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In this paper the problem of testing a multivariate point hypothesis is considered.

Of interest is the relationship between the p-value and the posterior probability. A Bayesian test for simple H 0 : θ = θ 0 versus bilateral H 0 : θ = θ 0 , with a mixed prior distribution for the parameter θ, is developed. The methodology consist on fixing a sphere of radius δ around θ 0 and assigning a prior mass, π 0 , to H 0 by integrating the density π(θ) over this sphere and spreading the remainder, 1-π 0 , over H 1 according to π(θ). A theorem that shows when the frequentist and Bayesian procedures can give rise to the same decision is proved. Then, some examples are revisited.
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1 Introduction Let f (x 1 , • • • , x n |θ) (θ = (θ 1 , • • • , θ m ) unknown) the likelihood of a sample (X 1 , • • • , X n ) .
For a specified θ 0 = (θ 01 , • • • , θ 0m ) we want to test H 0 : θ = θ 0 versus H 1 : θ = θ 0 .

(1)

As usual, we use the following mixed prior distribution to test (1)

π * (θ) = π 0 I H 0 (θ) + (1 -π 0 ) π (θ) I H 1 (θ) . (2) 
For a proper metric d and a value of δ sufficiently small, consider [START_REF] Gómez-Villegas | Contraste de hipótesis nula puntual multivariante para variables normales correladas[END_REF] propose to compute π 0 by means of

H 0δ : d (θ 0 , θ) ≤ δ, versus H 1δ : d (θ 0 , θ) > δ. Denote B (θ 0 , δ) = θ ∈ Θ r , m i=1 (θ i -θ 0i ) 2 ≤ δ 2 . Gómez-Villegas, Maín
π 0 = B(θ 0 ,δ)
π (θ) dθ.

(3) By this way, π 0 is the probability assigned to H 0 , through π * (θ), and H 0δ , through π(θ), the Kullback-Leibler discrepancy between π(θ) and π * (θ) goes to zero as δ goes to zero, and the posterior probability of the null is

P π * (θ 0 |x 1 , • • • , x n ) = 1 + 1 -π 0 π 0 η (x 1 , • • • , x n ) -1 , (4) 
η (x 1 , • • • , x n ) = Θ f (x 1 , • • • , x n |θ) π (θ) dθ f (x 1 , • • • , x n |θ 0 ) . ( 5 
)
Suppose that H 0 is rejected when

P π * (θ 0 |x 1 , • • • , x n ) ≤ 1/2. On the other hand, if Λ (x 1 , • • • , x n ) = sup θ∈Θ f (x 1 , • • • , x n |θ)/f (x 1 , • • • , x n |θ 0 ) is the test A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT statistic, then the associated p-value, p (x 1 , • • • , x n ) = P (Λ (X 1 , • • • , X n ) > Λ (x 1 , • • • , x n ) |θ 0 ) , (6) 
can be approximated by

P (χ 2 m > 2 ln Λ (x 1 , • • • , x n )). In this case, H 0 is re- jected when p (x 1 , • • • , x n ) ≤ p *
, for a level of significance p * . The aim is to find conditions for δ in order that, when p * is fixed, whatever (

x 1 , • • • , x n ) ∈ χ,
the same decision is reached with both methods. In section 2, a theorem that shows when both approaches are agree is proved. In section 3 some relevant examples are revisited. Conclusions and comments are included in section 4.

Comparison between both approaches

In parametric testing of a simple null hypothesis, as opposed to the one-sided (see [START_REF] Casella | Reconciling bayesian and frequentist evidence in the one-sided testing problem, (with discussion)[END_REF], Bayesian and frequentist procedures can give rise to different decisions (see [START_REF] Lindley | A statistical paradox[END_REF][START_REF] Berger | Testing a point null hyphotesis: The irrec-onciliability of p-values and evidence, (with discussion)[END_REF]Berger and Delampady , 1987, among others). In most of the Bayesian approaches, the infimum of a Bayesian evidence measure over a wide class of priors is computed and is substantially larger than the p-value. Other important references are [START_REF] Oh | Comparison of the p-value and posterior probability[END_REF], [START_REF] Gómez-Villegas | ε-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability[END_REF], [START_REF] Sellke | Calibration of p-values for testing point null hypotheses[END_REF], [START_REF] Gómez-Villegas | A suitable Bayesian approach in testing point null hypothesis: some examples revisited[END_REF] and Gómez-Villegas andGonzález-Pérez (2005, 2006).

Preliminaries

In this section we introduce some definitions and results in order to prove a characterization theorem of the agreement between both methods to test (1).

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Definition 2.1 Let π (θ) be the prior about θ. T = T (X 1 , • • • , X n ) is a suffi- cient statistic to test H 0 : θ ∈ Θ 0 , versus H 1 : θ ∈ Θ 1 , with Θ 0 ∩ Θ 1 = φ and Θ 0 ∪ Θ 1 = Θ, if P π (Θ 0 |x 1 , • • • , x n ) = P π (Θ 0 |t), when T (x 1 , • • • , x n ) = t.
Note that the Bayes factor η given in ( 5) is a sufficient statistic to test the multivariate point null given in (1) when the mixed prior (3) is used. In fact, with this prior choice, if T is a suficient statistic to test (1), then there is a function g : R → R such that g (T ) = η. Moreover, the usual definition of sufficient statistic is not equal to this new concept of sufficient statistic to test. If T is a sufficient statistic then T verifies definition 2.1. The reciprocal is not true. We introduce the next concept in order to compare two statistics.

Definition 2.2 Let T 1 = T 1 (X 1 , • • • , X n ) and T 2 = T 2 (X 1 , • • • , X n ) be uni- variate statistics. T 1 is an increasing tendency statistic with respect to T 2 in a value T 1 = t if sup T 1 (x 1 ,•••,xn)<t T 2 (x 1 , • • • , x n ) ≤ inf T 1 (x 1 ,•••,xn)≥t T 2 (x 1 , • • • , x n ) . Proposition 2.1 If T 1 = h (T 2
) and h : R → R is a non-decreasing monotonous function, then T 1 is an increasing tendency statistic with respect to T 2 for any value T 1 = t. Furthermore, when h is a strictly increasing function, then sup

T 1 (x 1 ,•••,xn)<t T 2 (x 1 , • • • , x n ) = inf T 1 (x 1 ,•••,xn)≥t T 2 (x 1 , • • • , x n ) = h -1 (t) .

Agreement between frequentist and Bayesian approaches

Theorem 2.1 Suppose that we wish to test (1) with the prior distribution given in (2) and π 0 as in (3). If Λ is an increasing tendency statistic with respect to η in Λ = λ * , then for p * = P θ 0 {Λ ≥ λ * } there is an interval of values of π 0 = π 0 (δ),

I = I (p * , n) = ( 1 , 2 )
, where both methods are agree.

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Proof Define A η (κ) = {(x 1 , • • • , x n ) , η (x 1 , • • • , x n ) = κ}. P π * (θ 0 |κ) > 1/2 is verified when π 0 > κ(κ + 1) -1 . π 0 (κ) = κ(κ + 1) -1 is a strictly increasing function. Moreover, if λ 1 < λ 2 , then p (λ 1 ) = P θ 0 {Λ ≥ λ 1 } ≥ P θ 0 {Λ ≥ λ 2 } = p (λ 2 ). If Λ is an increasing tendency statistic with respect to η in Λ = λ * then κ * = sup (x 1 ,•••,xn), p>p * η = sup Λ<λ * η ≤ inf Λ≥λ * η = inf (x 1 ,•••,xn), p≤p * η = κ * and 1 = π 0 (κ * ) = sup (x 1 ,•••,xn), p>p * π 0 (η) ≤ inf (x 1 ,•••,xn), p≤p * π 0 (η) = π 0 (κ * ) = 2 . are verified for p * = P θ 0 {Λ ≥ λ * }. Consider π 0 ∈ ( 1 , 2 ). If (x 1 , • • • , x n ) ∈ A η (κ), κ < κ * ≤ κ * , then π 0 > 1 > κ(κ+1) -1 and P θ 0 {Λ ≥ Λ (x 1 , • • • , x n )} > p * . On the other hand, if (x 1 , • • • , x n ) ∈ A η (κ), κ ≥ κ * ≥ κ * , then π 0 < 2 ≤ κ(κ + 1) -1 and P θ 0 {Λ ≥ Λ (x 1 , • • • , x n )} ≤ p * . Corollary 2.1 Let Λ = h (η) with h : R → R be a non-decreasing monotonous function. If (x 1 , • • • , x n ) ∈ A η (κ) is observed, the same decision is reached with the posterior probability P π * (θ 0 |κ) = [1 + (1 -π 0 (δ))κ/π 0 (δ)] -1 and δ such that π 0 (δ) ∈ ( 1 , 2 ), 1 = 1 (p * , n) = sup (x 1 ,•••,xn), p>p * η (η + 1) -1 , ( 7 
) 2 = 2 (p * , n) = inf (x 1 ,•••,xn), p≤p * η (η + 1) -1 , (8) 
and p * = P (Λ ≥ λ * ) to quantify the p-value, p (h (κ)) = P θ 0 {Λ ≥ h (κ)}.

Moreover, when h is strictly increasing continuous, then η = h -1 (Λ) and

1 = 2 = π 0 (δ, p * , n) = h -1 (λ * ) h -1 (λ * ) + 1 -1 . ( 9 
)
The proof of Corollary 2.1 is easy by using theorem 2.1 and proposition 2.1.

Another immediate outcome is that, when the sample size n and the level of significance p * are fixed, the verification of 1 ≤ 2 , defined in ( 7) and ( 8), is sufficient for the existence of agreement between the p-value and the posterior
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probability. Moreover, when Λ = h (η) and h : R → R is non-decreasing monotonous, 1 ≤ 2 is always true whatever p * , and if h is strictly increasing continuous then 1 = 2 and the agreement is obtained for (9).

Applications

Lindley's Paradox

Let (x 1 , • • • , x m ) be a sample from a univariate normal of mean θ and known variance σ 2 and the prior mass of H 0 : θ = θ 0 , be c. Distribute the remainder 1-c uniformly over some interval I containing θ 0 . x, the arithmetic mean, and a minimal sufficient statistic, is well within I for n sufficiently enough. Then

x -θ 0 tends to zero as n increases and the posterior probabiliy that θ = θ 0 is

c = cK -1 exp [-n (x -θ 0 ) 2 /(2σ 2 )], (10) 
K = c exp [-n (x -θ 0 ) 2 /(2σ 2 )] + (1 -c) I exp [-n (x -θ) 2 /(2σ 2 )]dθ.
By the assumption about x and I, the last integral can be evaluated as σ 2π/n. By

using the usual test x = θ 0 + λ α σ √ n [Φ (λ α ) = 1 -α/2, Φ being the normal standard distribution function)] is significant at the α% level and c = c exp (-λ 2 α /2) c exp (-λ 2 α /2) + (1 -c) σ 2π/n -1 . ( 11 
)
From ( 11) we see that c → 1 when n → ∞ and whatever c, it can be found n = n(c, α) such that "x is significantly different from θ 0 at the α% level" and "the posterior probability that θ = θ 0 is 100 (1 -α) %". This is the paradox. Both statements are in direct conflict. However, [START_REF] Lindley | A statistical paradox[END_REF] re-

mark too that if A = c exp (-λ 2 α /2)[(1 -c) √ 2π] -1 , then c = A(A + σ/ √ n) -1
and c → 0 as σ/ √ n → ∞. Therefore, in a small experiment, significance at 5% may give good reasons to doubt the null hypothesis. On the other hand when n and α are fixed, there is a value of c = c(n, α), such that both approaches are agree. Observe that the posterior probability (10) may be written 

c = [1 + (1 -c) h -1 [T (x, θ 0 )] /c] -1 , h -1 (u) = σ 2π/n exp (u/2), T (x, θ 0 ) = n (x -θ 0 ) 2 /σ 2 .
c = h -1 χ 2 1,α h -1 χ 2 1,α + 1 -1 = 1 + n 1/2 (2πσ 2 ) -1/2 exp (-χ 2 1,α /2) -1
. Note that if α = 0.05, then c = 1/2 when n/σ 2 ≈ 300. In general, for c and α fixed, n/σ 2 = 2πc -2 (1 -c) 2 exp (χ 2 1,α ). 

Lowers bounds for unimodal and symmetric priors

Let X = (X 1 , • • • , X m ) ∼ N m (θ,
X, θ 0 = nσ -2 X -θ 0 X -θ 0 , with X = X 1 , • • • , X m , and the p-value of the observed data, x = (x 1 , • • • , xm ) , is p (x) ≈ P {χ 2 m ≥ T (x, θ 0 )} . If π * (θ)
is the mixed prior given in (2) with π 0 computed by (3), the infimum of the posterior probability of the point null when π (θ) ∈ Q U S , Q U S being the unimodal and symmetric priors about θ 0 , is

inf π∈Q U S P (H 0 |x) = 1 + 2 m/2 δ * -m Γ (m/2 + 1) exp [T (x, θ 0 ) /2] -1
, 

where δ * = δ √ n/σ 2 (
= (0, • • • , 0)
and a sample of size n. The usual test statistic is T X = nσ -2 X X. If m > 2 the infimum of the posterior probability of H 0 when π (θ) ∈ Q N , 

Q N = {π (θ|v 2 ) ≈ N m (0, v 2 I) , π (v 2 ) non-decreasing on (0,∞)}, is inf π∈Q N P (H 0 |t) = 1 + δ * -2 F m-2 (t)/f m (t) -1 , t = nx x/σ 2 , δ * = δ √ n/σ 2 , F m-2 is the distribution function of a χ 2 m-
(p * , n, m) = [F m-2 (t * )/f m (t * )] 1/2 .

  σ 2 I) with σ 2 known, I the identity matrix m × m and θ = (θ 1 , • • • , θ m ) unknown. For testing (1) with a sample of size n the usual test statistic is T
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  C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPTδ * obtained for different values of m and p * and both methods are compared when t = T (x, θ 0 ) = 7. We compute the p-values, and the infimum of the posterior probabilities over the values of δ * given in Table1, when m = 2, m = 5, m = 10 and m = 20. For instance, when m = 2, the p-value is p (7) = 0.0302. Therefore, a frequentist statistician who uses p * = 0.05, rejects H 0 , whereas with p * = 0.01, accepts H 0 . The same result is obtained by a Bayesian with δ * = 6.32 and δ * = 14.14. In this case, inf π∈Qus P (H 0 |t = 7, δ * = 6.32) = 0.46066 and inf π∈Qus P (H 0 |t = 7, δ * = 14.14) = 0.81027.

  ods are compared when t = T (x) = 20. The p-values and the infimums on the values of δ * of Table 3 are computed. The p-value is p (20) = 0.02925 when m = 10. Therefore, a frequentist statistician who uses p * = 0.05, re-A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT jects H 0 , whereas with p * = 0.01, accepts H 0 . The same result is reached by a Bayesian by using, respectively, the values δ * = 7.96 and δ * = 17.01 given in Table 2. In this case inf π∈Qus P (H 0 |t = 20, δ * = 7.96) = 0.3772 and inf π∈Qus P (H 0 |t = 7, δ * = 14.14) = 0.7343.Table 2 goes here 4 Conclusions and CommentsAn important conclusion is that p-values and posterior probabilities can be reconciled in the multivariate point null testing problem. The methodology consist on assigning a prior mass to θ 0 computed by the probability of a sphere of radius δ centered at θ 0 assigned by a density π(θ). The p-value and the posterior probability of the null for the mixed prior π * (θ) = π 0 I H 0 (θ) +(1 -π 0 ) π (θ) I H 1 (θ) are computed . This procedure allows to prove a theorem that shows when and how both approaches agree. The analyzed examples show that such agreement is always possible when δ * = δ * (p * , n, m) = δ √ n/σ 2 . This is due to the infimum of the posterior probability over the prior classes used depends on the usual test statistic through an increasing function. When this dependence is not possible, the agreement is in terms of a sufficient condition.
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