κ+1)−1 and Pθ0 {Λ ≥ Λ (x1, · · · , xn)} >

p∗. On the other hand, if (x1, · · · , xn) ∈ Aη (κ), κ ≥ κ∗ ≥ κ∗, then π0 < `2 ≤

κ(κ + 1)−1 and Pθ0 {Λ ≥ Λ (x1, · · · , xn)} ≤ p∗.

Corollary 2.1 Let Λ = h (η) with h : R → R be a non-decreasing monotonous

function. If (x1, · · · , xn) ∈ Aη (κ) is observed, the same decision is reached with

the posterior probability Pπ∗ (θ0|κ) = [1 + (1− π0 (δ))κ/π0(δ)]
−1 and δ such

that π0 (δ) ∈ (`1, `2),

`1 = `1 (p∗, n) = sup(x1,···,xn), p>p∗ η (η + 1)−1 , (7)

`2 = `2 (p∗, n) = inf(x1,···,xn), p≤p∗ η (η + 1)−1 , (8)

and p∗ = P (Λ ≥ λ∗) to quantify the p-value, p (h (κ)) = Pθ0 {Λ ≥ h (κ)}.

Moreover, when h is strictly increasing continuous, then η = h−1(Λ) and

`1 = `2 = π0 (δ, p∗, n) = h−1 (λ∗)
[
h−1 (λ∗) + 1

]−1
. (9)

The proof of Corollary 2.1 is easy by using theorem 2.1 and proposition 2.1.

Another immediate outcome is that, when the sample size n and the level of

significance p∗ are fixed, the verification of `1 ≤ `2, defined in (7) and (8), is

sufficient for the existence of agreement between the p-value and the posterior
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probability. Moreover, when Λ = h (η) and h : R → R is non-decreasing

monotonous, `1 ≤ `2 is always true whatever p∗, and if h is strictly increasing

continuous then `1 = `2 and the agreement is obtained for (9).

3 Applications

3.1 Lindley’s Paradox

Let (x1, · · · , xm) be a sample from a univariate normal of mean θ and known

variance σ2 and the prior mass of H0 : θ = θ0, be c. Distribute the remainder

1−c uniformly over some interval I containing θ0. x̄, the arithmetic mean, and

a minimal sufficient statistic, is well within I for n sufficiently enough. Then

x̄− θ0 tends to zero as n increases and the posterior probabiliy that θ = θ0 is

c̄ = cK−1 exp [−n (x̄− θ0)
2 /(2σ2)], (10)

K = c exp [−n (x̄− θ0)
2 /(2σ2)] + (1− c)

∫
I exp [−n (x̄− θ)2 /(2σ2)]dθ. By the

assumption about x̄ and I, the last integral can be evaluated as σ
√

2π/n. By

using the usual test x̄ = θ0 + λασ
√

n [Φ (λα) = 1 − α/2, Φ being the normal

standard distribution function)] is significant at the α% level and

c̄ = c exp (−λ2
α/2)

[
c exp (−λ2

α/2) + (1− c) σ
√

2π/n
]−1

. (11)

From (11) we see that c̄ → 1 when n → ∞ and whatever c, it can be

found n = n(c, α) such that “x̄ is significantly different from θ0 at the α%

level” and “the posterior probability that θ = θ0 is 100 (1− α) %”. This is the

paradox. Both statements are in direct conflict. However, Lindley (1957) re-

6
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mark too that if A = c exp (−λ2
α/2)[(1− c)

√
2π]−1, then c̄ = A(A + σ/

√
n)−1

and c̄ → 0 as σ/
√

n → ∞. Therefore, in a small experiment, significance

at 5% may give good reasons to doubt the null hypothesis. On the other

hand when n and α are fixed, there is a value of c = c(n, α), such that

both approaches are agree. Observe that the posterior probability (10) may

be written c̄ = [1 + (1− c) h−1 [T (x̄, θ0)] /c]
−1

, h−1 (u) = σ
√

2π/n exp (u/2),

T (x̄, θ0) = n (x̄− θ0)
2 /σ2. Lindley’s argument to show a paradox consist on

finding a value of n = n(c, α) such that both decisions differ radically. However,

by applying Corollary 2.2 both agree for c = h−1
(
χ2

1,α

) [
h−1

(
χ2

1,α

)
+ 1

]−1
=[

1 + n1/2 (2πσ2)
−1/2

exp (−χ2
1,α/2)

]−1
. Note that if α = 0.05, then c = 1/2

when n/σ2 ≈ 300. In general, for c and α fixed, n/σ2 = 2πc−2 (1− c)2 exp (χ2
1,α).

3.2 Lowers bounds for unimodal and symmetric priors

Let X = (X1, · · · , Xm)′ ∼ Nm (θ, σ2I) with σ2 known, I the identity matrix

m × m and θ = (θ1, · · · , θm)′ unknown. For testing (1) with a sample of

size n the usual test statistic is T
(
X, θ0

)
= nσ−2

(
X− θ0

)′ (
X− θ0

)
, with

X =
(
X1, · · · , Xm

)′
, and the p-value of the observed data, x̄ = (x̄1, · · · , x̄m)′,

is p (x̄) ≈ P {χ2
m ≥ T (x̄, θ0)} . If π∗ (θ) is the mixed prior given in (2) with

π0 computed by (3), the infimum of the posterior probability of the point null

when π (θ) ∈ QUS, QUS being the unimodal and symmetric priors about θ0, is

inf
π∈QUS

P (H0|x̄) =
[
1 + 2m/2δ∗−mΓ (m/2 + 1) exp [T (x̄, θ0) /2]

]−1
,

where δ∗ = δ
√

n/σ2 (see Gómez-Villegas, Máın and Sanz , 2007) Let t∗ be such

that P {χ2
m ≥ t∗} = p∗. By applying Corollary 2.2 both methods are always

agree when δ∗ =
[
2m/2Γ (m/2 + 1) exp (t∗/2)

]1/m
. Table 1 shows the values of

7
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δ∗ obtained for different values of m and p∗ and both methods are compared

when t = T (x̄, θ0) = 7. We compute the p-values, and the infimum of the

posterior probabilities over the values of δ∗ given in Table 1, when m = 2,

m = 5, m = 10 and m = 20. For instance, when m = 2, the p-value is p (7) =

0.0302. Therefore, a frequentist statistician who uses p∗ = 0.05, rejects H0,

whereas with p∗ = 0.01, accepts H0. The same result is obtained by a Bayesian

with δ∗ = 6.32 and δ∗ = 14.14. In this case, infπ∈QusP (H0|t = 7, δ∗ = 6.32) =

0.46066 and infπ∈QusP (H0|t = 7, δ∗ = 14.14) = 0.81027.

Table 1 goes here

3.3 Lowers bounds for scale mixture of Normals

In the same context of subsection 3.2, we want to test (1) with θ0 = (0, · · · , 0)′

and a sample of size n. The usual test statistic is T
(
X

)
= nσ−2X

′
X. If

m > 2 the infimum of the posterior probability of H0 when π (θ) ∈ QN ,

QN = {π (θ|v2) ≈ Nm (0, v2I) , π (v2) non-decreasing on (0,∞)}, is

inf
π∈QN

P (H0|t) =
[
1 + δ∗−2Fm−2 (t)/fm (t)

]−1
,

t = nx̄′x̄/σ2, δ∗ = δ
√

n/σ2, Fm−2 is the distribution function of a χ2
m−2 and fm

is the density function of a χ2
m (see Gómez-Villegas, Máın and Sanz , 2007)

Let t∗ such that P {χ2
m ≥ t∗} = p∗. By applying corollary 2.2 both meth-

ods always agree when δ∗ (p∗, n, m) = [Fm−2 (t∗)/fm (t∗)]1/2 . Table 2 shows

the values of δ∗ computed for different values of m and p∗ and both meth-

ods are compared when t = T (x) = 20. The p-values and the infimums on

the values of δ∗ of Table 3 are computed. The p-value is p (20) = 0.02925

when m = 10. Therefore, a frequentist statistician who uses p∗ = 0.05, re-

8
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jects H0, whereas with p∗ = 0.01, accepts H0. The same result is reached

by a Bayesian by using, respectively, the values δ∗ = 7.96 and δ∗ = 17.01

given in Table 2. In this case infπ∈QusP (H0|t = 20, δ∗ = 7.96) = 0.3772 and

infπ∈QusP (H0|t = 7, δ∗ = 14.14) = 0.7343.

Table 2 goes here

4 Conclusions and Comments

An important conclusion is that p-values and posterior probabilities can be

reconciled in the multivariate point null testing problem. The methodology

consist on assigning a prior mass to θ0 computed by the probability of a

sphere of radius δ centered at θ0 assigned by a density π(θ). The p-value and

the posterior probability of the null for the mixed prior π∗ (θ) = π0IH0 (θ) +

(1− π0) π (θ) IH1 (θ) are computed . This procedure allows to prove a theorem

that shows when and how both approaches agree. The analyzed examples show

that such agreement is always possible when δ∗ = δ∗(p∗, n, m) = δ
√

n/σ2. This

is due to the infimum of the posterior probability over the prior classes used

depends on the usual test statistic through an increasing function. When this

dependence is not possible, the agreement is in terms of a sufficient condition.
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nula puntual multivariante para variables normales correladas. Actas del

XXX Congreso Nacional de Estad́ıstica e Investigación Operativa y IV Jor-

nadas de Estad́ıstica Pública 2007.
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