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ABSTRACT. The number of deviations of a Geometric Brownian Motion
with drifts from its extreme points is considered. The properties of these devia-
tions are studied. As an application based on these results, the time instants at
which investors decide to buy or sell are examined, when the price of an asset is
assumed to follow a Geometric Brownian Motion. Extensions to the modelling of
transactions costs are attempted.
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0 Introduction

Our source of inspiration is the movement of the price of a traded risky asset
(e.g. a stock) on which an investor, with finite time horizon T , has invested. More
specifically we focus at the change in price that leads the investor to transact. A
reasonable approach would be to assume that investors choose to buy or sell units
of the asset (e.g. shares of stock) when its price deviates by its previous maximum
or minimum by a certain amount or percentage.

When such a transaction takes place, transaction costs occur. Thus, mod-
elling these transaction costs is also of great importance. By doing that we know
exactly when transaction costs have to be paid and moreover how much has to
be paid. Several authors have attempted to model transaction costs, since the
Black-Scholes approach, among which Amster [1] and Daamgard [2]. No one has
though tried to link them to the time instants at which they occur.

The time instants at which transaction costs are paid are the points of time
at which the investor decides to adjust the portfolio as a result of a significant
change in the price of the risky asset. The change in price is monitored with
respect to the maximum and minimum price achieved since the last transaction
took place. When the price deviates by a preset quantity or proportion, then the
investor adjusts/ rebalances his or her portfolio by performing a transaction on
the (specific risky) asset.

The properties of the time instants where the transaction costs are paid are
studied. More precisely we prove that in a time interval [0, T ] there are finitely
many such time instants almost surely and they are stopping times.

These results though come as consequences of the properties of Geometric
Brownian Motions and this is where we turn our attention. What we can essen-
tially achieve is to follow in a time interval [0, T ] the change in the value of a
Geometric Brownian Motion since its previous extreme point was reached. What
we can show is that the number of such deviations by a fixed range, either nu-
merical or proportional, is finite almost surely. In addition we can prove that the
time instants on which such deviations occur are stopping times.

To the best of the author’s knowledge there has not been a similar approach,
both to the study of the properties of deviations of a Geometric Brownian Motion
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from its extreme points as well as the application of these properties to the fluctu-
ations of the prices of risky traded assets and the modelling of transaction costs.
The application of such models could assist further in the pricing of options in a
continuous-time environment.

In Section 1 we describe the environment in which we derive our results. In
Section 2 we derive our main results on the number of deviations of a Geometric
Brownian Motion from its extreme points and the time instants at which these
deviations occur. Next to it the properties of the time instants at which the price
of an asset deviates from its extreme points by a given amount or percentage are
established. In Section 3 we deal with the implications to the case of Brownian
Motion. In Section 4 the cost functions are modelled. In Section 5 we describe
some further steps and extensions that could be followed towards the study of
the deviations of a Geometric Brownian Motion form its extreme points as well
as its applications to the price of a risky asset. In Section 6 we conclude on the
findings of the main body of the paper.

1 Description of the mathematical setting

In the following we consider continuously trading markets with transaction
costs (commission fees). Our mathematical setting comprises of a filtered com-
plete probability space (Ω, F , P r, (Ft)0≤t≤∞). We assume that all the stochastic
processes that appear are adapted (see Protter [9], pp3-4). Also, all the functions
and stochastic processes are continuous, unless otherwise stated. (In)equalities
that involve random variables are understood to hold almost surely. We assume
that we have a Geometric Brownian Motion with a drift - that could be the price
of a risky asset (see Merton [7], pp122-124 or Duffie [3], pp80-84) - and whose
stochastic differential satisfies

dP

P
= α(P, t) dt + σ(P, t) dW . (1)

When P denotes the price of a risky asset, α is the instantaneous conditional
expected change in price per unit time, σ2 is the instantaneous conditional variance
per unit time and W is a Brownian Motion. For the rest of our discussion we
assume that α, σ do not depend on P , t.
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In the case that α(P, t) = α(t) and σ(P, t) = σ(t), i.e. they are functions of
time only and not the risky asset, then the solution of (1) becomes

Pt = P0e
γ(t) , (2)

where

γ(t) =
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dWs (3)

and

µ(t) = α(t)− 1
2
σ2(t) . (4)

For the remaining of our discussion we assume that µ and σ are continuous or
even fixed, hence in any case they are bounded.

2 The deviations of Geometric Brownian Motion from its extreme
points

We assume that the deviations of our interest take place on the time instants
τi, i = 1 . . . N∗, which are determined in the following way (see Poufinas [8], pp374-
375, pp392); first let J be a fixed positive real number and τ0 := 0. Assume that τi

has already been defined and let Mt := max{Ps : s ∈ [τi, t]} and mt := min{Ps :
s ∈ [τi, t]} for t ∈ [0, T ]. Let φ(t) := max(Mt − Pt, Pt −mt) and for ω ∈ Ω, let
φ(t, ω) = max(Mt(ω)− Pt(ω), Pt(ω)−mt(ω)). Then define τi+1 by

τi+1(ω) := inf{t ≥ τi(ω) : φ(t, ω) = J} . (5)

τi+1 denotes the time instant at which the Geometric Brownian motion has
deviated from its maximum or minimum since τi by a certain quantity. In the
case of the price of a risky asset, it denotes the time instant at which the price
has deviated from its maximum or minimum since τi by a preset amount J . The
rationale behind using such a choice for the time of the transaction lies within the
fact that the investor chooses to adjust the risky asset part of his or her portfolio
when the price of the risky asset has parted from the maximum or minimum price
by a certain amount.

3
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A different way to define τi is given if Ji+1 := ν |Pτi |, where ν is a fixed
positive number. Set τ0 := 0. If τi is given we define τi+1 by

τi+1(ω) := inf{t ≥ τi(ω) : φ(t, ω) = Ji+1(ω)}, ω ∈ Ω . (6)

The reasoning behind such a choice is that the investor chooses to perform
a transaction and adjust the portfolio when the stock price has increased or de-
creased compared to its maximum or minimum by a certain multiple of the price
at the time of the previous transaction, thus reflecting a ”percentage change”.

Let Iω be the index set for the τi(ω)’s. In the next theorem we will prove
that for almost every ω, Iω is finite and in the theorem following it that for each
i, τi is a stopping time (see Protter [9], pp3-5).

Theorem 1. Let Iω be the index set for τi(ω). Then Iω is finite for almost every

ω ∈ Ω.

Proof: We first give the proof if we choose τi to be defined by (5). Recall that
with probability 1 a Brownian path is Hölder(ε) continuous for every ε < 1/2, i.e.

|Wt −Ws| ≤ C|t− s|ε a.s. ∀t, s ∈ [0, T ] (7)

(see Durrett [4], pp336-338). Take ε = 1/3. Let Ω̃ denote the set of ω ∈ Ω such
that (7) does not hold. Then Pr(Ω̃) = 0. Since

γ(t) =
∫ t

0

µ(u) du +
∫ t

0

σ(u) dWu , (8)

we have that

γ(t)− γ(s) =
∫ t

s

µ(u) du +
∫ t

s

σ(u) dWu (9)

for all s, t ∈ [0, T ]. We take absolute values to see that

|γ(t)− γ(s)| ≤ C1 |t− s|+ C2 |Wt −Ws| . (10)

(10) and (7) yield that (see also Poufinas [8], pp382)

|γ(t)− γ(s)| ≤ C1 |t− s|+ C2C|t− s|1/3

⇒ |γ(t)− γ(s)| ≤ C1|t− s|1/3|t− s|2/3 + C2C|t− s|1/3

⇒ |γ(t)− γ(s)| ≤ C1|t− s|1/3
T 2/3 + C2C|t− s|1/3

⇒ |γ(t)− γ(s)| ≤ C
′ |t− s|1/3 (11)

⇒ |γ(t)− γ(s)| ≤ C
′
T 1/3 . (12)

4
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For ω ∈ Ω − Ω̃ fixed, consider the intervals {[τi−1, τi] : i ∈ I}, where I =
Iω ∪ {0}, hence depends on ω. We will prove that |I| is bounded, by a number
that does not depend on ω, which proves in addition that there are finitely many
τi. Let Mi := max{Pt : t ∈ [τi−1, τi]} ≥ mi := min{Pt : t ∈ [τi−1, τi]}. Then
Mi = P (t∗∗i ) and mi = P (t∗i ) for some t∗∗i , t∗i ∈ [τi−1, τi]. (5) implies that

J ≤ |Mi −mi| = |P (t∗∗i )− P (t∗i )| . (13)

Recall that Pt = P0e
γ(t) and use (11), (12), (13) to see that

J ≤ P0

∣∣∣eγ(t∗∗i ) − eγ(t∗i )
∣∣∣ ≤ P0e

C
′
T 1/3

∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1
∣∣∣ . (14)

Set K := P0e
C
′
T 1/3

. K is a constant, that does not depend on ω. Recall that
γ(t∗∗i ) ≥ γ(t∗i ), since P (t∗∗i ) ≥ P (t∗i ) and thus we can drop the absolute values in
(14) to see that (14) and (11) yield that

J

K
+ 1 ≤eγ(t∗∗i )−γ(t∗i ) ⇒ J

K
+ 1 ≤ eC

′ |t∗∗i −t∗i |1/3
. (15)

Since t∗∗i , t∗i ∈ [τi−1, τi] we get that |t∗∗i − t∗i | ≤ |τi − τi−1| which along with
(15) implies that

J

K
+ 1 ≤eC

′ |τi−τi−1|1/3 ⇔ L
′ ≤ |τi − τi−1| (16)

where L
′
= {(1/C

′
)ln(J/K + 1)}3. We sum up (16) for all i ∈ I to see that since

τi ≥ τi−1 and τi ≤ T ,

L
′ |I| ≤

∑

i∈I

(τi − τi−1) ≤ T ⇔ |I| ≤ (T/L
′
) . (17)

Thus Iω is finite. T/L
′
does not depend on ω.

There are a few changes in the proof of the theorem when we choose τi to be
given by (6). (In)equalities (7)− (12) hold as they are and (13) becomes

ν
∣∣Pτi−1

∣∣ ≤ |Mi −mi| = |P (t∗∗i )− P (t∗i )| , (18)

5
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whereas (14) changes to

νP0

∣∣∣eγ(τi−1)
∣∣∣ ≤ P0e

C
′
T 1/3

∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1
∣∣∣ . (19)

Divide both sides by P0 and use eγ(τi−1) ≥ e−|γ(τi−1)| ≥ 0 to see that

νe−|γ(τi−1)| ≤ eC
′
T 1/3

∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1
∣∣∣ . (20)

It follows that

ν ≤ eC
′
T 1/3

e|γ(τi−1)|
∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1

∣∣∣

≤ eC
′
T 1/3

eC
′
T 1/3

∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1
∣∣∣

= K
′
∣∣∣eγ(t∗∗i )−γ(t∗i ) − 1

∣∣∣ , (21)

where K
′

:= e2C
′
T 1/3

, a constant that does not depend on ω. We can drop the
absolute values, since γ(t∗∗i ) ≥ γ(t∗i ) and see that because of (11)

ν

K ′ + 1 ≤ eγ(t∗∗i )−γ(t∗i ) ⇒ ν

K ′ + 1 ≤ eC
′ |τi−τi−1|1/3

. (22)

Whence,
L
′ ≤ |τi − τi−1| , (23)

where L
′
= {(1/C

′
)ln(ν/K + 1)}3. (23) is identical to (16) and thus beyond this

point we proceed as we did when τi was given by (5). As a result (17) holds once
more if we sum up for all i ∈ I. This proves that Iω is finite. Q.E.D.

Let nω := |Iω|. For a.e. ω, τi(ω) is defined for i = 0 . . . nω. Let Ω̃ be as defined
in the proof of Theorem 1. For ω ∈ Ω − Ω̃, all nω’s are bounded by (T/L

′
), a

constant that does not depend on ω. Hence the set {nω : ω ∈ Ω− Ω̃} is a subset of
{0 . . . N}, where N := [(T/L

′
)] + 1. Define N∗ := max{nω : ω ∈ Ω − Ω̃} < +∞.

For ω ∈ Ω − Ω̃ we define τi(ω) as before (hence τi(ω) ≤ T ) if i ≤ nω and by
τi(ω) = +∞ (or alternatively by τi(ω) = T ) if N∗ ≥ i > nω. This is consistent
with the fact that the infimum of the empty set is +∞, and thus τi in any case is
given by (5) or (6). This also means that if τi(ω) = +∞ for some ω, then no i− th

payment is being made at this particular state ω (for simplicity in the following
one may assume that nω = N∗ for all ω ∈ Ω− Ω̃).

We are now in position to state the following theorem.

6
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Theorem 2. Let τi be as defined by (5) or (6). Then, for any i = 1 . . . N∗, τi is

a stopping time.

Proof: We first prove the theorem when τi is given by (5). Then

τ1 := inf{t ≥ 0 : φ(t) = J} . (24)

It is immediate that

{τ1 ≤ t} = {φt = J} ∪ ∩n∪q∈Q∩[0, t){|φq − J | < 1
n
} . (25)

The sets at the right-hand side are in Ft, which yields that {τ1 ≤ t} ∈ Ft, ∀t ∈
[0, T ], proving that τ1 is a stopping time.

It suffices to prove that φt ∈ Ft. This will follow if we prove that Mt ∈ Ft

and mt ∈ Ft. Recall that Mt := max{Ps : s ∈ [0, t]}, which gives that Mt =
sup{Pq : q ∈ [0, t] ∩Q}. But Pq ∈ Fq ⊆ Ft, hence Mt ∈ Ft. Similarly mt ∈ Ft.

Going to τ2 we have that

τ2 := inf{t ≥ τ1 : φ(t) = J} , (26)

Mt(ω) := max{Ps(ω) : s ∈ [τ1(ω), t]} . (27)

Define P̂s by

P̂s(ω) :=
{ −∞ 0 ≤ s < τ1(ω)

Ps(ω) τ1(ω) ≤ s ≤ t
. (28)

It is obvious that
Mt = sup{P̂s : s ∈ [0, t]} , (29)

and that P̂s ∈ Fs ⊆ Ft for s ≤ t. Thus as before Mt ∈ Ft. Similarly mt ∈ Ft,
and φt ∈ Ft.

To show that τ2 is a stopping time we extend φ by defining

φ̂s(ω) :=
{ −∞ 0 ≤ s < τ1(ω)

φs(ω) τ1(ω) ≤ s ≤ t
. (30)

Of course φ̂t ∈ Ft, ∀t ∈ [0, T ]. Moreover

τ2 = inf{t ≥ 0 : φ̂t = J} , (31)

7
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since J is a positive real. As before

{τ2 ≤ t} = {φ̂t = J} ∪ ∩n∪q∈Q∩[0, t){
∣∣∣φ̂q − J

∣∣∣ <
1
n
} . (32)

All the sets at the right-hand side are in Ft, since φ̂q ∈ Fq ⊆ Ft, whence τ2 is a
stopping time. Working in a similar way we can prove that τi is a stopping time
for every i.

The proof is similar when for each i, τi is given by (6). Recall that

τ1 := inf{t ≥ 0 : φ(t) = ν |P0|} . (33)

It is immediate that

{τ1 ≤ t} = {φt = J1} ∪ ∩n∪q∈Q∩[0, t){|φq − ν |P0|| < 1
n
} . (34)

See that P0 ∈ F0 ⊆ Ft, ∀t ∈ [0, T ]. This is straightforward if P0 is constant. The
result follows since each one of the sets that appear at the right-hand side of (34)
is in Ft. This implies that {τ1 ≤ t} ∈ Ft, for all t, proving that τ1 is a stopping
time. To see that φt ∈ Ft we use the argument we used when τ1 was given by
(24), i.e. Pq ∈ Fq ⊆ Ft and thus Mt ∈ Ft, mt ∈ Ft and thus φt ∈ Ft.

As for τ2 it is now given by

τ2 := inf{t ≥ τ1 : φ(t) = ν |Pτ1 |} . (35)

We can repeat the discussion following (26) and equations (27) − (35) to extend
Ps and φs on the whole interval [0, t]. We denote again their extensions by P̂s and
φ̂s respectively. (28) yields that Mt = sup{P̂s : s ∈ [0, t]}, according to (29) and
that Mt ∈ Ft, since P̂s ∈ Fs ⊆ Ft for s ≤ t. It follows that φt ∈ Ft. In addition,
(30) yields that φ̂t ∈ Ft for all t. ν |Pτ1 | is a positive real because P (t) = P0e

γ(t)

and P0(ω) 6= 0 by (1). Therefore,

τ2 = {t ≥ 0 : φ̂t = ν |Pτ1 |} . (36)

The latter remark is redundant if we assume that P0 is constant. As a consequence,

{τ2 ≤ t} = {φ̂t = J2} ∪ ∩n ∪q∈Q∩[0, t) {
∣∣∣φ̂q − ν |Pτ1 |

∣∣∣ <
1
n
} . (37)

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Thomas Poufinas

Consider any of the sets {ω :
∣∣∣φ̂q(ω)− ν

∣∣Pτ1(ω)(ω)
∣∣
∣∣∣ < 1

n}. If ω is in such a set,

then τ1(ω) ≤ q ≤ t, since ν
∣∣Pτ1(ω)(ω)

∣∣ > 0, for every ω such that τ1(ω) < ∞,

and
∣∣∣φ̂q(ω)− ν

∣∣Pτ1(ω)(ω)
∣∣
∣∣∣ < 1

n < ∞. This is true, because if q < τ1(ω), then

φ̂q = −∞ and thus the latter could not hold. Each one of the above sets is in Ft.
To see that it suffices to show that Pτ1 |{τ1≤q} ∈ Fq. Indeed, let π : {τ1 ≤ q} → Ω
be the inclusion map. Then

{ω : (Pτ1 ◦ π)(ω) ≤ b} = {ω : P (τ1(ω), ω) ≤ b} ∩ {ω : τ1(ω) ≤ q} , (38)

where b ∈ <. The right-hand side is in Fq ⊆ Ft, since τ1 is a stopping time.
Conclude that Pτ1 |{τ1≤q} ∈ Fq. It thus follows that all the sets at the right-hand
side of (37) are in Ft, since φ̂q ∈ Fq ⊆ Ft, which proves that τ2 is a stopping
time. Working similarly we can prove that τi is a stopping time for every i. This
completes the proof of the theorem. Q.E.D.

Theorem 1 and Theorem 2 readily yield the following corollaries.

Corollary 1. The price of a risky asset can deviate finitely many times almost

surely from its extreme points by a given amount or percentage.

Corollary 2. The time instants at which the price of a risky asset deviates from

its extreme points by a given amount or percentage are stopping times.

3 The case of Brownian Motion with drifts

One can relatively easily conclude that similar results hold true in the case of
Brownian Motion with drifts. To the best of our knowledge, there has not been a
similar approach in this case either. In this case equation (1) becomes

dP = α(P, t) dt + σ(P, t) dW . (39)

We once more assume that α and σ are functions of time only and not of the risky
asset. Equations (2), (3) and (4) change to

Pt = P0 + γ(t) , (40)

γ(t) =
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dWs (41)

9
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and
µ(t) = α(t) . (42)

We keep the same notation so we can refer to our previous results. We also assume
that µ and σ are continuous or fixed, hence bounded. The time instants τi are
defined as in (5). When we examine the case of Brownian Motion we feel that
absolute changes are more appropriate than proportional changes as given by (6).
In incorporating proportional changes, i.e. allowing τi to be defined as in (6), we
would put the additional requirement that min |Pt| = mP > 0, or that |Pt| is
bounded from below by a positive number. This is a natural restriction; namely
that in a finite time interval the stock price cannot reach zero. We introduce this
so as to avoid the complications that a price equal to zero would result into our
structure.

We can now state the following corollaries that map the implications to the
case of a Brownian Motion with drift.

Corollary 3. Let Iω be the index set for τi(ω). Then Iω is finite for almost every

ω ∈ Ω.

Proof: When τi is defined by (5) the proof is almost identical to the one of
Theorem 1. Simply observe that

J ≤ |Mi −mi| = |P (t∗∗i )− P (t∗i )| = |γ(t∗∗i )− γ(t∗i )| (43)

⇒J ≤ |γ(t∗∗i )− γ(t∗i )| ≤ C
′ |t∗∗i − t∗i |1/3 ≤ C

′ |τi − τi−1|1/3 (44)

⇒L
′
:= (J/C

′
)3 ≤ |τi − τi−1| . (45)

We sum up (45) for all i ∈ I to see that since τi ≥ τi−1 and τi ≤ T ,

L
′ |I| ≤

∑

i∈I

(τi − τi−1) ≤ T ⇔ |I| ≤ (T/L
′
) . (46)

Thus Iω is finite. T/L
′
does not depend on ω.

When τi is given by (6), we receive that

νmP ≤ ν
∣∣Pτi−1

∣∣ ≤ |Mi −mi| = |P (t∗∗i )− P (t∗i )| = |γ(t∗∗i )− γ(t∗i )| (47)

⇒L
′
:= (νmP /C

′
)3 ≤ |τi − τi−1| . (48)

This is identical to (46), thus summing up for all i we conclude once more that
Iω is finite. Q.E.D.

10
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Corollary 4. Let τi be as defined by (5) or (6). Then, for any i = 1 . . . N∗, τi is

a stopping time.

Proof: The proof is identical to the proof of Theorem 2. Q.E.D.

4 The cost functions

As mentioned earlier, the time instants at which the investor decides to buy
or sell units of the risky asset, transaction costs have to be paid. The natural
question is how to model these transaction costs.

The amount that the individual has to pay at τi, i = 1 . . . N∗ may be given by
different cost functions. Let βi be this amount. Let c(t) denote the cost function.
Then

c(t) dt =
N∗∑

i=1

βiδ0(τi − t) dt . (49)

c(t) is essentially the individual’s “consumption” at time t, since his or her ex-
penses are only the commission fees. On the other hand the individual’s con-
sumption in terms of his or her shares of stock is given by dN(dP +P ). Conclude
that

−c(t)dt = PdN + dNdP . (50)

5 Future Research

By looking at our results we realize that we limited ourselves to a finite time
horizon T . This is reasonable even when applied to the case of an investor that
holds a risky asset. It is of interest to see whether a similar result holds for an
infinite time horizon or prove that it does not hold.

The next step would be to consider that cost is given as

βi := f(∆Y ) .

A reasonable assumption is that f is a nonnegative concave function. Of particular
interest is the case where the transaction costs are built as an expression of the
form

βi = α0(∆Y ) + λ(∆Y )Γ,

11
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where ∆Y is the total change in the risky asset position since the last payment
of transaction costs, for λ and Γ constants in [0, 1] and α0(x) a step function that
becomes equal to a constant if x is not 0 and equals to 0 otherwise. The above
transaction costs have a fixed and a proportional part but are not necessarily
linear.

Moving towards another direction we could try to retrieve what conditions
on our fee functions would allow for our results to be readily used to the pricing
of (European) options. Such a result appears to be very interesting as it would
incorporate transactions only when the risky asset price moves from its maximum
or minimum within a certain time interval by a certain amount or percentage.

Another step in our analysis could be the study of portfolios with more than
one risky asset. Such portfolios allow for the trading of more than one risky assets
and give more choices. This means that there is not only one strategy that can be
followed, but the investor would have to choose among the available ones. This
hints that we need to move towards the use of utility functions and control theory
so as to derive the strategy that is optimal for the investor.

6 Conclusion

We proved that given a Geometric Brownian Motion with a drift, the number
of times it deviates from its extreme points by a certain quantity or proportion are
finitely many almost surely. In addition, the time instants on which this occurs
are stopping times. The latter was applied to the time instants where the price of
a risky asset departs from its maximum or minimum either by a certain amount
or a certain percentage. We proved that these time instants are finitely many
and they are stopping times. We deemed reasonable that when this occurs the
investor chooses to buy or sell and thus encounters transaction costs, which we
attempted to model.
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