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Abstract

Clustering with fast algorithms large samples of high dimensional data is an important chal-

lenge in computational statistics. A new class of recursive stochastic gradient algorithms de-

signed for the k-medians loss criterion is proposed. By their recursive nature, these algorithms

are very fast and are well adapted to deal with large samples of data that are allowed to arrive

sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the

set of stationary points of the underlying loss criterion. A particular attention is paid to the

averaged versions which are known to have better performances. A data-driven procedure that

permits a fully automatic selection of the value of the descent step is also proposed. The per-

formance of the averaged sequential estimator is compared on a simulation study, both in terms

of computation speed and accuracy of the estimations, with more classical partitioning tech-

niques such as k-means, trimmed k-means and PAM (partitioning around medoids). Finally,

this new online clustering technique is illustrated on determining television audience profiles

with a sample of more than 5000 individual television audiences measured every minute over a

period of 24 hours.

Keywords: averaging, high dimensional data, k-medoids, online clustering, partitioning around

medoids, recursive estimators, Robbins Monro, stochastic approximation, stochastic gradient.
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1 Introduction

Clustering with fast algorithms large samples of high dimensional data is an important challenge in

computational statistics and machine learning, with applications in various domains such as image

analysis, biology or computer vision. There is a vast literature on clustering techniques and recent

discussions and reviews may be found in Jain et al. (1999) or Gan et al. (2007). Moreover, as argued

in Bottou (2010), the development of fast algorithms is even more crucial when the computation

time is limited and the sample is potentially very large, since fast procedures will be able to deal

with a larger number of observations and will finally provide better estimates than slower ones. See

also Garcı́a-Treviño and Barria (2012) for recent applications of recursive estimation procedures for

streaming data.

We focus here on partitioning techniques which are able to deal with large samples of data,

assuming the number k of clusters is fixed in advance. The most popular clustering methods are

probably the non sequential (Forgy (1965)) and the sequential (MacQueen (1967)) versions of the

k-means algorithms. They are very fast and only require O(kn) operations, where n is the sample

size. They aim at finding local minima of a quadratic criterion and the cluster centers are given

by the barycenters of the elements belonging to each cluster. A major drawback of the k-means

algorithms is that they are based on mean values and, consequently, are very sensitive to outliers.

Such atypical values, which may not be uncommon in large samples, can deteriorate significantly

the performances of these algorithms, even if they only represent a small fraction of the data as

explained in Garcı́a-Escudero et al. (2010) or Croux et al. (2007). The k-medians approach is a

first attempt to get more robust clustering algorithms; it was suggested by MacQueen (1967) and

developed by Kaufman and Rousseeuw (1990). It consists in considering criteria based on least

norms instead of least squared norms, so that the cluster centers are the spatial medians, also called

geometric or L1-medians (see Small (1990)), of the elements belonging to each cluster. Note that

it has been proved in Laloë (2010) that under general assumptions, the minimum of the objective

function is unique. Many algorithms have been proposed in the literature to find this minimum.

The most popular one is certainly the PAM (partitioning around medoids) algorithm which has

been developed by Kaufman and Rousseeuw (1990) in order to search for local minima among

the elements of the sample. Its computation time is O(kn2) and as a consequence, it is not very

well adapted for large sample sizes. Many strategies have been suggested in the literature to reduce

the computation time of this algorithm. For example subsampling (see e.g the algorithm CLARA

in Kaufman and Rousseeuw (1990) and the algorithm CLARANS in Ng and Han (2002)), local

distances computation (Zhang and Couloigner (2005)) or the use of weighted distances during the
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iteration steps (Park and Jun (2008)), allow one to reduce significantly the computation time without

deteriorating the accuracy of the estimated partition.

Trimmed k-means (see Garcı́a-Escudero et al. (2008, 2010) and references therein) is also a

popular modification of the k-means algorithm that is more robust (see Garcı́a-Escudero and Go-

daliza (1999)) in the sense that it has a strictly positive breakdown point, which is not the case for

the k-medians. Note however that the breakdown point is a pessimistic indicator of robustness since

it is based on the worst possible scenario. For a small fraction of outliers whose distance is mod-

erate to the cluster centers, k-medians remain still competitive compared to trimmed k-means as

seen in the simulation study. Furthermore, from a computational point of view, performing trimmed

k-means needs to sort the data and this step requires O(n2) operations, in the worst cases, at each

iteration so that its execution time can get large when one has to deal with large samples.

Borrowing ideas from MacQueen (1967) and Hartigan (1975) who have first proposed sequen-

tial clustering algorithms and Cardot et al. (2011) who have studied the properties of stochastic

gradient algorithms that can give efficient recursive estimators of the geometric median in high di-

mensional spaces, we propose in this paper a recursive strategy that is able to estimate the cluster

centers by minimizing a k-medians type criterion. One of the main advantages of our approach,

compared to previous ones, is that it can be computed in only O(kn) operations so that it can deal

with very large datasets and is more robust than the k-means. Note also that by its recursive nature,

another important feature is that it allows automatic update and does not need to store all the data.

A key tuning parameter in our algorithm is the descent step value. We found empirically that rea-

sonable values are given by the empirical L1 loss function. We thus also consider an automatic two

steps procedure in which one first runs the sequential version of the k-means in order to approximate

the value of the L1 loss function and then run our stochastic k-medians with an appropriate descent

step.

The paper is organized as follows. We first fix notations and present our algorithm. In the third

Section, we state the almost sure consistency of the stochastic gradient k-medians to a stationary

point of the underlying objective function. The proof heavily relies on Monnez (2006). In Section 4,

we compare on simulations the performance of our technique with the sequential k-means, the PAM

algorithm and the trimmed k-means when the data are contaminated by a small fraction of outliers.

We note that applying averaging techniques (see Polyak and Juditsky (1992)) to our estimator, with

a small number of different initializations points, is a very competitive approach even for moderate

sample sizes with computation times that are much smaller. In Section 5, we illustrate our new

clustering algorithm on a large sample, of about 5000 individuals, in order to determine profiles of

television audience. A major difference with PAM is that our algorithm searches for a solution in
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all the space whereas PAM, and its refinements CLARA and CLARANS, only look for a solution

among the elements of the sample. Consequently, approaches such as PAM are not adapted to deal

with temporal data presented in Section 5 since the data mainly consist of 0 and 1 indicating that

the television is switched on or switched off during each minute of the day. Proofs are gathered in

the Appendix.

2 The stochastic gradient k-medians algorithm

2.1 Context and definitions

Let (Ω,A,P) be a probability space. Suppose we have a sequence of independent copiesZ1, . . . , Zn

of a random vector Z taking values in Rd. The aim is to partition Ω into a finite number k of clusters

Ω1, . . . ,Ωk. Each cluster Ωi is represented by its center, which is an element of Rd denoted by θi.

From a population point of view, the k-means and k-medians algorithms aim at finding local minima

of the function g mapping Rdk to R and defined as follows, for x = (x1, . . . , xk)′ with for all i,

xi ∈ Rd,

g(x)
def
= E

(
min

r=1,...,k
Φ(‖Z − xr‖)

)
, (1)

where Φ is a real, positive, continuous and non-decreasing function and the norm ‖.‖ in Rd takes

account of the dimension d of the data, for z ∈ Rd, ‖z‖2 = d−1
∑d

j=1 z
2
j . The particular case

Φ(u) = u2, leads to the classical k-means algorithm, whereas φ(u) = |u| leads to the k-medians.

Before presenting our new recursive algorithm, let us introduce now some notations and recall

the recursive k-means algorithm developed by MacQueen (1967). Let us denote by Ir the indicator

function,

Ir(z;x) =
k∏
j=1

11{‖z−xr‖≤‖z−xj‖},

which is equal to one when xr is the nearest point to z, among the set of points xi, i = 1, . . . , k.

The k-means recursive algorithm proposed by MacQueen (1967) starts with k arbitrary groups, each

containing only one point, X1
1 , . . . , X

k
1 . Then, at each iteration, the cluster centers are updated as

follows,

Xr
n+1 = Xr

n − arnIr(Zn;Xn) (Xr
n − Zn) , (2)

where for n ≥ 2, arn = (1 + nr)
−1 and nr = 1 +

∑n−1
`=1 Ir(Z`;X`) is just the number of elements

allocated to cluster r until iteration n − 1. For n = 1, let ar1 = 1
2 . This also means that Xr

n+1 is
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simply the barycenter of the elements allocated to cluster r until iteration n,

Xr
n+1 =

1

1 +
∑n

`=1 Ir(Z`;X`)

(
Xr

1 +
n∑
`=1

Ir(Z`;X`)Z`

)
.

The interesting point is that this recursive algorithm is very fast and can be seen as a Robbins-Monro

procedure.

2.2 Stochastic gradient k-medians algorithms

Assuming Z has an absolutely continuous distribution, we have

P(
∥∥Z − xi∥∥ =

∥∥Z − xj∥∥) = 0, for any i 6= j and xi 6= xj .

Then, the k-medians approach relies on looking for minima, that may be local, of the function g

which can also be written as follows, for any x such that xj 6= xi when i 6= j,

g(x) =
k∑
r=1

E[Ir(Z;x) ‖Z − xr‖]. (3)

In order to get an explicit Robbins-Monro algorithm representation, it remains to exhibit the gradient

of g. Let us write g in integral form. Denoting by f the density of the random variable Z, we have,

g(x) =
k∑
r=1

∫
Rd\{xr}

Ir(z;x) ‖z − xr‖ f(z) dz.

For j = 1, . . . , d, it can be checked easily that

∂

∂xrj
(‖z − xr‖) =

xrj − zj
‖z − xr‖

,

and since

Ir(z;x)

∣∣∣xrj − zj∣∣∣
‖z − xr‖

f(z) ≤ f(z), for z 6= xr,

the partial derivatives satisfy,

∂g

∂xrj
(x) =

∫
Rd\{xr}

Ir(z;x)
xrj − zj
‖z − xr‖

f(z) dz.

We define, for x ∈ Rdk,

∇rg(x)
def
= E

[
Ir(Z;x)

xr − Z
‖xr − Z‖

]
. (4)

We can now present our stochastic gradient k-medians algorithm. Given a set of k distinct

initialization points in Rd, X1
1 , · · · , Xk

1 , the set of k cluster centers is updated at each iteration as

follows. For r = 1, . . . , k, and n ≥ 1,

Xr
n+1 = Xr

n − arnIr(Zn;Xn)
Xr
n − Zn

‖Xr
n − Zn‖

(5)

= Xr
n − arn∇rg(Xn)− arnV r

n ,
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with Xn = (X1
n, · · · , Xk

n), and

V r
n

def
= Ir(Zn;Xn)

Xr
n − Zn

‖Xr
n − Zn‖

− E

[
Ir(Zn;Xn)

Xr
n − Zn

‖Xr
n − Zn‖

∣∣∣∣∣Fn
]
,

Fn = σ(X1, Z1, . . . , Zn−1). The steps arn, also called gains, are supposed to be Fn-measurable.

We denote by ∇g(x) = (∇1g(x), . . . ,∇kg(x))′ the gradient of g and define Vn
def
= (V 1

n , . . . V
k
n )′.

Let An be the diagonal matrix of size dk × dk,

An =



a1n
. . .

a1n
. . .

akn
. . .

akn


,

each arn being repeated d times. Then, the k-medians algorithm can be written in a matrix way,

Xn+1 = Xn −An∇g(Xn)−AnVn, (6)

which is a classical stochastic gradient descent.

2.3 Tuning the stochastic gradient k-medians and its averaged version

The behavior of algorithm (5) depends on the sequence of steps arn, r ∈ {1, . . . , k} and the vector of

initializationX1. These two sets of tuning parameters play distinct roles and we mainly focus on the

choice of the step values, noting that, as for the k-means, the estimation results must be compared

for different sets of initialization points in order to get a better estimation of the cluster centers.

Assume we have a sample of n realizations Z1, . . . , Zn of Z and a set of initialization points of the

algorithm, the selected estimate of the cluster centers is the one minimizing the following empirical

risk,

R(Xn) =
1

n

n∑
i=1

k∑
r=1

Ir(Zi;Xn) ‖Zi −Xr
n‖ (7)

Let us denote by nr = 1 +
∑n−1

`=1 Ir(Z`;X`) the number of updating steps for cluster r, until

iteration n− 1, for r ∈ {1, . . . , k}. A classical form of the descent steps arn can be given by

arn =

 arn−1 if Ir(Zn;Xn) = 0,
cγ

(1 + cαnr)
α otherwise,

(8)
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where cγ , cα and 1/2 < α ≤ 1 control the gain.

Adopting an asymptotic point of view, one could believe that α should be set to α = 1 with

suitable constants cα and cγ , which are unknown in practice, in order to attain the optimal para-

metric rates of convergence of Robbins Monro algorithms (see e.g. Duflo (1997), Th. 2.2.12). Our

experimental results on simulated data have shown that the convergence of algorithm (5) with de-

scent steps defined in (8) is then very sensitive to the values of the parameters cγ and cα which

have to be chosen very carefully. A simulation study performed in the particular case k = 1 by

Cardot et al. (2010) showed that the direct approach could lead to inaccurate results and is nearly

always less effective than the averaged algorithm presented below, even for well chosen descent

step values. From an asymptotic point of view, it has been proved in Cardot et al. (2011) that the

averaged stochastic gradient estimator of the geometric median, corresponding to k = 1, is asymp-

totically efficient under classical assumptions. Intuitively, when the algorithm is not too far from

the solution, averaging allows to decrease substantially the variability of the initial algorithm which

oscillates around the true solution and thus improves greatly its performances.

Consequently, we prefer to introduce an averaging step (see for instance Polyak and Juditsky

(1992) or Pelletier (2000)), which does not slow down the algorithm and provides an estimator

which is much more effective. Our averaged estimator of the cluster centers, which remains re-

cursive, is defined as follows, for r ∈ {1, . . . , k}, n ≥ 1, and for the value Xr
n+1 obtained by

combining (5) and (8),

X̄r
n+1 =


X̄r
n if Ir(Zn;Xn) = 0,

nrX̄
r
n +Xr

n+1

nr + 1
otherwise,

(9)

with starting points X̄r
1 = Xr

1 , r = 1, . . . , k. Then standard choices (see e.g. Bottou (2010) and

references therein) for α and cα are α = 3/4 and cα = 1, so that one only needs to select values for

cγ .

3 Almost sure convergence of the algorithm

3.1 A convergence theorem

The following theorem is the main theoretical result of this paper. It states that the recursive algo-

rithm defined in (6) converges almost surely to the set of stationary points of the objective function

defined in (3), under the following assumptions.

(H1) a) The random vector Z is absolutely continuous with respect to Lebesgue measure.

b) Z is bounded: ∃K > 0: ‖Z‖ ≤ K a.s.
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c) ∃C: ∀x ∈ Rd such that ‖x‖ ≤ K + 1, E
[

1
‖Z−x‖

]
< C.

(H2) a) ∀n ≥ 1, minr a
r
n > 0.

b) maxr supn a
r
n < min(12 ,

1
8C ) a.s.

c)
∑∞

n=1 maxr a
r
n =∞ a.s.

d) supn
maxr arn
minr arn

<∞ a.s.

(H3)
∑k

r=1

∑∞
n=1 (arn)2 <∞ a.s.

(H3’)
∑k

r=1

∑∞
n=1 E

[
(arn)2 Ir(Zn;Xn)

]
<∞.

Theorem 1. Assume that X1 is absolutely continuous and that ‖Xr
1‖ ≤ K, for r = 1, . . . , k. Then

under Assumptions (H1a,c), (H2a,b), (H3) or (H3’), g(Xn) and

k∑
r=1

∞∑
n=1

arn ‖∇rg(Xn)‖2

converge almost surely.

Moreover, if the hypotheses (H1b) and (H2c,d) are also fulfilled then ∇g(Xn) and the distance

between Xn and the set of stationary points of g converge almost surely to zero.

A direct consequence of Theorem 1 is that if the set of stationary points of g is finite, then the

sequence (Xn)n necessarily converges almost surely towards one of these stationary points because

Xn+1 − Xn converges almost surely towards zero. By Cesaro means arguments, the averaged

sequence X̄n also converges almost surely towards the same stationary point.

3.2 Comments on the hypotheses

Note first that if the data do not arrive online and X1 is chosen randomly among the sample units

then X1 is absolutely continuous and ‖Xr
1‖ ≤ K, for r = 1, . . . , k under (H1a,b). Moreover, the

absolute continuity of Z is a technical assumption that is required to get decomposition (3) of the

L1 error. Proving the convergence in the presence of atoms would require to decompose this error

in order to take into account the points which could have a non-null probability to be at the same

distance. Such a study is clearly beyond the scope of the paper. Note however that in the simple case

k = 1, it has been established in Cardot et al. (2011) that the stochastic algorithm for the functional

median is convergent provided that the distribution, which can be a mixture of a continuous and a

discrete distribution, does not charge the median.

Hypothesis (H1c) is a stronger version of a more classical hypothesis needed to get consistent

estimators of the spatial median (see Chaudhuri (1996)). As noted in Cardot et al. (2011), it is
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closely related to small ball properties of Z and is fulfilled when

P (‖Z − x‖ ≤ ε) ≤ κε2,

for a constant κ that does not depend on x and ε small enough. This implies in particular that

hypothesis (H1c) can be satisfied only when the dimension d of the data satisfies d ≥ 2.

Hypotheses (H2) and (H3) or (H3’) deal with the stepsizes. Considering the general form of

gains arn given in (8), they are fulfilled when the sizes nr of all the clusters grow to infinity at the

same rate and α ∈]1/2, 1].

4 A simulation study

We first perform a simulation study to compare our recursive k-medians algorithm with the follow-

ing well known clustering algorithms : recursive version of the k-means (function kmeans in ),

trimmed k-means (function tkmeans in the package tclust, with a trimming coefficient α

set to default, α = 0.05) and PAM (function pam in the package cluster). Our codes are

available on request.

Comparisons are first made according to the value of the empirical L1 error (7) which must be

as small as possible. We note that the results of our averaged recursive procedure defined by (5), (8)

and (9) are very stable when the value of the tuning parameter cγ is not too far from the minimum

value of the L1 error, with α = 3/4 and cα = 1. This leads us to propose, in Section 4.2, an

automatic clustering algorithm which consists in first approximating the L1 error with a recursive

k-means and then performing our recursive k-medians with the selected value of cγ , denoted by c

in the following. We have no mathematical justification for such an automatic choice of the tuning

parameter c but it always worked well on all our simulated experiments. This important point of

our algorithm deserves further investigations that are beyond the scope of the paper. Note however

that this intuitive approach will certainly be ineffective when the dispersion is very different from

one group to another. It would then be possible to consider refinements of the previous algorithm

which would consist in considering different values of tuning parameter c for the different clusters.

We only present here a few simulation experiments which highlight both the strengths and the

drawbacks of our recursive k-medians algorithm.
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4.1 Simulation protocol

Simulation 1 : a simple experiment in R2

We first consider a very simple case and draw independent realizations of variable Z,

Z = (1− ε) (π1Z1 + π2Z2 + π3Z3) + εδz, (10)

which is a mixture, with weights π1 = π2 = π3 = 1/3, of three bivariate random Gaussian vectors

Z1, Z2 and Z3 with mean vectors µ1 = (−3,−3), µ2 = (3,−3) and µ3 = (4.5,−4.5) and covari-

ance matrices V ar(Z1) =

 2 1

1 3

 , V ar(Z2) =

 3 1

1 2

 and V ar(Z3) =

 2 −1

−1 3

 .

Point z = (−14, 14) is an outlier and parameter ε controls the level of the contamination. A sample

of n = 450 realizations of Z is drawn in Figure 1.

-10 -5 0 5

-5
0

5
10

X1

X
2

Figure 1: Simulation 1. A sample of n = 450 realizations of Z. An outlier is located at position

(-14,14).
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0 10 20 30 40 50

-4
-2

0
2

4

Time index

Figure 2: Simulation 2. A sample of n = 36 realizations of Z with d = 50. The mean values µ1,

µ2 and µ3 of the three natural clusters are drawn in bold lines.

Simulation 2 : larger dimension with different correlation levels

We also performed a simulation experiment, with a mixture of three Gaussian random variables

as in (10), but in higher dimension spaces with correlation levels that vary from one cluster to

another. Now, Z1, Z2 and Z3 are independent multivariate normal distributions in Rd, with means

µ1j = 2 sin(2πj/(d−1)), µ2j = 2 sin(2π/3+2πj/(d−1)), and µ3j = 2 sin(4π/3+2πj/(d−1)),

for j = 1, . . . , d. The covariance functions Cov(Zij , Zi`) = 1.5ρ
|j−`|
i , for j, ` ∈ 1, . . . , d and i ∈

{1, 3} are controlled by a correlation parameter ρ, with ρ1 = 0.1, ρ2 = 0.5 and ρ3 = 0.9. Note that

this covariance structure corresponds to autoregressive processes of order one with autocorrelation

ρ. As before, δz = (4, . . . , 4) ∈ Rd plays the role of an outlying point. A sample of n = 36

independent realizations of Z, without outliers, is drawn in Figure 2 for a dimension d = 50.
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4.2 L1 error and sensitivity to parameter c

As noted in Bryant and Williamson (1978), comparing directly the distance of the estimates from

the cluster centers µ1, µ2 and µ3 may not be appropriate to evaluate a clustering method. Our

comparison is thus first made in terms of the value of the empirical L1 error (7) which should be as

small as possible. For all methods, we considered that there were k = 3 clusters.

0 2 4 6 8 10

1.
9

2.
0

2.
1

2.
2

2.
3

Parameter c

L1
 e

rr
or

Figure 3: Simulation 1 with ε = 0.05 and n = 250. Mean empirical L1 error (over 50 replications)

for the PAM algorithm (dashed line), the k-means (c = 0) and the stochastic k-medians (bold line),

for c ∈]0, 10].

We first study the simple case of Simulation 1. The empirical mean L1 error of the PAM

algorithm, the k-means and the averaged k-medians, for 50 replications of samples with sizes n =

250 and a contamination level ε = 0.05 is presented in Figure 3. The number of initialization points

equals 10 for both the k-means and the k-medians. When the descent parameter c equals 0, the

initialization point is given by the estimated centers by the k-means, so that the empirical L1 error

corresponds in that case to the k-means error, which is sightly above 2.31. We first note that this

L1 error is always larger, even if the contamination level is small, than the PAM and the k-medians

12



errors, for c ∈]0, 10]. Secondly, it appears that for c ∈ [0.5, 4], the k-medians L1 error is nearly

constant and is clearly smaller than the L1 error of the PAM algorithm. This means that, even if the

sample size is relatively small (n = 250), the recursive k-medians can perform well for values of c

which are of the same order of the L1 error.

0 1 2 3 4 5 6 7

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

Parameter c

L1
 e

rr
or

Figure 4: Simulation 2 with n = 500, d = 50, and ε = 0.05. The mean empirical L1 error (over

50 replications) is represented for the PAM algorithm (dashed line), the MacQueen version of the

k-means (c = 0) and the recursive k-medians estimator (bold line), for c ∈]0, 7].

We now consider 50 replications of samples drawn from the distribution described in simulation

2, with n = 500, d = 50 and ε = 0.05. The number of initialization points for the k-means and

the k-medians is now equal to 25 and the empirical mean L1 error is presented in Figure 4. We

first note that the performances of the PAM algorithm clearly decrease with the dimension. The

k-means performs better even if there are 5% of outliers and if it is not designed to minimize an L1

error criterion. This can be explained by the fact that PAM, as well as CLARA and CLARANS,

look for a solution among the elements of the sample. Thus these approaches can hardly explore

all the dimensions of the data when d is large and n is not large enough. On the other hand, the
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k-medians and the k-means look for a solution in all Rd and are not restricted to the observed data

and thus provide better results in terms of L1 error. As before, we can also remark that the minimum

error, which is around 1.36, is attained for c in the interval [0.5, 3].
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Figure 5: Simulation 2 with n = 1000, d = 200, ε = 0.05, and Z multiplied by a factor 10. The

mean L1 loss function (over 50 replications) is represented for the PAM algorithm (dashed line), the

MacQueen version of the k-means (c = 0) and our recursive k-medians estimator (bold line), for

c ∈]0, 40].

We finally present results from Simulation 2 in which we consider samples with size n = 1000,

of variable 10Z, with d = 200. The contamination level is ε = 0.05 and 50 initialization points

were considered for the k-means and k-medians algorithms. Since Z has been multiplied by a

factor 10, the minimum of the L1 error is now around 13.6. We remark, as before, that because of

the dimension of the data, d = 200, PAM is outperformed by the k-means and the k-medians even

in the presence of a small fraction of outliers (ε = 0.05). The minimum of the L1 error for the

k-medians estimator is again very stable for c ∈ [5, 25] with smaller values than the L1 error of the

14



k-means clustering.

As a first conclusion, it appears that for large dimensions the k-medians can give results which

are much better than PAM in terms of empirical L1 error. We can also note that the averaged

recursive k-medians is not very sensitive to the choice of parameter c provided its value is not too

far from the minimum value of the L1 error. Thus we only consider, in the following subsection,

the data-driven version of our averaged algorithm described in Section 2.3 in which the value of

c is chosen automatically, its value being the empirical L1 error of the recursive k-means. This

data-driven k-medians algorithm can be summarized as follows

1. Run the k-means algorithm and get the estimated centers.

2. Set c as the value of the L1 error of the k-means, evaluated with formula (7).

3. Run the averaged k-medians defined by (5), (8) and (9), with c computed in Step 2 and cα = 1.

4.3 Classification Error Rate

We now make comparisons in terms of classification error measured by the Classification Error Rate

(CER) introduced by Chipman and Tibshirani (2005) and defined as follows. For a given partition

P of the sample, let 1P (i,i′) be an indicator for whether partition P places observations i and i′ in

the same group. Consider a partition Q with the true class labels, the CER for partition P is defined

as

CER =
2

n(n− 1)

∑
i>i′

∣∣1P (i,i′) − 1Q(i,i′)

∣∣ . (11)

The CER equals 0 if the partitions P and Q agree perfectly whereas a high value indicates disagree-

ment. Since PAM, the k-means and our algorithm are not designed to detect outliers automatically,

we only evaluate the CER on the non-outlying pairs of elements i and i′ of the sample.

We present in Figure 6, results for 500 replications of Simulation 1, with a sample size n = 500

and no outliers (ε = 0). We note, in this small dimension context with no contamination, that the L1

errors are comparable. Nevertheless, in terms of CER, the PAM, the k-means and the data-driven

k-medians algorithms have approximately the same performances. For the trimmed k-means, the

results are not as effective, since this algorithm automatically classifies 5% of the elements of the

sample as outliers.

We then consider the same experiment as before, the only difference being that there is now

a fraction of ε = 0.05 of outliers. The results are presented in Figure 7. The k-means algorithm

is clearly affected by the presence of outliers and both its L1 error and its CER are now much
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Figure 6: Simulation 1 with ε = 0 and n = 500. On the left, the L1 empirical error. On the right,

CER for the k-means, PAM, the data-driven recursive k-medians algorithm (kmed) and the trimmed

k-means (tkm) with a trimming level set to 0.05.
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Figure 7: Simulation 1 with ε = 0.05 and n = 500. On the left, the L1 empirical error. On the

right, CER for the k-means, PAM, the data-driven recursive k-medians algorithm (kmed) and the

trimmed k-means (tkm) with a trimming level set to 0.05.
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larger than for the other algorithms. PAM and the recursive k-medians have similar performances,

even if PAM is slightly better. The trimmed k-means now detects the outliers and also has good

performances. If the contamination level increases to ε = 0.1, as presented in Figure 8, then PAM

and the trimmed k-means (with a trimming coefficient α = 0.05) are strongly affected in terms of

CER and do not recover the true groups. The k-medians algorithm is less affected by this larger

level of contamination. Its median CER is nearly unchanged, meaning that for at least 50 % of the

samples, it gives a correct partition.
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Figure 8: Simulation 1 with ε = 0.1 and n = 1000. On the left, the L1 empirical error. On the

right, CER for the k-means, PAM, the data-driven recursive k-medians algorithm (kmed) and the

trimmed k-means (tkm) with a trimming level set to 0.05.

We now consider Simulation 2, with a dimension d = 50 and a fraction ε = 0.05 of outliers. The

L1 empirical errors and the CER, for sample sizes n = 500, are given in Figure 9. It clearly appears

that PAM has the largest L1 errors and the trimmed k-means and the data-driven k-medians the

smallest ones. Intermediate L1 errors are obtained for the k-means. In terms of CER, the partitions

obtained by the k-means and PAM are not effective and do not recover well the true partition in the

majority of the samples. The trimmed k-means and our algorithm always perform well and have

similar low values in terms of CER.
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Figure 9: Simulation 2 with ε = 0.05, n = 500 and d = 50. On the left, the L1 empirical error. On

the right, CER for the k-means, PAM, the data-driven recursive k-medians algorithm (kmed) and

the trimmed k-means (tkm) with a trimming level set to 0.05.

19



4.4 Computation time

The codes of all the considered estimation procedures call C routines and provide the same

output. Mean computation times, for 100 runs, various sample sizes and numbers of clusters are

reported in Table 1. They are based on one initialization point. From a computational point of

view, the recursive k-means based on the MacQueen algorithm as well as the averaged stochastic

k-medians algorithm are always faster than the other algorithms and the gain increases as the sample

size gets larger. For example, when k = 5 and n = 2000, the stochastic k-medians is approximately

30 times faster than the trimmed k-means and 350 times faster than the PAM algorithm. The data-

driven recursive k-medians has a computation time of approximately the sum of the computation

time of the recursive k-means and the stochastic k-medians. This also means that when the allocated

computation time is fixed and the dataset is very large, the data-driven recursive k-medians can deal

with sample sizes that are 15 times larger than the trimmed k-means and 175 times larger than the

PAM algorithm.

Table 1: Comparison of the mean computation time in seconds, for 100 runs, of the different esti-

mators for various sample sizes and number of clusters k. The computation time are given for one

initialization point.

n=250 n=500 n=2000

Estimator k=2 k=4 k=5 k=2 k=4 k=5 k=2 k=4 k=5

k-medians 0.33 0.35 0.36 0.45 0.47 0.48 1.14 1.25 1.68

PAM 1.38 3.34 4.21 5.46 15.12 20.90 111 302.00 596.00

Trimmed k-means 2.20 5.45 6.76 5.32 11.19 13.48 22.97 42.72 51.00

MacQueen 0.21 0.29 0.31 0.25 0.43 0.50 0.60 1.38 1.76

When the sample size or the dimension increases, the computation time is even more critical.

For instance, when d = 1440 and n = 5422 as in the example of Section 5, our data-driven recursive

k-medians estimation procedure is at least 500 times faster than the trimmed k-means. It takes 5.5

seconds for the sequential k-means to converge and then about 3.0 seconds for the averaged k-

medians, whereas it takes more than 5700 seconds for the trimmed k-means.

5 Determining television audience profiles with k-medians

The Médiamétrie company provides every day the official estimations of television audience in

France. Television consumption can be measured both in terms of how long people watch each chan-
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nel and when they watch television. Médiamétrie has a panel of about 9000 individuals equipped at

home with sensors that are able to record and send the audience of the different television channels.

Among this panel, a sample of around 7000 people is drawn every day and the television consump-

tion of the people belonging to this sample is sent to Médiamétrie at night, between 3 and 5 am.

Online clustering techniques are then interesting to determine automatically, the number of clusters

being fixed in advance, the main profiles of viewers and then relate these profiles to socio-economic

variables. In these samples, Médiamétrie has noted the presence of some atypical behaviors so that

robust techniques may be helpful.
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Figure 10: A sample of 5 observations of individual audience profiles measured every minute over

a period of 24 hours.

We are interested in building profiles of the evolution along time of the total audience for people

who watched television at least one minute on the 6th September 2010. About 1600 people, among

the initial sample whose size is around 7000, did not watch television at all this day, so that we

finally get a sample of n = 5422 individual audiences, aggregated along all television channels

and measured every minute over a period of 24 hours. An observation Zi is a vector belonging to

[0, 1]d, with d = 1440, each component giving the fraction of time spent watching television during

the corresponding minute of the day. A sample of 5 individual temporal profiles is drawn in Figure
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10. Clustering techniques based on medoids and representative elements of the sample (e.g. PAM,

CLARA and CLARANS) are not really interesting in this context since they will return centers of

the form of the profiles drawn in Figure 10 which are, in great majority, constituted of 0 and 1 and

are consequently difficult to interpret. Furthermore, the dimension being very large, d = 1440,

these algorithms which do not consider all the dimensions of the data, as seen in the simulation

study, will lead to a minimum value of the empirical L1 error (7) that will be substantially larger

than for the k-means and our recursive k-medians. Indeed, at the optimum, the value of the L1

empirical error is 0.2455 for the k-medians, 0.2471 for the k-means and 0.2692 for PAM.

The cluster centers, estimated with our averaged algorithm for k = 5, with a parameter value

selected automatically, c = 0.2471, and 100 different starting points, are drawn in Figure 11. They

have been ordered in decreasing order according to the sizes of the partitions and labelled Cl.1 to

Cl.5. Cluster 1 (Cl.1) is thus the largest cluster and it contains about 35% of the elements of the

sample. It corresponds to individuals that do not watch television much during the day, with a

cumulative audience of about 42 minutes. At the opposite, cluster 5, which represents about 12% of

the sample, is associated to high audience rates during nearly all the day with a cumulative audience

of about 592 minutes. Clusters 2, 3 and 4 correspond to intermediate consumption levels and can be

distinguished according to whether the audience occurs during the evening or at night. For example

Cluster 4, which represents 16% of the sample, is related to people watching television late at night,

with a cumulative audience of about 310 minutes.
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Figure 11: Cluster centers for temporal television audience profiles measured every minute over a

period of 24 hours.
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Appendix : Proof of Theorem 1

The proof of Theorem 1 relies on the following light version of the main theorem in Monnez (2006),

section 2.1. The proof of Theorem 1 consists in checking that all the conditions of the following

theorem are satisfied.

Theorem 2 (Monnez (2006)). Assuming

(A1a) g is a non negative function;

(A1b) There exists a constant L > 0 such that, for all n ≥ 1,

g(Xn+1)− g(Xn) ≤ 〈Xn+1 −Xn,∇g(Xn)〉+ L ‖Xn+1 −Xn‖2 a.s.;

(A1c) The sequence (Xn) is almost surely bounded and∇g is continuous almost everywhere on the

compact set containing (Xn);

(A2) There exists four sequences of random variables (Bn), (Cn),(Dn) and (En) in R+ adapted

to the sequence (Fn) such that a.s.:

(A2a)
∥∥√AnE[Vn|Fn]

∥∥2 ≤ Bng(Xn) + Cn and
∑∞

n=1(Bn + Cn) <∞;

(A2b) E[‖AnVn‖2 |Fn] ≤ Dng(Xn) + En and
∑∞

n=1(Dn + En) <∞;

(A3) supn a
r
n < min(12 ,

1
4L) a.s.,

∑∞
n=1 maxr a

r
n =∞ a.s. and

sup
n

maxr a
r
n

minr arn
<∞ a.s.

then the distance of Xn to the set of stationary points of g converges almost surely to zero.

Proof of Theorem 1.

Let us now check that all the conditions in Theorem 2 are fulfilled in our context.

Step 1: proof of (A1b)

Let A = Xn and B = Xn+1. Since Xn is absolutely continuous with respect to Lebesgue

measure,
∑k

r=1 Ir(Z;A) = 1 a.s. and one gets

g(B) = E
[
min
r
‖Z −Br‖

]
= E

[
k∑
r=1

Ir(Z;A) min
j

∥∥Z −Bj
∥∥] ,

24



and it comes

g(B) ≤
k∑
r=1

E [Ir(Z;A) ‖Z −Br‖] ,

which yields

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A) (‖Z −Br‖ − ‖Z −Ar‖)] .

The application x 7→ ‖z − xr‖ is a continuous function whose gradient

∇r ‖z − xr‖ =
xr − z
‖xr − z‖

is also continuous for xr 6= z. Then almost surely for d ≥ 2, there exists Cr = Ar + µr(Br −Ar),

0 ≤ µr ≤ 1, such that

‖Z −Br‖ − ‖Z −Ar‖ = 〈Br −Ar,∇r ‖Z − Cr‖〉.

Consequently for all d ≥ 2,

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z − Cr‖〉] ,

so that

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖〉]

+

k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z −Ar‖〉]
def
= (1) + (2)

On the one hand

(2) =
k∑
r=1

〈Br −Ar,∇rg(A)〉 = 〈B −A,∇g(A)〉,

and on the other hand

(1) ≤
k∑
r=1

‖Br −Ar‖E [‖∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖‖] ,

hence since

‖∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖‖ =

∥∥∥∥ Cr − Z
‖Cr − Z‖

− Ar − Z
‖Ar − Z‖

∥∥∥∥ ≤ 2
‖Cr −Ar‖
‖Ar − Z‖

,

one gets, with (H1c)

(1) ≤ 2
k∑
r=1

‖Br −Ar‖ ‖Cr −Ar‖E
[

1

‖Z −Ar‖

]
≤ 2C

k∑
r=1

‖Br −Ar‖2 = 2C ‖B −A‖2 .
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Consequently, we have

g(B)− g(A) ≤ 〈B −A,∇g(A)〉+ 2C ‖B −A‖2 .

Step 2: Proof of the assertion: ∀n ≥ 1, for all r = 1, ...k, ‖Xr
n‖ ≤ K + 2 supn a

r
n

Let us prove by induction on n that for all n ∈ N∗, for all r = 1, . . . , k, ‖Xr
n‖ ≤ K+2 supn a

r
n.

This inequality is trivial for the case n = 1: ‖Xr
1‖ ≤ K. Let n ∈ N∗ such that ‖Xr

n‖ ≤ K +

2 supn a
r
n, ∀r ∈ {1, . . . , k}. Let r ∈ {1, . . . , k}. First we assume that ‖Xr

n‖ ≤ K + arn. Then it

comes ∥∥Xr
n+1

∥∥ ≤ ‖Xr
n‖+ arnIr(Zn;Xn) ≤ ‖Xr

n‖+ arn ≤ K + 2arn.

Now in the case when K + arn < ‖Xr
n‖ ≤ K + 2 supn a

r
n, one gets

‖Xr
n‖ > K + arn ≥ ‖Zn‖+ arn,

and then

‖Xr
n − Zn‖ ≥ |‖Xr

n‖ − ‖Zn‖| > arn.

Since for Ir(Zn;Xn) = 0, Xr
n+1 = Xr

n, it remains to deal with the unique index r such that

Ir(Zn;Xn) = 1. In that case,

Xr
n+1 = Xr

n − arn
Xr
n − Zn

‖Xr
n − Zn‖

=

(
1− arn
‖Xr

n − Zn‖

)
Xr
n + arn

Zn
‖Xr

n − Zn‖
.

By (H1b) and from the inequalities arn/ ‖Xr
n − Zn‖ < 1 and ‖Zn‖ ≤ K < ‖Xr

n‖, we have,

∥∥Xr
n+1

∥∥ < (1− arn
‖Xr

n − Zn‖

)
‖Xr

n‖+ arn
‖Xr

n‖
‖Xr

n − Zn‖
= ‖Xr

n‖ ,

which leads to
∥∥Xr

n+1

∥∥ ≤ K + 2 supn a
r
n and concludes the proof by induction.

Step 3: Proof of (A1c)

From the integral form

∂g

∂xrj
(x) =

∫
Rd\{xr}

Ir(z;x)
xrj − zj
‖z − xr‖

f(z)dz,

it is easy to see that ∂g
∂xrj

is a continuous function of x.

Step 4: Proof of (A2a)
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The definition of V r
n implies that E[V r

n |Fn] = 0 and hence E[Vn|Fn] = 0.

Step 5: Proof of (A2b)

E
[
‖AnVn‖2 |Fn

]
=

k∑
r=1

E
[
(arn)2 ‖V r

n ‖
2 |Fn

]
≤

k∑
r=1

(arn)2 E

[
Ir(Zn;Xn)

‖Xr
n − Zn‖

2

‖Xr
n − Zn‖

2

∣∣∣Fn]

≤
k∑
r=1

(arn)2.

Hence assuming (H3), one gets

E

[ ∞∑
n=1

E
[
‖AnVn‖2 |Fn

]]
<∞.

In the case when (H3’) holds instead of (H3), one has

E

[ ∞∑
n=1

E
[
‖AnVn‖2 |Fn

]]
≤
∞∑
n=1

k∑
r=1

E
[
(arn)2Ir(Zn;Xn)

]
<∞.

Consequently,
∞∑
n=1

E
[
‖AnVn‖2 |Fn

]
<∞ a.s,

which concludes the proof.
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