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Geometric Brownian Motion with drift from its extreme points with applications to transaction costs

Introduction

Our source of inspiration is the movement of the price of a traded risky asset (e.g. a stock) on which an investor, with finite time horizon T , has invested. More specifically we focus at the change in price that leads the investor to transact. A reasonable approach would be to assume that investors choose to buy or sell units of the asset (e.g. shares of stock) when its price deviates by its previous maximum or minimum by a certain amount or percentage.

When such a transaction takes place, transaction costs occur. Thus, modelling these transaction costs is also of great importance. By doing that we know exactly when transaction costs have to be paid and moreover how much has to be paid. Several authors have attempted to model transaction costs, since the Black-Scholes approach, among which Amster [START_REF] Amster | A Black-Scholes Option Pricing Model with Transaction Costs[END_REF] and Daamgard [START_REF] Damgaard | Utility based Option Evaluation with Proportional Transaction Costs[END_REF]. No one has though tried to link them to the time instants at which they occur.

The time instants at which transaction costs are paid are the points of time at which the investor decides to adjust the portfolio as a result of a significant change in the price of the risky asset. The change in price is monitored with respect to the maximum and minimum price achieved since the last transaction took place. When the price deviates by a preset quantity or proportion, then the investor adjusts/ rebalances his or her portfolio by performing a transaction on the (specific risky) asset.

The properties of the time instants where the transaction costs are paid are studied. More precisely we prove that in a time interval [0, T ] there are finitely many such time instants almost surely and they are stopping times.

These results though come as consequences of the properties of Geometric Brownian Motions and this is where we turn our attention. What we can essentially achieve is to follow in a time interval [0, T ] the change in the value of a Geometric Brownian Motion since its previous extreme point was reached. What we can show is that the number of such deviations by a fixed range, either numerical or proportional, is finite almost surely. In addition we can prove that the time instants on which such deviations occur are stopping times.

To the best of the author's knowledge there has not been a similar approach, both to the study of the properties of deviations of a Geometric Brownian Motion On the number of deviations of Geometric Brownian Motion from its extreme points as well as the application of these properties to the fluctuations of the prices of risky traded assets and the modelling of transaction costs. The application of such models could assist further in the pricing of options in a continuous-time environment.

In Section 1 we describe the environment in which we derive our results. In Section 2 we derive our main results on the number of deviations of a Geometric Brownian Motion from its extreme points and the time instants at which these deviations occur. Next to it the properties of the time instants at which the price of an asset deviates from its extreme points by a given amount or percentage are established. In Section 3 we deal with the implications to the case of Brownian Motion. In Section 4 the cost functions are modelled. In Section 5 we describe some further steps and extensions that could be followed towards the study of the deviations of a Geometric Brownian Motion form its extreme points as well as its applications to the price of a risky asset. In Section 6 we conclude on the findings of the main body of the paper.

Description of the mathematical setting

In the following we consider continuously trading markets with transaction costs (commission fees). Our mathematical setting comprises of a filtered complete probability space (Ω, F, P r, (F t ) 0≤t≤∞ ). We assume that all the stochastic processes that appear are adapted (see Protter [START_REF] Protter | Stochastic Integration and Differential Equations: A New Approach[END_REF], pp3-4). Also, all the functions and stochastic processes are continuous, unless otherwise stated. (In)equalities that involve random variables are understood to hold almost surely. We assume that we have a Geometric Brownian Motion with a drift -that could be the price of a risky asset (see Merton [START_REF] Merton | Continuous-Time Finance[END_REF], pp122-124 or Duffie [START_REF] Duffie | Dynamic Asset Pricing Theory[END_REF], pp80-84) -and whose stochastic differential satisfies dP P = α(P, t) dt + σ(P, t) dW .

(

) 1 
When P denotes the price of a risky asset, α is the instantaneous conditional expected change in price per unit time, σ 2 is the instantaneous conditional variance per unit time and W is a Brownian Motion. For the rest of our discussion we assume that α, σ do not depend on P , t.

In the case that α(P, t) = α(t) and σ(P, t) = σ(t), i.e. they are functions of time only and not the risky asset, then the solution of (1) becomes

P t = P 0 e γ(t) , (2) 
where

γ(t) = t 0 µ(s)ds + t 0 σ(s)dW s (3)
and

µ(t) = α(t) - 1 2 σ 2 (t) . ( 4 
)
For the remaining of our discussion we assume that µ and σ are continuous or even fixed, hence in any case they are bounded.

The deviations of Geometric Brownian Motion from its extreme points

We assume that the deviations of our interest take place on the time instants τ i , i = 1 . . . N * , which are determined in the following way (see Poufinas [START_REF] Poufinas | Discrete-Time and Continuous-Time Option Pricing with Fees[END_REF], pp374-375, pp392); first let J be a fixed positive real number and τ 0 := 0. Assume that τ i has already been defined and let M t := max{P s : s ∈ [τ i , t]} and m t := min{P s : s ∈ [τ i , t]} for t ∈ [0, T ]. Let φ(t) := max(M t -P t , P t -m t ) and for ω ∈ Ω, let φ(t, ω) = max(M t (ω) -P t (ω), P t (ω) -m t (ω)). Then define τ i+1 by

τ i+1 (ω) := inf {t ≥ τ i (ω) : φ(t, ω) = J} . ( 5 
)
τ i+1 denotes the time instant at which the Geometric Brownian motion has deviated from its maximum or minimum since τ i by a certain quantity. In the case of the price of a risky asset, it denotes the time instant at which the price has deviated from its maximum or minimum since τ i by a preset amount J. The rationale behind using such a choice for the time of the transaction lies within the fact that the investor chooses to adjust the risky asset part of his or her portfolio when the price of the risky asset has parted from the maximum or minimum price by a certain amount.

On the number of deviations of Geometric Brownian Motion

A different way to define τ i is given if

J i+1 := ν |P τ i |, where ν is a fixed positive number. Set τ 0 := 0. If τ i is given we define τ i+1 by τ i+1 (ω) := inf {t ≥ τ i (ω) : φ(t, ω) = J i+1 (ω)}, ω ∈ Ω . ( 6 
)
The reasoning behind such a choice is that the investor chooses to perform a transaction and adjust the portfolio when the stock price has increased or decreased compared to its maximum or minimum by a certain multiple of the price at the time of the previous transaction, thus reflecting a "percentage change".

Let I ω be the index set for the τ i (ω)'s. In the next theorem we will prove that for almost every ω, I ω is finite and in the theorem following it that for each i, τ i is a stopping time (see Protter [START_REF] Protter | Stochastic Integration and Differential Equations: A New Approach[END_REF], pp3-5).

Theorem 1. Let I ω be the index set for τ i (ω). Then I ω is finite for almost every ω ∈ Ω.

Proof: We first give the proof if we choose τ i to be defined by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF]. Recall that with probability 1 a Brownian path is H ölder( ) continuous for every < 1/2, i.e.

|W t -W s | ≤ C|t -s| a.s. ∀t, s ∈ [0, T ] (7) 
(see Durrett [START_REF] Durrett | Probability: theory and examples[END_REF], pp336-338). Take = 1/3. Let Ω denote the set of ω ∈ Ω such that (7) does not hold. Then P r( Ω) = 0. Since

γ(t) = t 0 µ(u) du + t 0 σ(u) dW u , ( 8 
)
we have that

γ(t) -γ(s) = t s µ(u) du + t s σ(u) dW u (9)
for all s, t ∈ [0, T ]. We take absolute values to see that

|γ(t) -γ(s)| ≤ C 1 |t -s| + C 2 |W t -W s | . ( 10 
)
(10) and [START_REF] Merton | Continuous-Time Finance[END_REF] yield that (see also Poufinas [8], pp382)

|γ(t) -γ(s)| ≤ C 1 |t -s| + C 2 C|t -s| 1/3 ⇒ |γ(t) -γ(s)| ≤ C 1 |t -s| 1/3 |t -s| 2/3 + C 2 C|t -s| 1/3 ⇒ |γ(t) -γ(s)| ≤ C 1 |t -s| 1/3 T 2/3 + C 2 C|t -s| 1/3 ⇒ |γ(t) -γ(s)| ≤ C |t -s| 1/3 (11) ⇒ |γ(t) -γ(s)| ≤ C T 1/3 . ( 12 
)
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For ω ∈ Ω -Ω fixed, consider the intervals {[τ i-1 , τ i ] : i ∈ I}, where I = I ω ∪ {0}, hence depends on ω. We will prove that |I| is bounded, by a number that does not depend on ω, which proves in addition that there are finitely many

τ i . Let M i := max{P t : t ∈ [τ i-1 , τ i ]} ≥ m i := min{P t : t ∈ [τ i-1 , τ i ]}. Then M i = P (t * * i ) and m i = P (t * i ) for some t * * i , t * i ∈ [τ i-1 , τ i ]. (5) implies that J ≤ |M i -m i | = |P (t * * i ) -P (t * i )| . ( 13 
)
Recall that P t = P 0 e γ(t) and use ( 11), ( 12), (13) to see that

J ≤ P 0 e γ(t * * i ) -e γ(t * i ) ≤ P 0 e C T 1/3 e γ(t * * i )-γ(t * i ) -1 . ( 14 
)
Set K := P 0 e C T 

J K + 1 ≤e γ(t * * i )-γ(t * i ) ⇒ J K + 1 ≤ e C |t * * i -t * i | 1/3 . ( 15 
) Since t * * i , t * i ∈ [τ i-1 , τ i ] we get that |t * * i -t * i | ≤ |τ i -τ i-1 | which along with (15) implies that J K + 1 ≤e C |τ i -τ i-1 | 1/3 ⇔ L ≤ |τ i -τ i-1 | ( 16 
)
where L = {(1/C )ln(J/K + 1)} 3 . We sum up (16) for all i ∈ I to see that since

τ i ≥ τ i-1 and τ i ≤ T , L |I| ≤ i∈I (τ i -τ i-1 ) ≤ T ⇔ |I| ≤ (T /L ) . ( 17 
)
Thus I ω is finite. T /L does not depend on ω.

There are a few changes in the proof of the theorem when we choose τ i to be given by ( 6). (In)equalities ( 7) -(12) hold as they are and (13) becomes

ν P τ i-1 ≤ |M i -m i | = |P (t * * i ) -P (t * i )| , (18) 
A C C E P T E D M A N U S C R I P T
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On the number of deviations of Geometric Brownian Motion whereas (14) changes to

νP 0 e γ(τ i-1 ) ≤ P 0 e C T 1/3 e γ(t * * i )-γ(t * i ) -1 . ( 19 
)
Divide both sides by P 0 and use e γ(τ i-1 ) ≥ e -|γ(τ i-1 )| ≥ 0 to see that

νe -|γ(τ i-1 )| ≤ e C T 1/3 e γ(t * * i )-γ(t * i ) -1 . ( 20 
)
It follows that

ν ≤ e C T 1/3 e |γ(τ i-1 )| e γ(t * * i )-γ(t * i ) -1 ≤ e C T 1/3 e C T 1/3 e γ(t * * i )-γ(t * i ) -1 = K e γ(t * * i )-γ(t * i ) -1 , ( 21 
)
where K := e 2C T 1/3 , a constant that does not depend on ω. We can drop the absolute values, since γ(t * * i ) ≥ γ(t * i ) and see that because of (11

) ν K + 1 ≤ e γ(t * * i )-γ(t * i ) ⇒ ν K + 1 ≤ e C |τ i -τ i-1 | 1/3 . (22) Whence, L ≤ |τ i -τ i-1 | , ( 23 
)
where L = {(1/C )ln(ν/K + 1)} 3 . ( 23) is identical to (16) and thus beyond this point we proceed as we did when τ i was given by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF]. As a result (17) holds once more if we sum up for all i ∈ I. This proves that I ω is finite. Q.E.D.

Let n ω := |I ω |. For a.e. ω, τ i (ω) is defined for i = 0 . . . n ω . Let Ω be as defined in the proof of Theorem 1. For ω ∈ Ω -Ω, all n ω 's are bounded by (T /L ), a constant that does not depend on ω. Hence the set {n ω : ω ∈ Ω -Ω} is a subset of {0 . . . N }, where N := [(T /L )] + 1. Define N * := max{n ω : ω ∈ Ω -Ω} < +∞. For ω ∈ Ω -Ω we define τ i (ω) as before (hence τ i (ω) ≤ T ) if i ≤ n ω and by τ i (ω) = +∞ (or alternatively by τ i (ω) = T ) if N * ≥ i > n ω . This is consistent with the fact that the infimum of the empty set is +∞, and thus τ i in any case is given by ( 5) or [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF]. This also means that if τ i (ω) = +∞ for some ω, then no i -th payment is being made at this particular state ω (for simplicity in the following one may assume that n ω = N * for all ω ∈ Ω -Ω).

We are now in position to state the following theorem.

Theorem 2. Let τ i be as defined by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF] or [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF]. Then, for any i = 1 . . . N * , τ i is a stopping time.

Proof: We first prove the theorem when τ i is given by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF]. Then

τ 1 := inf {t ≥ 0 : φ(t) = J} . ( 24 
)
It is immediate that

{τ 1 ≤ t} = {φ t = J} ∪ ∩ n ∪ q∈Q∩[0, t) {|φ q -J| < 1 n } . ( 25 
)
The sets at the right-hand side are in F t , which yields that {τ 1 ≤ t} ∈ F t , ∀t ∈ [0, T ], proving that τ 1 is a stopping time.

It suffices to prove that φ t ∈ F t . This will follow if we prove that M t ∈ F t and m t ∈ F t . Recall that M t := max{P s : s ∈ [0, t]}, which gives that

M t = sup{P q : q ∈ [0, t] ∩ Q}. But P q ∈ F q ⊆ F t , hence M t ∈ F t . Similarly m t ∈ F t .
Going to τ 2 we have that

τ 2 := inf {t ≥ τ 1 : φ(t) = J} , ( 26 
) M t (ω) := max{P s (ω) : s ∈ [τ 1 (ω), t]} . ( 27 
)
Define Ps by Ps (ω) := -∞ 0 ≤ s < τ 1 (ω)

P s (ω) τ 1 (ω) ≤ s ≤ t . ( 28 
)
It is obvious that

M t = sup{ Ps : s ∈ [0, t]} , (29) 
and that Ps ∈ F s ⊆ F t for s ≤ t. Thus as before M t ∈ F t . Similarly m t ∈ F t , and φ t ∈ F t .

To show that τ 2 is a stopping time we extend φ by defining

φs (ω) := -∞ 0 ≤ s < τ 1 (ω) φ s (ω) τ 1 (ω) ≤ s ≤ t . ( 30 
) Of course φt ∈ F t , ∀t ∈ [0, T ]. Moreover τ 2 = inf{t ≥ 0 : φt = J} , (31) 
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{τ 2 ≤ t} = { φt = J} ∪ ∩ n ∪ q∈Q∩[0, t) { φq -J < 1 n } . ( 32 
)
All the sets at the right-hand side are in F t , since φq ∈ F q ⊆ F t , whence τ 2 is a stopping time. Working in a similar way we can prove that τ i is a stopping time for every i.

The proof is similar when for each i, τ i is given by [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF]. Recall that

τ 1 := inf {t ≥ 0 : φ(t) = ν |P 0 |} . ( 33 
)
It is immediate that

{τ 1 ≤ t} = {φ t = J 1 } ∪ ∩ n ∪ q∈Q∩[0, t) {|φ q -ν |P 0 || < 1 n } . ( 34 
)
See that

P 0 ∈ F 0 ⊆ F t , ∀t ∈ [0, T ]
. This is straightforward if P 0 is constant. The result follows since each one of the sets that appear at the right-hand side of ( 34) is in F t . This implies that {τ 1 ≤ t} ∈ F t , for all t, proving that τ 1 is a stopping time. To see that φ t ∈ F t we use the argument we used when τ 1 was given by (24), i.e. P q ∈ F q ⊆ F t and thus M t ∈ F t , m t ∈ F t and thus φ t ∈ F t .

As for τ 2 it is now given by

τ 2 := inf {t ≥ τ 1 : φ(t) = ν |P τ 1 |} . ( 35 
)
We can repeat the discussion following (26) and equations ( 27 and P 0 (ω) = 0 by [START_REF] Amster | A Black-Scholes Option Pricing Model with Transaction Costs[END_REF]. Therefore,

τ 2 = {t ≥ 0 : φt = ν |P τ 1 |} . ( 36 
)
The latter remark is redundant if we assume that P 0 is constant. As a consequence,

{τ 2 ≤ t} = { φt = J 2 } ∪ ∩ n ∪ q∈Q∩[0, t) { φq -ν |P τ 1 | < 1 n } . ( 37 
)
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Consider any of the sets {ω : φq (ω)

-ν P τ 1 (ω) (ω) < 1 n }. If ω is in such a set, then τ 1 (ω) ≤ q ≤ t, since ν P τ 1 (ω) (ω) > 0, for every ω such that τ 1 (ω) < ∞,
and φq (ω) -ν P τ 1 (ω) (ω) < 1 n < ∞. This is true, because if q < τ 1 (ω), then φq = -∞ and thus the latter could not hold. Each one of the above sets is in F t .

To see that it suffices to show that P τ 1 | {τ 1 ≤q} ∈ F q . Indeed, let π : {τ 1 ≤ q} → Ω be the inclusion map. Then

{ω : (P τ 1 • π)(ω) ≤ b} = {ω : P (τ 1 (ω), ω) ≤ b} ∩ {ω : τ 1 (ω) ≤ q} , ( 38 
)
where b ∈ . The right-hand side is in F q ⊆ F t , since τ 1 is a stopping time.

Conclude that P τ 1 | {τ 1 ≤q} ∈ F q . It thus follows that all the sets at the right-hand side of (37) are in F t , since φq ∈ F q ⊆ F t , which proves that τ 2 is a stopping time. Working similarly we can prove that τ i is a stopping time for every i. This completes the proof of the theorem. Q.E.D. Theorem 1 and Theorem 2 readily yield the following corollaries.

Corollary 1. The price of a risky asset can deviate finitely many times almost surely from its extreme points by a given amount or percentage.

Corollary 2. The time instants at which the price of a risky asset deviates from its extreme points by a given amount or percentage are stopping times.

The case of Brownian Motion with drifts

One can relatively easily conclude that similar results hold true in the case of Brownian Motion with drifts. To the best of our knowledge, there has not been a similar approach in this case either. In this case equation (1) becomes dP = α(P, t) dt + σ(P, t) dW .

(

We once more assume that α and σ are functions of time only and not of the risky asset. Equations ( 2), ( 3) and ( 4) change to

P t = P 0 + γ(t) , ( 40 
)
γ(t) = t 0 µ(s)ds + t 0 σ(s)dW s (41) and µ(t) = α(t) . ( 42 
)
We keep the same notation so we can refer to our previous results. We also assume that µ and σ are continuous or fixed, hence bounded. The time instants τ i are defined as in [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF]. When we examine the case of Brownian Motion we feel that absolute changes are more appropriate than proportional changes as given by [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF]. In incorporating proportional changes, i.e. allowing τ i to be defined as in [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF], we would put the additional requirement that min |P t | = m P > 0, or that |P t | is bounded from below by a positive number. This is a natural restriction; namely that in a finite time interval the stock price cannot reach zero. We introduce this so as to avoid the complications that a price equal to zero would result into our structure.

We can now state the following corollaries that map the implications to the case of a Brownian Motion with drift. Corollary 3. Let I ω be the index set for τ i (ω). Then I ω is finite for almost every ω ∈ Ω.

Proof: When τ i is defined by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF] the proof is almost identical to the one of Theorem 1. Simply observe that

J ≤ |M i -m i | = |P (t * * i ) -P (t * i )| = |γ(t * * i ) -γ(t * i )| (43) ⇒J ≤ |γ(t * * i ) -γ(t * i )| ≤ C |t * * i -t * i | 1/3 ≤ C |τ i -τ i-1 | 1/3
(44)

⇒L := (J/C ) 3 ≤ |τ i -τ i-1 | . ( 45 
)
We sum up (45) for all i ∈ I to see that since τ i ≥ τ i-1 and τ i ≤ T ,

L |I| ≤ i∈I (τ i -τ i-1 ) ≤ T ⇔ |I| ≤ (T /L ) . ( 46 
)
Thus I ω is finite. T /L does not depend on ω.

When τ i is given by ( 6), we receive that

νm P ≤ ν P τ i-1 ≤ |M i -m i | = |P (t * * i ) -P (t * i )| = |γ(t * * i ) -γ(t * i )| (47) ⇒L := (νm P /C ) 3 ≤ |τ i -τ i-1 | . ( 48 
)
This is identical to (46), thus summing up for all i we conclude once more that I ω is finite. Q.E.D.
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Corollary 4. Let τ i be as defined by [START_REF] Fleming | Deterministic and Stochastic Optimal Control[END_REF] or [START_REF] Kloeden | Numerical Solution of SDE through Computer Experiments[END_REF]. Then, for any i = 1 . . . N * , τ i is a stopping time.

Proof: The proof is identical to the proof of Theorem 2. Q.E.D.

The cost functions

As mentioned earlier, the time instants at which the investor decides to buy or sell units of the risky asset, transaction costs have to be paid. The natural question is how to model these transaction costs.

The amount that the individual has to pay at τ i , i = 1 . . . N * may be given by different cost functions. Let β i be this amount. Let c(t) denote the cost function. Then By looking at our results we realize that we limited ourselves to a finite time horizon T . This is reasonable even when applied to the case of an investor that holds a risky asset. It is of interest to see whether a similar result holds for an infinite time horizon or prove that it does not hold.

c(t) dt = N * i=1 β i δ 0 (τ i -t) dt . ( 49 
The next step would be to consider that cost is given as

β i := f (∆Y ) .
A reasonable assumption is that f is a nonnegative concave function. Of particular interest is the case where the transaction costs are built as an expression of the form

β i = α 0 (∆Y ) + λ(∆Y ) Γ , A C C E P T E D M A N U S C R I P T
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On the number of deviations of Geometric Brownian Motion where ∆Y is the total change in the risky asset position since the last payment of transaction costs, for λ and Γ constants in [0, 1] and α 0 (x) a step function that becomes equal to a constant if x is not 0 and equals to 0 otherwise. The above transaction costs have a fixed and a proportional part but are not necessarily linear.

Moving towards another direction we could try to retrieve what conditions on our fee functions would allow for our results to be readily used to the pricing of (European) options. Such a result appears to be very interesting as it would incorporate transactions only when the risky asset price moves from its maximum or minimum within a certain time interval by a certain amount or percentage.

Another step in our analysis could be the study of portfolios with more than one risky asset. Such portfolios allow for the trading of more than one risky assets and give more choices. This means that there is not only one strategy that can be followed, but the investor would have to choose among the available ones. This hints that we need to move towards the use of utility functions and control theory so as to derive the strategy that is optimal for the investor.

Conclusion

We proved that given a Geometric Brownian Motion with a drift, the number of times it deviates from its extreme points by a certain quantity or proportion are finitely many almost surely. In addition, the time instants on which this occurs are stopping times. The latter was applied to the time instants where the price of a risky asset departs from its maximum or minimum either by a certain amount or a certain percentage. We proved that these time instants are finitely many and they are stopping times. We deemed reasonable that when this occurs the investor chooses to buy or sell and thus encounters transaction costs, which we attempted to model.