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In this paper we tackle the problem of comparing distributions of random variables and defining a mean pattern between a sample of random events. Using barycenters of measures in the Wasserstein space, we propose an iterative version as an estimation of the mean distribution. Moreover, when the distributions are a common measure warped by a centered random operator, then the barycenter enables to recover this distribution template.

Introduction

Giving a sense to the notion of mean behaviour may be counted among the very early activities of statisticians. When confronted to a large sample of high dimensional data, the usual notion of Euclidean mean is not usually enough since the information conveyed by the data possesses an inner geometry far from the Euclidean one. Indeed, deformations on the data such as translations, scale location models for instance or more general warping procedures prevent the use of the usual methods in data analysis. The mere issue of defining the mean of the data becomes a difficult task. This problem arises naturally for a wide range of statistical research fields such as functional data analysis for instance in [START_REF] Gamboa | Semi-parametric estimation of shits[END_REF], [START_REF] Ramsay | Functional data analysis[END_REF], [START_REF] Bercu | A Robbins-Monro procedure for estimation in semiparametric regression models[END_REF] and references therein, image analysis in [START_REF] Trouvé | Metamorphoses through lie group action[END_REF] or [START_REF] Amit | Structural image restoration through deformable template[END_REF], shape analysis in [START_REF] Kendall | Wiley Series in Probability and Statistics[END_REF] or [START_REF] Grenander | General pattern theory|a mathematical study of regular structures[END_REF] with many applications ranging from biology in [START_REF] Bolstad | A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[END_REF] to pattern recognition [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF] just to name a few.

Without any additional knowledge, this problem is too difficult to solve. Hence to tackle this issue, two main directions have been investigated. On the one hand, some assumptions are made on the deformations. Models governed by parameters have been proposed, involving for instance scale location parameters, rotations, actions of parameters of Lie groups as in [START_REF] Bigot | Semiparametric estimation of shifts on compact Lie groups for image registration[END_REF] or in a more general way deformations parametrized by their coefficients on a given basis or in an RKHS set [START_REF] Allassonière | Toward a coherent statistical framework for dense deformable template estimation[END_REF]. Adding structure on the deformations enables to define the mean behaviour as the data warped by the mean deformation, i.e the deformation parametrized by the mean of the parameters. Bayesian or semi-parametric statistics enable to provide sharp estimation of these parameters. However, the consistency of the estimator remains a theoretical issue for many cases.

On the other hand, another direction consists in finding an adequate distance between the data which reveals the information which is conveyed. Actually, the chosen distance depends on the nature of the set where the observations belong, whose estimation is a hard task. We refer for instance to [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements[END_REF] for some examples. Once an appropriate distance has been chosen, difficulties arise when trying to define the mean as the minimum of the square distance since both existence and uniqueness rely on assumptions on the geometry of the data sets. This will be the framework of our work.

Assume that we observe j = 1, . . . , J samples of i = 1, . . . , n independent random variables X i,j ∈ R d with distribution µ j . We aim at defining the mean behaviour of these observations, i.e their mean distribution. For this we will extend the notion of barycenter of the distributions with respect to the Wasserstein distance defined in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF] to the empirical measures and prove the consistency of its estimate. Actually, Wasserstein distance is a powerful tool to compute distance between distributions, with application in statistics pioneered in [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF], [START_REF] César Álvarez-Esteban | Trimmed comparison of distributions[END_REF] or [START_REF] Del Barrio | Tests of goodness of fit based on the L 2 -Wasserstein distance[END_REF] for instance. Moreover, we will tackle the case where the distributions are the images of an unknown original distribution by random operators under some suitable assumptions. In this case, we prove that an iterative version of the barycenter of the empirical distributions provides an estimate which enables to recover the original template distribution when the number of replications J is large enough.

The paper falls into the following parts. Section 2 is devoted to the extension of the notion of Barycenter in the Wasserstein space for empirical measures. In Section 3.2, we consider a modification of the notion of barycenter by considering iterative barycenters, which have the advantage to enable to recover the distribution pattern as proved in Section 4. Finally, some data applications are outlined in Section 5.

2 Barycenters in the Wasserstein space: Notations and general results

Let (E, d, Ω) denote a metric measurable space. The set of probability measures over E is denoted by P(E). Given a collection of probability measures µ 1 , . . . , µ J over E, and weights λ 1 , . . . , λ J ∈ R, λ j ≥ 0, 1 ≤ j ≤ J, J j=1 λ j = 1, there are several natural ways to define a weighted average of these measures. Perhaps the most straightforward is to take the convex combination of these measures

µ c = J j=1 λ j µ j ,
using the fact that probability measures form a convex subset of the linear space of finite measures. However, if we provide P(E) with some metric structure, the definition above is not really appropriate.

We denote by P 2 (E) the set of all probability measures over E with a finite secondorder moment. Given two measures µ, ν in P(E), we denote by P(µ, ν) the set of all probability measures π over the product set E × E with first, resp. second, marginal µ, resp. ν.

The transportation cost with quadratic cost function, or quadratic transportation cost, between two measures µ, ν in P 2 (E), is defined as

T 2 (µ, ν) = inf π∈P(µ,ν) d(x, y) 2 dπ.
The quadratic transportation cost allows to endow the set of probability measures (with finite second-order moment) with a metric by setting

W 2 (µ, ν) = T 2 (µ, ν) 1/2 .
This metric is known under the name of 2-Wasserstein distance. In Euclidean space, the barycenter of the points x 1 , . . . , x J with weights λ 1 , . . . , λ J ,

λ j ≥ 0, J j=1 λ j = 1, is defined as b = J j=1 λ j x j .
It is also the unique minimizer of the functional

y → E(y) = J j=1 λ j |x j -y| 2 .
By analogy with the Euclidean case, we give the following definition for Wasserstein barycenter, introduced by M. Agueh and G. Carlier in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]. Definition 2.1. We say that the measure µ ∈ P 2 (E) is a Wasserstein barycenter for the measures µ 1 , . . . , µ J ∈ P 2 (E) endowed with weights λ 1 , . . . , λ J , where λ j ≥ 0, ≤ j ≤ J, and J j=1 λ j = 1, if µ minimizes

E(ν) = J j=1 λ j W 2 2 (ν, µ j ).
We will write

µ B (λ) = Bar((µ j , λ j ) 1≤j≤J ).
In other words, the barycenter is the weighted Fréchet mean in the Wasserstein space. In [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], the authors prove that when E = R d the barycenter exists. They also provide suitable assumptions on the measures µ j , 1 ≤ j ≤ J to ensure that the barycenter is unique. For example, a sufficient condition is that one of the measures µ j admits a density with respect to the Lebesgue measure. They also provide a problem that is the dual of the minimization of the functional E defined above, as well as characterizations of the barycenter.

Next, we recall a version of Brenier's theorem on the characterization of quadratic optimal transport in R d . Throughout all the paper we will use the following notation. Definition 2.2. Let E, F be measurable spaces and µ ∈ P(E). Let T : E → F be a measurable map. The push-forward of µ by T is the probability measure T # µ ∈ P(F ) defined by the relations

T # µ(A) = µ(T -1 (A)), A ⊂ F measurable.
Hence Brenier's theorem can be stated as follows.

Theorem 2.1 (Brenier's theorem, see [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF]). Let µ, ν ∈ P 2 (R d ) be measures, with µ absolutely continuous w.r.t. Lebesgue measure. Then there exists a µ-a.e. unique map

T : R d → R d such that • T # µ = ν, • W 2 2 (µ, ν) = R d |T (x) -x| 2 µ(dx).
Moreover, there exists a lower semi-continuous convex function ϕ : R d → R such that T = ∇ϕ µ-a.e., and T is the only map of this type pushing forward µ to ν, up to a µ-negligible modification. The map T is called the Brenier map from µ to ν.

Remark. The theorem above is commonly referred to as Brenier's theorem and originated from Y. Brenier's work in the analysis and mechanics literature. Much of the current interest in transportation problems emanates from this area of mathematics. We conform to the common use of the name. However, it is worthwile pointing out that a similar statement was established earlier independently in a probabilistic framework by J.A. Cuesta-Albertos and C. Matrán [START_REF] Antonio | Notes on the Wasserstein metric in Hilbert spaces[END_REF] : they show existence of an optimal transport map for quadratic cost over Euclidean and Hilbert spaces, and prove monotonicity of the optimal map in some sense (Zarantarello monotonicity).

As observed in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], the barycenter of two measures is the interpolant of these two measures in the sense of McCann. Proposition 2.2 (See [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], Section 6.2). Let µ, ν ∈ P 2 (R d ) be absolutely continuous w.r.t. Lebesgue measure. Let T : R d → R d denote the Brenier map from µ to ν. The barycenter of (µ, λ) and (ν, 1λ) is

µ λ = (λId + (1 -λ)T ) # µ.
This provides a natural expression for the barycenter of measures as a convex combination of measures.

Estimation of Barycenters of empirical measures

Assume we do not observe the distributions µ j 's but approximations of these distributions. Let µ n j ∈ P 2 (R d ) for 1 ≤ j ≤ J be these approximations in the sense that they converge with respect to Wasserstein distance, i.e W 2 (µ n j , µ j ) → 0 when n → +∞. Our aim is to study the asymptotic behaviour of the barycenter of the µ n j 's when n goes to infinity.

Consistency of the approximated barycenter

We are interested here in statistical properties of the barycenter of the µ n 1 , . . . , µ n J . We begin by establishing a consistency result. Theorem 3.1. Let J ≥ 1, and for every n ≥ 0, let µ n j ∈ P 2 (R d ), 1 ≤ j ≤ J, be probability measures converging in Wasserstein topology to some probability measure µ j for 1 ≤ j ≤ J. Let λ 1 , . . . , λ J be positive weights. Let µ n B be a barycenter of the (µ n j , λ j ). The sequence (µ n B ) n≥1 is compact and any of its limit points lies in Bar((µ j , λ j ) 1≤j≤J ). Note that If any of the µ n j is absolutely continuous with respect to the Lebesgue measure, then µ n B is unique and our theorem states that it converges to a barycenter of the limit measures (µ j , λ j ). Likewise, if any of the µ j is absolutely continuous with respect to the Lebesgue measure, any µ n B is converging to the unique barycenter of (µ j , λ j ). The proof of this theorem relies on the following lemma which provides a characterization of a barycenter of measures. The proof of the lemma is inspired by the proof of Proposition 4.2 in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF] and is postponed to the Appendix. Lemma 3.2. Let Γ(µ 1 , . . . , µ J ) be the set of probability measures on (R d ) J with marginals µ 1 , . . . , µ J , respectively and T (x 1 , . . . , x J ) = J j=1 λ j x j with weights λ j ≥ 0 such that

J j=1 λ j = 1. A probability measure ν is a barycenter of µ 1 , ..., µ J with weights (λ j ) ≤j≤J if and only if ν = T # γ where γ ∈ Γ(µ 1 , ..., µ J ) minimizes 1≤j≤J λ j T (x 1 , ..., x J ) -x j 2 dγ(x 1 , ..., x J ). (1) 

An Iterative version of barycenters of measures

Barycenters in Euclidean spaces enjoy the associativity property : the barycenter of x 1 , x 2 , x 3 with weights λ 1 , λ 2 , λ 3 coincides with the barycenter of x 12 , x 3 with weights λ 1 + λ 2 , λ 3 when x 12 is the barycenter of x 1 , x 2 with weights λ 1 , λ 2 . This property, as we will see, no longer holds when considering barycenters in Wasserstein spaces over Euclidean spaces, with the notable exception of dimension 1.

Therefore we introduce a notion of iterated barycenter as the point obtained by successively taking two-measures barycenters with appropriate weights. This does not in general coincide with the ordinary barycenter. However, we will identify cases where the two notions match.

Definition 3.1. Let µ i ∈ P 2 (E), 1 ≤ i ≤ n, and λ i > 0, 1 ≤ i ≤ n with n i=1 λ i = 1.
The iterated barycenter of the measures µ 1 , . . . , µ n with weights λ 1 , . . . , λ n is denoted by IB((µ i , λ i ) 1≤i≤n ) and is defined as follows :

• IB((µ 1 , λ 1 )) = µ 1 , • IB((µ i , λ i ) 1≤i≤n ) = Bar [(IB((µ i , λ i ) 1≤i≤n-1 ), λ 1 + . . . + λ n-1 ), (µ n , λ n )]
The next proposition establishes consistency of iterated barycenters of approximated measures µ n j , for j = 1, . . . , J.

Theorem 3.3. The iterated barycenter is consistent : if µ n j → µ j in W 2 distance for j = 1, . . . , J, then

IB((µ n j , λ j ) 1≤j≤J ) → IB((µ j , λ j ) 1≤j≤J ) in W 2 distance.
Remark. Iterated barycenters as well as barycenters are well-suited to computations, since there exist efficient numerical methods to compute McCann's interpolant, see e.g. [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF][START_REF] Haber | An efficient numerical method for the solution of the L 2 optimal mass transfer problem[END_REF]. The purpose of introducing the iterative barycenters is that, as shown in the next Section 4.2, the resulting measure has an expression as the image of a measure by a linear combination of maps. This will be helpful when considering a warping setting. Moreover, as we will see later, in some cases of interest the iterated barycenter does not depend on the order in which two-measures barycenters are taken, allowing for parallel computation schemes.

Deformations of a template measure

We now would like to use Wasserstein barycenters or iterated barycenters in the following framework : let (E, d, Ω) denotes a metric measurable space and assume that we observe probability measures in P(E), µ 1 , . . . , µ J that are deformed versions, in some sense, of an original measure µ. We would like to recover µ from the observations. Here, we propose to study the relevance of the barycenter as an estimator of the template measure, when the deformed measures are of the type µ j = T j # µ for suitable push-forward maps T j .

Our aim here is to extend the results of J.F. Dupuy, J.M. Loubes and E. Maza in [START_REF] Dupuy | Non parametric estimation of the structural expectation of a stochastic increasing function[END_REF]. They study the problem of curve registration, that we can describe as follows : given an unknown increasing function F : [a, b] → [0, 1], and a random variable H with values in the set of continuous increasing functions h :

[a, b] → [a, b], we observe F •h -1 1 , . . . , F •h -1 n
where h i are i.i.d. versions of H (randomly warped versions of F ). Let µ ∈ P(R) denote the probability measure that admits F as its c.d.f. : then the above amounts to saying that we observe h i# µ, 1 ≤ i ≤ n. The authors build an estimator by using quantile functions that turns out to be the Wasserstein barycenter of the observed measures. They show that the estimator converges to (EH) # µ.

Hereafter, we first define a class of deformations for distributions, which are modeled by a push forward action by a family of measurable maps T j , j = 1, . . . , J undergoing the following restrictions. Such deformations will be called admissible.

Admissible deformations

Definition 4.1. The set GCF (Ω) is the set of all gradients of convex functions, that is to say the set of all maps T : Ω → R n such that there exists a proper convex l.s.c. function φ : Ω → R with T = ∇φ. Definition 4.2. We say that the family (T i ) i∈I of maps on Ω is an admissible family of deformations if the following requirements are satisfied :

1. there exists i 0 ∈ I with T i 0 = Id, 2. the maps T i : Ω → Ω are one-to-one and onto, 3. for i, j ∈ I we have

T i • T -1 j ∈ GCF (Ω).
The following Proposition provides examples are of such deformations. • The set of all product continuous increasing maps on R n , i.e. the set of all maps

T : x → (F 1 (x 1 ), . . . , F n (x n ))
where the functions F i : R → R are continuous increasing functions with

F i → -∞ -∞, F i → +∞ +∞.

In particular, this includes the family of scale-location transformations, i.e. maps of the type

x → ax + b, a > 0, b ∈ R n .
• The set of radial distorsion transformations, i.e. the set of maps

T : R n → R n , x → F (|x|)
x |x| where F : R + → R + is a continuous increasing function such that F (0) = 0.

• The maps t G • T i • G where (T i ) i∈I is an admissible family of deformations on Ω and G ∈ O n is a fixed orthogonal matrix. This family has t G(Ω) as its domain.

Proof of Proposition 4.1

Proof. Let us consider the first family. Checking the two first requirements is straightforward and we only take care of the last one. Let S : x → (F 1 (x 1 ), . . . , F n (x n )) and

T : x → (G 1 (x 1 ), . . . , G n (x n )). The map S • T -1 is given by S • T -1 (x) = F 1 • G -1 1 (x 1 ), . . . , F n • G -1 n (x n
) , and this is the gradient of the function

x → x 1 0 F 1 • G -1 1 (z)dz + . . . + xn 0 F n • G -1 n (z)dz.
The functions

F i • G -1 i
are increasing, so that their primitives are convex functions, which makes the function above convex.

Second point : observe that radial distortion transformations form a group, so that we only need show that each such transformation is the gradient of a convex function. And indeed, T :

x → F (|x|) x
|x| is the gradient of the function

x → |x| 0 F (r)dr
and this is a convex function because F is increasing. The final item is a simple consequence of the observation that if G ∈ GL n and f :

R n → R is differentiable, then ∇(f • G) = t G • ∇f • G.

Barycenter of measures warped using admissible deformations

We are interested in recovering a template measure from deformed observations. The unknown template is a probability measure µ on the domain Ω ⊂ R d , absolutely continuous w.r.t. the Lebesgue measure λ. We represent the deformed observations as push-forwards of µ by maps T : Ω → Ω, i.e. we observe (T j ) # µ, j = 1, . . . , J. Theorem 4.2 states that when T j belongs to an admissible family of deformations, taking the iterated barycenter of the observations corresponds to averaging the deformations. With this explicit expression at hand, we can check that in the case described above, the iterated barycenter coincides with the usual notion of barycenter.

Theorem 4.2. Assume that (T i ) i∈I is an admissible family of deformations on a domain Ω ⊂ R n , and let µ ∈ P 2 (Ω), µ << λ. Let µ j = (T j ) # µ. The following holds :

IB((µ j , λ j ) 1≤j≤J ) = ( J j=1 λ j T j ) # µ.
(

) 2 
Moreover IB((µ j , λ j ) 1≤j≤J ) = Bar((µ j , λ j ) 1≤j≤J ). (3) 
Remark.

The special case of the dimension 1

In dimension 1, the set of all continuous increasing maps is an admissible family of deformations. The previous theorem applies for this very large class of deformations.

Results in this case are known from [START_REF] Dupuy | Non parametric estimation of the structural expectation of a stochastic increasing function[END_REF] or [START_REF] Gallón | Statistical properties of the quantile normalization method for density curve alignment[END_REF]: the only new part here is that the estimator can be computed iteratively.

2. Barycenters and iterated barycenters do not match in general.

The fact that the two notions of barycenter introduced above coincide no longer holds as soon as the dimension is larger than 2. For a counterexample, consider the case of non-degenerate centered Gaussian measures γ 1 , . . . , γ J on R n , defined by their covariances matrices S 1 , . . . S J ∈ S ++ n . According e.g. to [START_REF] Mccann | A convexity principle for interacting gases* 1[END_REF], Example 1.7, the optimal transport map from N (0, S) to N (0, T ) is given by

x → T 1/2 (T 1/2 ST 1/2 ) -1/2 T 1/2 x.
From this result, it is possible to give an explicit expression of the iterated barycenter.

On the other hand, according to Theorem 6.1 in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], the barycenter of the µ j with weights 1/J is the Gaussian measure with covariance matrix the unique positive definite solution of the fixed point equation

M = 1 J J j=1 M 1/2 S j M 1/2 1/2 .
One may check that these two covariance matrices do not match in general.

Template Estimation from admissible deformations

Thanks to Theorem 4.2, we can study the asymptotic behaviour of the barycenter when the number of replications of the warped distributions J increases. Actually, we prove that the barycenter is an estimator of the template distribution.

Let T be a process with values in some admissible family of deformations acting on a subset I ⊂ R d .

T : Ω → T (I)

w → T (w, •),
where (Ω, A, P) is an unknown probability space, Assume that T is bounded and has a finite moment ϕ(.) = E(T (.)). Let T j for j = 1, . . . , J be a random sample of realizations of the process T . Then, we observe measures µ j which are warped by T j in the sense that for all , µ j = T j # µ.

Theorem 4.3. Assume that µ is compactly supported. As soon as ϕ = id, µ B the barycenter of the µ j 's with weights 1/J is a consistent estimate of µ when J tends to infinity in the sense that a.s

W 2 2 (µ B , µ) J→∞ -→ 0.
Moreover, assuming that Tid L 2 ≤ M a.s., we get the following error bound :

P(W 2 (µ B , µ) ≥ ε) ≤ 2 exp -J ε 2 M 2 (1 + cε/M ) .
Note that when the warping process is not centered, the problem of estimating the original measure µ is not identifiable and we can only estimate by the barycenter µ B the original measure transported by the mean of the deformation process, namely ϕ # µ.

The proof of this theorem relies on the following proposition. Proposition 4.4. Let (T i ) i∈I be an admissible family of deformations on a domain Ω ⊂ R n , and let µ ∈ P 2 (Ω), absolutely continuous with respect to the n-dimensional Lebesgue measure. Let µ j = (T j ) # µ. Denote by µ B the barycenter with equal weights 1/J. For every ν in P 2 (R d ), we have

W 2 (µ B , ν) ≤ 1 J J j=1 T j -T ν L 2 (µ)
where T ν is the Brenier map from µ to ν.

Proof. With the explicit expression of the barycenter, we know that the Brenier map from µ to µ B is 1/J J j=1 T j , which implies that

π = ( 1 J J j=1 T j , T ν ) # µ
is a coupling of µ B and ν. Consequently,

W 2 2 (µ B , ν) ≤ | 1 J J j=1 T j (x) -T ν (x)| 2 µ(dx).
5 Statistical Applications

Distribution Template estimation from empirical observations

In many situations, the issue of estimating the mean behaviour of random observations plays a crucial role to analyze the data, in image analysis, kinetics in biology for instance.

For this, we propose to use the iterative barycenter of the empirical distribution as a good estimate of the mean information conveyed by the data. Moreover, this estimate has the advantage that if the different distribution are warped from an unknown distribution, the empirical iterative barycenter converges to this pattern when the number of replications grows large.

Assume we observe j = 1, . . . , J samples of i = 1, . . . , n points X i,j ∈ R d which are i.i.d realizations of measures µ j . Hence we observe cloud points or in an equivalent way µ n j = 1 n n i=1 δ X i,j empirical versions of the measures µ j . It is well-known that considering the mean with respect to the number of samples J of all observation points does not provide a good model of the mean behaviour. Instead we here consider the iterative barycenter µ J B = IB(µ j , 1 J ) defined in Definition 3.1. The following proposition shows that the barycenter of the empirical distributions provides a good estimate for this mean shape. We point out that this estimator corresponds to the so-called Fréchet mean of the empirical measures. Proposition 5.1. Assume that the observations X .,j ∼ µ j are warped by a centered admissible deformation process from an unknown template distribution µ continuous with respect to Lebesgue measure. Set µ n,J B ∈ Bar(µ n j , 1 J ), an empirical mean of the empirical distribution. As n → +∞, we have

µ n,J B -→ µ J B .
Moreover, when n → +∞ and J → +∞, µ n,J B is a consistent estimate of µ, in the sense that µ n,J B -→ µ in W 2 distance.

We point out that µ n,J B exits but is not unique. Actually, to ensure uniqueness, one may consider a regularized version of the empirical measures. For instance let γ ε denotes a N (0, εI d ) measure. Set µ n j = µ n j * γ 1/n . In this case µ n,J B = Bar(µ n j , 1 J ) is uniquely defined and as n → +∞, we have µ n,J B -→ µ B in Wasserstein distance. Note that any other regularization scheme may be used as soon as the corresponding measures converge to the true measures in Wasserstein distance when n goes to infinity.

An important application is given by the issue of ensuring equality between the candidates in an exam with several different referees. This constitutes a natural extension of the work in [START_REF] Dupuy | Non parametric estimation of the structural expectation of a stochastic increasing function[END_REF] to higher dimensions.

Consider an examination with a large number of candidates, such that it is impossible to evaluate the candidates one after another. The students are divided into J groups, and J boards of examiners are charged to grade these groups: each board grades one group of candidates. The evaluation is performed by assigning p scores. The J different boards of examiners are supposed to behave the same way, so as to respect the equality among the candidates. Moreover it is assumed that the sampling of the candidates is perfect in the sense that it is done in such a way that each board of examiners evaluates candidates with the same global level. Hence, if all the examiners had the same requirement levels, the distribution of the ranks would be the same for all the boards of examiners. Here, we aim at balancing the effects of the differences between the examiners, gaining equity for the candidates. The situation can be modeled as follows. For each group j among J groups of candidates, let X j = X j i ∈ R p , i = 1, . . . , n denote the scores of the students within this group. Let µ j and µ n j be respectively the measure and the empirical measure of the scores in the j-th group.

We aim at finding the average way of ranking, with respect to the ranks that were given within the p bunches of candidates. For this, assume that there is such an average measure, and that each group-specific measure is warped from this reference measure by a random process. A good choice is given by the barycenter measure In order to obtain a global common ranking for the N candidates, one can now replace the p group-specific rankings by the sole ranking based on barycenter measure. Indeed each measure can be pushed towards the barycenter. As a result, we obtain a new set of scores for the N candidates, which can be interpreted as the scores that would have been obtained, had the candidates been judged by an average board of examiners.

Principal Component Analysis with Wasserstein distance

Once we have succeeded in defining a mean of a collection of distributions, then the second step consists in understanding the variability of the the different experiments with respect to this average distribution, which is, in statistics, the aim of the so-called PCA analysis. In a Euclidean space, a natural way to define principal components is through the minimization of the variance of the residuals. This concept has been extended to non Euclidean situations such as manifolds, Kendall's shape spaces in [START_REF] Ramsay | Functional data analysis[END_REF]. The principal component directions are replaced by principal component curves from a suitable family of curves, e.g. geodesics. In our framework, we generalize this idea to the Wasserstein distance.

As previously, let µ 1 , . . . , µ J be measures in P 2 (R d ) and let µ B be the mean defined as the Barycenter µ B = Bar(µ j , 1 J ). Let S j , j = 1, . . . , J be the transport plan between the µ j 's and µ B and write µ j = S j # µ B . Assume the (Id, S j ) are an admissible family of transformations. Clustering the experiments in order to build coherent groups is usually achieved by comparing a distance between these distributions. Here by choosing the Wasserstein distance we get that

W 2 2 (µ B , µ j ) = |S j (x) -x| 2 dµ B = S j -id 2 L 2 (µ B ) .
Hence statistical analysis of the distributions µ j 's amounts to clustering their Wasserstein square distance S jid 2 L 2 (µ B ) ∈ R + . It is known that the Wasserstein metric endows the space of probability measures with a formal Riemannian structure, in which it is possible to define geodesics, tangent spaces, etc., see [START_REF] Huckemann | Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions[END_REF], [START_REF] Ambrosio | Gradient flows with metric and differentiable structures, and applications to the wasserstein space[END_REF]. We propose here a method of principal component analysis using Wasserstein distance based on geodesics of the intrinsic metric, which follows the ideas developed in [START_REF] Huckemann | Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions[END_REF]. For this, consider a geodesic segment γ at point µ with direction T , which can be written as

∀t ∈ [0, 1], γ(t) = ((1 -t)Id + tT ) # µ.
We extend the definition of γ to every t ∈ R, with the important provision that γ is in general not a geodesic curve for the whole range of t ∈ R. We perform PCA with respect to this family of curves which we somewhat abusively refer to as "geodesic curves" on their extended range. We will come back to this discussion at the end of our analysis.

For every µ j , the natural distance to the geodesic curve γ is given by

d 2 (µ j , γ) = inf t∈R W 2 2 (µ j , γ(t)).
Definition 5.1. A geodesic γ 1 is called a first generalized principal component geodesic (GPCG) to the µ j 's if it minimizes the following quantity

γ → 1 J J j=1 d 2 (µ j , γ) (4) 
Then we define the second GPCG, a geodesic γ 2 which minimizes (4) over all geodesics that have at least one point in common with γ 1 and that are orthogonal to γ 1 at all points in common. Every point µ ⋆ that minimizes µ → 1 J J j=1 W 2 2 (µ j , µ) over all common points of γ 1 and γ 2 will be called a principal component geodesic mean. Given the first and the second principal component geodesics γ 1 and γ 2 with principal component geodesic mean µ ⋆ we say that a geodesic γ 3 is a third principal component geodesic if it minimizes (4) over all geodesics that meet previous principal components orthogonally at µ ⋆ . Analogously, principal component geodesics of higher order are defined.

Here we will focus on the computation of the first geodesic component γ 1 . We will only consider geodesic curves from µ B , in that case note that µ B = µ ⋆ . Hence we root our analysis at the central point given by µ B which plays the role of the mean of the sample of distributions. In this setting, we first define a geodesic starting at a measure µ B directed by a map T as γ(t) = ((1t)Id + tT ) # µ B . We consider a family of maps T such that (Id, S j , T ) is an admissible family of deformations. Hence, in that case, the distance of any measure µ j with respect to such a geodesic can be written as

d 2 (µ j , γ) = inf t∈R ((1 -t)Id + tT ) • S -1 j -Id 2 dµ j (x) = inf t∈R [((1 -t)Id + tT ) -S j ] 2 dµ B (x) = - < S j -Id, T -Id > 2 L 2 (µ B ) T -Id 2 L 2 (µ B )
where . L 2 (µ B ) denotes the quadratic norm with respect to the measure µ B with corresponding scalar product < ., . > L 2 (µ B ) . Finally PCA with respect to Wasserstein distance amounts to minimizing with respect to T the quantity J j=1 d 2 (µ j , γ), which can be written as

T → - J j=1 | < S j -Id, (T -Id) T -Id L 2 (µ B ) > | 2 L 2 (µ B ) .
If we set v = T -Id, this maximization can be written as finding the solution to

arg max v, v L 2 (µ B ) =1 J j=1 | < S j -Id, v > | 2 L 2 (µ B ) ,
which corresponds to the functional principal component analysis of the maps S j , j = 1, . . . , J in the space L 2 (µ B ). This analysis can be achieved using tools defined for instance in [START_REF] Ramsay | Functional data analysis[END_REF]. Finally, if we get T (1) the map corresponding to the first functional principal component, the corresponding principal geodesic if obtained by setting γ (1) (t) = ((1t)Id + tT (1) ) # µ B . The other principal components can be computed using the same procedure.

In the one dimensional case, the situation is simpler since, the distance between µ j with distribution function F j and a geodesic γ from µ B with distribution function F B to T # µ B is given by

d 2 (µ j , γ) = inf t∈R ((1 -t)Id + tT ) • F -1 B -F -1 j 2 dt.
Hence PCA analysis amounts to maximizing for all functions T T →

J j=1 | < S j • F -1 B -F -1 B , (T -Id) • F -1 B (T -Id) • F -1 B > | 2 ,
which corresponds to the functional PCA of the maps S j , j = 1, . . . , J in the space L 2 (µ B ) without any restriction.

Let us come back to the caveat that the curves chosen are not Wasserstein geodesics on the entire parameter range. It is easy to check in the one dimensional case (see [START_REF] Ambrosio | Gradient flows with metric and differentiable structures, and applications to the wasserstein space[END_REF]) that a curve γ(t) = ((1t)Id + tT ) # µ is a geodesic curve for all t ∈ R such that (1t)Id + tT is an increasing function. Assuming T ′ takes values in the interval [a, b], 0 < a < 1 < b, this means that γ is a geodesic curve for all t ∈ [1/(a -1), 1/(b -1)]. Once the analysis above yields the expression of T (1) and the t * j minimizing d 2 (µ j , γ), it is possible to check whether they fall in this range. Actually,

t * j = < S j -Id, T (1) -Id > L 2 (µ B ) T (1) -Id 2 L 2 (µ B )
.

Hence, when the measures µ j are not too far from their barycenter (i.e. when the S j -Id ∞ are small) these conditions are met.

Within this framework, we can analyze the toy example of translation effect, studied in [START_REF] Gamboa | Semi-parametric estimation of shits[END_REF] or in [START_REF] Gallón | Statistical properties of the quantile normalization method for density curve alignment[END_REF]. Here consider i.i.d random variables X i ∈ R p , i = 1, . . . , n who are translated by parameters θ j = (θ 1 j , . . . , θ p j ), j = 1, . . . , J. Hence the observation model is X ij = X i + θ j . Let µ be the distribution of the X i 's and assume that this distribution admits a density f with respect to the Lebesgue measure. Hence µ j 's, the distributions of the X ij are given by µ j = T j # µ with T j (x) = x + θ j . They admit densities with respect to Lebesgue measure, f j 's which are such that ∀x ∈ R p , f j (x) = f (xθ j ). In this case, µ B the Barycenter of the µ j 's exists and is characterized by its density f B (x) = f (x -θ), with θ = 1 J J j=1 θ j . In this context, each distribution µ j can be expressed as

µ j = S j #µ B , S j (x) = 1 J J k=1 T -1 k • T j (x) = x + θ -θ j .
Now finding the first geodesic component rooted in µ B amounts to maximize with respect to T the quantity

T → J j=1 | < S j -Id, (T -Id) T -Id L 2 (µ B ) > L 2 (µ B ) | 2 = J j=1 θ j -θ 2 ( (T -Id)dµ B ) 2 T -Id 2 L 2 (µ B )
which is achieved by choosing T = Id + c for all constant c, where . denotes the norm in R p . Hence the first principal geodesic component is given by µ 1 t with density f (x -θt) while the variance explained is given by J j=1 θ j -θ 2 . This corresponds actually to the variance of the deformations.

Appendix

Proof of Lemma 3.2

Proof. The existence of a solution of the multimarginal problem (1) follows from a classical compactness argument.

Let γ ∈ Γ(µ 1 , ..., µ J ) and set ν = T # γ. For all 1 ≤ j ≤ J, W 2 2 (ν, µ j ) ≤ T (x 1 , ..., x J )x j 2 dγ(x 1 , ..., x J ), and thus, 1≤j≤J

λ j W 2 2 (ν, µ j ) ≤ 1≤j≤J λ j T (x 1 , ..., x J ) -x j 2 dγ(x 1 , ..., x J ). (5) 
For 1 ≤ j ≤ J and a probability measure ν, denote πj a minimiser of

xx j 2 dπ(x, x j ) over all π ∈ Γ(ν, µ j ) and define Π by

Π(A × B 1 × ... × B J ) = ν(A) π 1 (A × B 1 ) ν(A) ... π J (A × B J ) ν(A) (6) 
Suppose now that γ is moreover a minimizer of (1), we want to show that ν = T # γ is a barycenter. Indeed,

1≤j≤J λ j W 2 2 (ν, µ j ) = 1≤j≤J λ j x -x j 2 dΠ(x, x 1 , ..., x J ) (7) = 1≤j≤J λ j x -x j 2 dΠ(x, x 1 , ..., x J ) ≥ inf z∈E 1≤j≤J λ j z -x j 2 dΠ(x, x 1 , ..., x J ) (8) = 1≤j≤J λ j T (x 1 , ..., x J ) -x j 2 dΠ(x, x 1 , ..., x J ) (9) 
≥ 1≤j≤J λ j T (x 1 , ..., x J ) -x j 2 dγ(x 1 , ..., x J ) (10) 
≥ 1≤j≤J λ j W 2 2 (ν, µ j ), (11) 
where [START_REF] Bercu | A Robbins-Monro procedure for estimation in semiparametric regression models[END_REF] holds by definition ( 6) and ( 9) holds since for fixed x 1 , ..., x J , the sum 1≤j≤J λ j xx j 2 attains its minimum at x = T (x 1 , ..., x J ) = 1≤j≤J λ j x j . The inequality (10) holds since γ is optimal and (11) holds by [START_REF] Amit | Structural image restoration through deformable template[END_REF].

Since ν was arbitrary, this shows that ν is a barycenter. On the other hand, taking ν a barycenter, inequality (8) becomes an equality, so that, for Π-almost all (x, x 1 , ...,

x J ) ∈ R d×(J+1) , 1≤j≤J λ j x -x j 2 = inf z∈E 1≤j≤J λ j z -x j 2 
which shows that x = T (x 1 , ..., x J ) Π-almost surely, and thus that ν = T # Π p , where Π p is the projection of Π over the last J marginals. The fact that Π p is a solution of ( 1) is a consequence of (5) and equality [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF].

Proof of Theorem 3.1 We know by Lemma 3.2 that for all n ≥ 1, there exists γ n ∈ Γ(µ 1 , ..., µ J ) such that µ n = T # γ n . We first show that the sequence (γ n ) n≥1 is tight. Let B 1 , . . . , B J be large balls in R d , we have

γ n ((B 1 × . . . B J ) c ) = γ n (∪ J j=1 E × . . . × E × B c j × E . . . × E) ≤ J j=1 γ n (E × . . . × E × B c j × E . . . × E) = J j=1 µ n j (B c j ).
Thus, tightness of the sequences (µ n j ) n≥1 guarantees tightness of (γ n ) n≥1 . Note that the under the assumption of the convergence of µ n j , n ≥ 1 in Wasserstein distance, we recover the compactness of (γ n ) n≥1 in Wasserstein topology. Indeed, denote γ any weak limit of the tight sequence (γ n ) n≥1 , the second moments are converging:

|x| 2 dγ n = J j=1 |x j | 2 dµ n j → |x j | 2 dµ j = |x| 2 dγ.
Here we used the fact that Wasserstein's convergence coincides with weak convergence together with the convergence of second order moments. The above implies tightness of the sequence of barycenters µ n B , n ≥ 1 : indeed, it is the push-forward of the tight sequence (γ n ) n≥1 by the application T : R d×J → R d , which is Lipschitz continuous (with Lipschitz constant bounded by 1). It is readily checked that this operation preserves tightness, as it preserves convergence (in weak and Wasserstein topologies).

We conclude by showing that any limiting point µ ∞ is a minimizer for the barycenter problem associated with µ 1 , . . . , µ J . Denote by µ B a barycenter of µ 1 , . . . , µ J . Since µ n B is a barycenter for µ n 1 , . . . , µ n J , we have

J j=1 λ j W 2 2 (µ n B , µ n j ) ≤ J j=1 λ j W 2 2 (µ B , µ n j ).
Since, up to a subsequence, µ n B → µ ∞ in Wasserstein distance, letting n → +∞ shows

J j=1 λ j W 2 2 (µ ∞ , µ j ) ≤ lim J j=1 λ j W 2 2 (µ B , µ n j ). (12) 
Proof of Theorem 4.2

Proof. For the first part, (2), we use induction on J. For J = 1, the result is obvious. Suppose then that it is established for J ≥ 1. Choose T 1 , . . . , T J+1 from a family of admissible deformations, and fix λ 1 , . . . , λ J+1 with J+1 j=1 λ j = 1. Using the definition of the iterated barycenter, we have IB((µ j , λ j ) 1≤j≤J+1 ) = Bar IB (µ j , λ j ) 1≤j≤J ), where we set Λ J = J j=1 λ j . Set ν = ( 1 Λ j J j=1 λ j T j ) # µ. As µ J+1 = T J+1 # µ, we have also µ = (T J+1 ) -1 # µ J+1 , and

ν = ( 1 Λ j J j=1 λ j T j ) • (T J+1 ) -1 # µ = ( 1 Λ j J j=1 λ j T j • (T J+1 ) -1 ) # µ J+1 .
Now, observe that by assumption all the maps T j • (T J+1 ) -1 are gradients of convex functions, so that their convex combination also is. By Brenier's theorem, the map

T = 1 Λ j J j=1 λ j T j • (T J+1 ) -1
is the Brenier map from µ J+1 to ν. We deduce that the barycenter of ν and µ J+1 is

(λ J+1 Id + Λ J T ) # µ J+1 = (λ J+1 T J+1 + Λ J T • T J+1 ) # µ = ( J+1 j=1 λ j T j ) # µ.
This finishes the first part of the proof.

For the identification of the barycenter and the iterative barycenter given in (3), we proceed as follows. Set T (x 1 , . . . , x J ) = J j=1 λ j x j for x 1 , . . . , x J ∈ R d . Proposition 4.2 of [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF] claims that the barycenter of (µ j , λ j ) 1≤j≤J , denoted by µ B , satisfies µ B = T # γ where γ ∈ P((R d ) J ) is the unique solution of the optimization problem inf J j=1 λ j |T (x)x j | 2 dγ(x 1 , . . . , x J ), γ ∈ Π(µ 1 , . . . , µ J ) where Π(µ 1 , . . . , µ J ) is the set of probability measures on R dJ with j-th marginal µ j , 1 ≤ j ≤ J. This can be rewritten as

1 2 inf J i,j=1
λ i λ j |x ix j | 2 dγ(x 1 , . . . , x J ), γ ∈ Π(µ 1 , . . . , µ J ) .

The integral is bounded below by J i,j=1 λ i λ j W 2 2 (µ i , µ j ) (because each term of the sum is bounded by W 2 2 (µ i , µ j )). On the other hand, choosing γ = (T 1 , . . . , T j ) # µ, we see that γ ∈ Π(µ 1 , . . . , µ J ), and that

|x j -x i | 2 dγ = |T j (x) -T i (x)| 2 dµ(x) = [T j • T i -1 (x) -x| 2 µ i (dx) = W 2 2 (µ i , µ j ).
Thus γ is optimal, and we have Almost sure convergence towards 0 of 1 J J j=1 (T jid) is directly deduced from Corollary 7.10 (p. 189) in [START_REF] Ledoux | Probability in Banach spaces[END_REF], which is an extension of the Strong Law of Large Numbers to Banach spaces. Then the result follows from dominated convergence.

µ B = T # γ = ( J j=1 λ j T j ) # µ.
Likewise, obtaining error bounds is straightforward. Assuming that Tid L 2 ≤ M a.s., we can use Yurinskii's version of Bernstein's inequality in Hilbert spaces ( [START_REF] Vv Yurinski | Exponential inequalities for sums of random vectors[END_REF], p. 491) to get the result announced.

Proposition 4 . 1 .

 41 The following are admissible families of deformations on domains of R n .

λ

  j T j ) # µ, Λ J , (µ J+1 , λ J+1 )

Proof of Theorem 4. 3 Proof.

 3 Using the results of Proposition 4.4, we get thatW 2 2 (µ B , µ) ≤ | 1 J J j=1T j (x) -x| 2 µ(dx).
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