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Abstract

In this paper we tackle the problem of comparing distributions of random vari-

ables and defining a mean pattern between a sample of random events. Using

barycenters of measures in the Wasserstein space, we propose an iterative version as

an estimation of the mean distribution. Moreover, when the distributions are a com-

mon measure warped by a centered random operator, then the barycenter enables

to recover this distribution template.
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1 Introduction

Giving a sense to the notion of mean behaviour may be counted among the very early
activities of statisticians. When confronted to large sample of high dimensional data, the
usual notion of Euclidean mean is not usually enough since the information conveyed by
the data possesses an inner geometry far from the Euclidean one. Indeed, deformations on
the data such as translations, scale location models for instance or more general warping
procedures prevent the use of the usual methods in data analysis. The mere issue of
defining the mean of the data becomes a difficult task. This problem arises naturally for
a wide range of statistical research fields such as functional data analysis for instance in
[12], [21] and references therein, image analysis in [25] [24] or [4], shape analysis in [17]
or [14] with many applications ranging from biology in [8] to pattern recognition [22] just
to name a few.

Without any additional knowledge, this problem is too difficult to solve. Hence to
tackle this issue, two main directions have been investigated. On the one hand, some
assumptions are made on the deformations. Models governed by parameters have been
proposed, involving for instances scale location parameters, rotations, actions of parame-
ters of Lie groups as in [7] or in a more general way deformations parametrized by their
coefficients on a given basis or in an RKHS set [2]. Adding structure on the deforma-
tions enables to define the mean behaviour as the data warped by the mean deformation,
i.e the deformation parametrized by the mean of the parameters. Bayesian statistics or
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semi-parametric enable to provide sharp estimation of these parameters. However, the
consistency of the estimator remains a theoretical issue for many cases.

On the other hand, another direction consists in finding an adequate distance between
the data which reveals the information which is conveyed. Actually, the chosen distance
depends on the nature of the set where the observations belong, whose estimation is a
hard task. We refer for instance to [5] or [20] for some examples. Once an appropriate
distance has been chosen, difficulties arise when trying to define the mean as the minimum
of the square distance since both existence and uniqueness rely on assumptions on the
geometry of the data sets as pointed out in [6]. This will be the framework of our work.

Assume that we observe j = 1, . . . , J samples of i = 1, . . . , n independent random
variables Xi,j ∈ R

d with distribution µj. We aim at defining the mean behaviour of these
observations, i.e their mean distribution. For this we will extend the notion of barycenter
of the distributions with respect to the Wasserstein distance defined in [1] to the empirical
measures and prove the consistency of its estimate. Moreover, we will tackle the case where
the distributions are the images of an unknown original distribution by random operators
under some suitable assumptions. In this case, we prove that an iterative version of the
barycenter of the empirical distributions provides an estimate which enables to recover
the original template distribution when the number of replications J is large enough.

The paper falls into the following parts. Section 2 is devoted to the extension of the
notion of Barycenter in the Wasserstein space for empirical measures. In Section 3.2, we
consider a modification of the notion of barycenter by considering iterative barycenters,
which have the advantage to enable to recover the distribution pattern as proved in
Section 4. Finally some applications for real data case are pointed out in Section 5.

2 Barycenters in the Wasserstein space: Notations and

general results

Let (E, d,Ω) denotes a metric measurable space. The set of probability measures over E
is denoted by P(E). Given a collection of probability measures µ1, . . . , µJ over E, and
weights λ1, . . . , λJ ∈ R, λj ≥ 0, 1 ≤ j ≤ J ,

∑J
j=1 λj = 1, there are several natural ways

to define a weighted average of these measures. Perhaps the most straightforward is to
take the convex combination of these measures

µc =
J∑

j=1

λjµj,

using the fact that probability measures form a convex subset of the linear space of
finite measures. However, if we provide P(E) with some metric structure, the definition
above is not really appropriate.

We denote by P2(E) the set of all probability measures over E with a finite second-
order moment. Given two measures µ, ν in P(E), we denote by P(µ, ν) the set of all
probability measures π over the product set E × E with first, resp. second, marginal µ,
resp. ν.
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The transportation cost with quadratic cost function, or quadratic transportation cost,
between two measures µ, ν in P2(E), is defined as

T2(µ, ν) = inf
π∈P(µ,ν)

∫
d(x, y)2dπ.

The quadratic transportation cost allows to endow the set of probability measures
(with finite second-order moment) with a metric by setting

W2(µ, ν) = T2(µ, ν)
1/2.

This metric is known under the name of 2-Wasserstein distance.
In Euclidean space, the barycenter of the points x1, . . . , xJ with weights λ1, . . . , λJ ,

λj ≥ 0,
∑J

j=1 = 1, is defined as

b =
J∑

j=1

λjxj.

It is also the unique minimizer of the functional

y 7→ E(y) =
J∑

j=1

λj|xj − y|2.

By analogy with the Euclidean case, we give the following definition for Wasserstein
barycenter, introduced by M. Agueh and G. Carlier in [1].

Definition 2.1. We say that the measure µ ∈ P2(E) is a Wasserstein barycenter for the
measures µ1, . . . , µJ ∈ P2(E) endowed with weights λ1, . . . , λJ , where λj ≥ 0, ≤ j ≤ J ,
and

∑J
j=1 λj = 1, if µ minimizes

E(ν) =
J∑

j=1

λjW
2
2 (ν, µj).

We will write

µB(λ) = Bar((µj, λj)1≤j≤J).

In other words, the barycenter is the weighted Fréchet mean in the Wasserstein space.
In [1], the authors prove that when E = R

d and the measures µj, 1 ≤ j ≤ J satisfy suitable
assumptions, the barycenter exists and is unique. For example, a sufficient condition is
that one of the measures µj admits a density with respect to the Lebesgue measure. They
also provide a problem that is the dual of the minimization of the functional E defined
above, as well as characterizations of the barycenter.

Next, we recall a version of Brenier’s theorem on the characterization of quadratic
optimal transport in R

d. Throughout all the paper we will use the following notation.

Definition 2.2. Let E, F be measurable spaces and µ ∈ P(E). Let T : E → F be a
measurable map. The push-forward of µ by T is the probability measure T#µ ∈ P(F )
defined by the relations
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T#µ(A) = µ(T−1(A)), A ⊂ F measurable.

Hence Brenier’s theorem can be stated as follows.

Theorem 2.1 (Brenier’s theorem, see [9]). Let µ, ν ∈ P2(R
d) be compactly supported

measures, with µ absolutely continuous w.r.t. Lebesgue measure. Then there exists a
µ-a.e. unique map T : Rd → R

d such that

• T#µ = ν,

• W 2
2 (µ, ν) =

∫
Rd |T (x)− x|2µ(dx).

Moreover, there exists a lower semi-continuous convex function ϕ : Rd → R such that
T = ∇ϕ µ-a.e., and T is the only map of this type pushing forward µ to ν, up to a
µ-negligible modification. The map T is called the Brenier map from µ to ν.

As observed in [1], the barycenter of two measures is the interpolant of these two
measures in the sense of McCann.

Proposition 2.2 (See [1], Section 6.2). Let µ, ν ∈ P2(R
d) be absolutely continuous w.r.t.

Lebesgue measure. Let T : Rd → R
d denote the Brenier map from µ to ν. The barycenter

of (µ, λ) and (ν, 1− λ) is

µλ = (λId + (1− λ)T )# µ.

This provides a natural expression for the barycenter of measures.

3 Estimation of Barycenters of empirical measures

Assume we do not observe the distributions µj’s but approximations of these distributions.
Let µn

j ∈ P2(R
d) for 1 ≤ j ≤ J be these approximations in the sense that they converge

with respect to Wasserstein distance, i.e W2(µ
n
j , µj) → 0 when n → +∞. Our aim is to

study the asymptotic behaviour of the barycenter of the µn
j ’s when n goes to infinity.

3.1 Consistency of the approximated barycenter

We are interested here in statistical properties of the barycenter of the µn
1 , . . . , µ

n
J . We

begin by establishing a consistency result in Wasserstein topology.

Theorem 3.1. Let J ≥ 1, and for every n ≥ 0, let µn
j ∈ P2(R

d), 1 ≤ j ≤ J , be measures
absolutely continuous with respect to the Lebesgue measure. Let λ1, . . . , λJ be positive
weights. Let

µ̂n(λ) = Bar((µn
j , λj)1≤j≤J).

Let µ1, . . . , µJ ∈ P2(R
d) be absolutely continuous w.r.t. Lebesgue measure, and let

µB(λ) = Bar((µj, λj)1≤j≤J).

then when n → +∞
W2(µ̂

n(λ), µB(λ)) −→ 0.
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3.2 An Iterative version of barycenters of measures

Barycenters in Euclidean spaces enjoy the associativity property : the barycenter of
x1, x2, x3 with weights λ1, λ2, λ3 coincides with the barycenter of x12, x3 with weights
λ1 + λ2, λ3 when x12 is the barycenter of x1, x2 with weights λ1, λ2. This property, as
we will see, no longer holds when considering barycenters in Wasserstein spaces over
Euclidean spaces, with the notable exception of dimension 1.

Therefore we introduce a notion of iterated barycenter as the point obtained by suc-
cessively taking two-measures barycenters with appropriate weights. This does not in
general coincide with the ordinary barycenter. However, we will identify cases where the
two notions match.

Definition 3.1. Let µi ∈ P2(E), 1 ≤ i ≤ n, and λi > 0, 1 ≤ i ≤ n with
∑n

i=1 λi = 1.
The iterated barycenter of the measures µ1, . . . , µn with weights λ1, . . . , λn is denoted by
IB((µi, λi)1≤i≤n) and is defined as follows :

• IB((µ1, λ1)) = µ1,

• IB((µi, λi)1≤i≤n) = Bar [(IB((µi, λi)1≤i≤n−1), λ1 + . . .+ λn−1), (µn, λn)]

Remark. Iterated barycenters are well-suited to computations, since there exist efficient
numerical methods to compute McCann’s interpolant, see e.g. [15], [23]. Moreover, as
we will see later, in some cases of interest the iterated barycenter does not depend on
the order in which two-measures barycenters are taken, allowing for parallel computation
schemes.

The next proposition establishes consistency of iterated barycenters of approximated
measures µn

j , for j = 1, . . . , J .

Theorem 3.2. The iterated barycenter is consistent : if µn
j → µj in W2 distance for

j = 1, . . . , J , then

IB((µn
j , λj)1≤j≤J) → IB((µj, λj)1≤j≤J)

in W2 distance.

4 Deformations of a template measure

We now would like to use Wasserstein barycenters or iterated barycenters in the following
framework : assume that we observe probability measures µ1, . . . , µJ that are deformed
versions, in some sense, of an original measure µ. We would like to recover µ from the
observations. Here, we propose to study the relevance of the barycenter as an estimator
of the template measure, when the deformed measures are of the type µj = Tj#µ for
suitable push-forward maps Tj.

Our aim here is to extend the results of J.F. Dupuy, J.M. Loubes and E. Maza in [10].
They study the problem of curve registration, that we can describe as follows : given an
unknown increasing function F : [a, b] 7→ [0, 1], and a random variable H with values in
the set of continuous increasing functions h : [a, b] 7→ [a, b], we observe F ◦h−1

1 , . . . , F ◦h−1
n
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where hi are i.i.d. versions of H (randomly warped versions of F ). Let µ ∈ P(R) denote
the probability measure that admits F as its c.d.f. : then the above amounts to saying that
we observe hi#µ, 1 ≤ i ≤ n. The authors build an estimator by using quantile functions
that turns out to be the Wasserstein barycenter of the observed measures. They show
that the estimator converges to (EH)#µ.

Hereafter, we first define a class of deformations for distributions, which are modeled
by a push forward action by a family of measurable maps Tj, j = 1, . . . , J undergoing the
following restrictions. Such deformations will be called admissible.

4.1 Admissible deformations

Definition 4.1. The set GCF (Ω) is the set of all gradients of convex functions, that is to
say the set of all maps T : Ω → R

n such that there exists a proper convex l.s.c. function
φ : Ω → R with T = ∇φ.

Definition 4.2. We say that the family (Ti)i∈I of maps on Ω is an admissible family of
deformations if the following requirements are satisfied :

1. there exists i0 ∈ I with Ti0 = Id,

2. the maps Ti : Ω → Ω are one-to-one and onto,

3. for i, j ∈ I we have Ti ◦ T
−1
j ∈ GCF (Ω).

The following Proposition provides examples are of such deformations.

Proposition 4.1. The following are admissible families of deformations on domains of
R

n.

• The set of all product continuous increasing maps on R
n, i.e. the set of all maps

T : x 7→ (F1(x1), . . . , Fn(xn))

where the functions Fi : R → R are continuous increasing functions with Fi →−∞

−∞, Fi →+∞ +∞.

In particular, this includes the family of scale-location transformations, i.e. maps
of the type x 7→ ax+ b, a > 0, b ∈ R

n.

• The set of radial distorsion transformations, i.e. the set of maps

T : Rn → R
n, x 7→ F (|x|)

x

|x|

where F : R+ 7→ R
+ is a continuous increasing function such that F (0) = 0.

• The maps tG ◦ Ti ◦ G where (Ti)i∈I is an admissible family of deformations on Ω
and G ∈ On is a fixed orthogonal matrix. This family has tG(Ω) as its domain.
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Proof of Proposition 4.1

Proof. Let us consider the first family. Checking the two first requirements is straight-
forward and we only take care of the last one. Let S : x 7→ (F1(x1), . . . , Fn(xn)) and
T : x 7→ (G1(x1), . . . , Gn(xn)). The map S ◦ T−1 is given by

S ◦ T−1(x) =
(
F1 ◦G

−1
1 (x1), . . . , Fn ◦G

−1
n (xn)

)
,

and this is the gradient of the function

x 7→

∫ x1

0

F1 ◦G
−1
1 (z)dz + . . .+

∫ xn

0

Fn ◦G
−1
n (z)dz.

The functions Fi ◦ G−1
i are increasing, so that their primitives are convex functions,

which makes the function above convex.
Second point : observe that radial distortion transformations form a group, so that we

only need show that each such transformation is the gradient of a convex function. And
indeed, T : x 7→ F (|x|) x

|x|
is the gradient of the function

x 7→

∫ |x|

0

F (r)dr

and this is a convex function because F is increasing.
The final item is a simple consequence of the observation that if G ∈ GLn and f :

R
n → R is differentiable, then ∇(f ◦G) =t G ◦ ∇f ◦G.

4.2 Barycenter of measures warped using admissible deforma-

tions

We are interested in recovering a template measure from deformed observations. The un-
known template is a probability measure µ on the domain Ω ⊂ R

d, absolutely continuous
w.r.t. the Lebesgue measure λ. We represent the deformed observations as push-forwards
of µ by maps T : Ω → Ω, i.e. we observe (Tj)#µ, j = 1, . . . , J .

Theorem 4.2 states that when Tj belongs to an admissible family of deformations, tak-
ing the iterated barycenter of the observations corresponds to averaging the deformations.

Theorem 4.2. Assume that (Ti)i∈I is an admissible family of deformations on a domain
Ω ⊂ R

n, and let µ ∈ P2(Ω), µ << λ. Let µj = (Tj)#µ. The following holds :

IB((µj, λj)1≤j≤J) = (
J∑

j=1

λjTj)#µ.

With this explicit expression at hand, we can check that in the case described above,
the iterated barycenter coincides with the usual notion of barycenter.

Proposition 4.3. Let µj = (Tj)#µ, where (Ti)i∈I is an admissible family of deformations
and µ << λ. Then

IB((µj, λj)1≤j≤J) = Bar((µj, λj)1≤j≤J).
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Remark.

1. The special case of the dimension 1

In dimension 1, the set of all continuous increasing maps is an admissible family of
deformations. The previous theorem applies for this very large class of deformations.
Results in this case are known from [10] or [11]: the only new part here is that the
estimator can be computed iteratively.

2. Barycenters and iterated barycenters do not match in general.

The fact that the two notions of barycenter introduced above coincide no longer
holds as soon as the dimension is larger than 2. For a counterexample, consider
the case of non-degenerate centered Gaussian measures γ1, . . . , γJ on R

n, defined by
their covariances matrices S1, . . . SJ ∈ S++

n .

According e.g. to [19], Example 1.7, the optimal transport map from N (0, S) to
N (0, T ) is given by

x 7→ T 1/2(T 1/2ST 1/2)−1/2T 1/2x.

From this result, it is possible to give an explicit expression of the iterated barycen-
ter.

On the other hand, according to Theorem 6.1 in [1], the barycenter of the µj with
weights 1/J is the Gaussian measure with covariance matrix the unique positive
definite solution of the fixed point equation

M =
1

J

J∑

j=1

(
M1/2SjM

1/2
)1/2

.

One may check that these two covariance matrices do not match in general.

4.3 Template Estimation from admissible deformations

Thanks to Theorem 4.2, we can study the asymptotic behaviour of the barycenter when
the number of replications of the warped distributions J increases. Actually, we prove
that the barycenter is an estimator of the template distribution.

Let T be a process with values in some admissible family of deformations acting on a
subset I ⊂ R

d.
T : Ω → T (I)

w 7→ T (w, ·),

where (Ω,A,P) is an unknown probability space, Assume that T is bounded and has a
finite moment ϕ(.) = E(T (.)). Let Tj for j = 1, . . . , J be a random sample of realizations
of the process T . Then, we observe measures µj which are warped by Tj in the sense that
for all , µj = Tj#µ.
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Theorem 4.4. Assume that µ is compactly supported. As soon as ϕ = id, the barycenter
µB is a consistent estimate of µ when J tends to infinity in the sense that a.s

W 2
2 (µB, µ)

J→∞
−→ 0

.
Moreover, assuming that ‖T − id‖L2 ≤ M a.s., we get the following error bounds :

P(W2(µB, µ) ≥ ε) ≤ 2 exp−J
ε2

M2(1 + cε/M)
.

Note that when the warping process is not centered, the problem of estimating the
original measure µ is not identifiable and we can only estimate by the barycenter µB the
original measure transported by the mean of the deformation process, namely ϕ#µ.

The proof of this theorem relies on the following proposition.

Proposition 4.5. Let (Ti)i∈I be an admissible family of deformations on a domain Ω ⊂
R

n, and let µ ∈ P2(Ω), µ << λ. Let µj = (Tj)#µ. Denote by µB the barycenter with
equal weights 1/J . For every ν in P2(R

d), we have

W2(µB, ν) ≤ ‖
1

J

J∑

j=1

Tj − Tν‖L2(µ)

where Tν is the Brenier map from µ to ν.

Proof. With the explicit expression of the barycenter, we know that the Brenier map from
µ to µB is 1/J

∑J
j=1 Tj, which implies that

π = (
1

J

J∑

j=1

Tj, Tν)#µ

is a coupling of µB and ν. Consequently,

W 2
2 (µB, ν) ≤

∫
|
1

J

J∑

j=1

Tj(x)− Tν(x)|
2µ(dx).

5 Statistical Applications

5.1 Distribution Template estimation from empirical observations

In many situations, the issue of estimating the mean behaviour of random observations
play a crucial to analyze the data, in image analysis, kinetics in biology for instance.
For this, we propose to use the iterative barycenter of a smooth approximation of the
empirical distribution as a good estimate of the mean information conveyed by the data.
Moreover, this estimate has the advantage that if the different
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Assume we observe j = 1, . . . , J samples of i = 1, . . . , n points Xi,j ∈ R
d which are

i.i.d realizations of measures µj. Hence we observe cloud points or in an equivalent way
µ̂n
j = 1

n

∑n
i=1 δXi,j

empirical versions of the measures µj. It is well-known that considering
the mean with respect to the number of samples J of all observation points does not
provide a good model of the mean behaviour. Instead we here consider the iterative
barycenter µB = IB(µj,

1
J
) defined in Definition 3.1. The following proposition shows

that the regularization of the empirical distributions provides a consistent estimator of
the true barycenter of the corresponding distributions.

Proposition 5.1. Let γε denote a N (0, εId) measure. Set

µn
j = µ̂n

j ∗ γ1/n.

Set µn,J
B = Bar(µn

j ,
1
J
). As n → +∞, we have

µn,J
B −→ µB.

Moreover, if the observations X.,j ∼ µj are warped from an unknown template distribution

µ by a centered admissible deformation process, hence µn,J
B is a consistent estimate of µB,

in the sense that when n → +∞ and J → +∞, we get

µn,J
B −→ µB inW2 distance.

We point out that we have used here a Gaussian kernel regularization of the empirical
measures µ̂j. Actually, this regularization is needed in order to obtain the existence of the
barycenter of the data. Note that any other regularization scheme may be used as soon as
the corresponding measures converge to the true measures in Wasserstein distance when
n goes to infinity.

In particular, kernel estimates can be used in this framework. For instance, if there
exist for all j = 1, . . . , J , a density with respect to λ, the Lebesgue measure on R

d, fj
such that, dµj

dλ
= fj, one may use a kernel estimation of the density of the data. Let K

be a multidimensional kernel in R
d. Let fj,n = 1

nhd

∑n
i=1 Kh(., Xi,j) be an estimator of

the density fj. In this case, set µj,n the distribution such that dµj,n

dλ
= fj,n. Let h = hn

goes to zero. In this case, we clearly have W2(µj,n, µ) → 0 when n goes to infinity. Hence
previous Proposition entails the consistency of the iterate barycenter of the µj,n’s.

An important application is given by the issue of ensuring equality between the can-
didates in an exam with several different referees. This constitutes a natural extension of
the work in [10] to higher dimensions.

Consider an examination with a large number of candidates, such that it is impossible
to evaluate the candidates one after another. The students are divided into J groups, and
J boards of examiners are charged to grade these groups: each board grades one group
of candidates. The evaluation is performed by assigning p scores. The m different boards
of examiners are supposed to behave the same way, so as to respect the equality among
the candidates. Moreover it is assumed that the sampling of the candidates is perfect in
the sense that it is done in such a way that each board of examiners evaluates candidates
with the same global level. Hence, if all the examiners had the same requirement levels,
the distribution of the ranks would be the same for all the boards of examiners. Here,
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we aim at balancing the effects of the differences between the examiners, gaining equity
for the candidates. The situation can be modeled as follows. For each group j among J
groups of candidates, let Xj =

{
Xj

i ∈ R
p, i = 1, . . . , n

}
denote the scores of the students

within this group. Let µj and µj,n be respectively the measure and the empirical measure
of the scores in the j-th group.

We aim at finding the average way of ranking, with respect to the ranks that were
given within the p bunches of candidates. For this, assume that there is such an average
measure, and that each group-specific measure is warped from this reference measure by
a random process. A good choice is given by the barycenter measure In order to obtain
a global common ranking for the N candidates, one can now replace the p group-specific
rankings by the sole ranking based on barycenter measure. Indeed each measure can be
pushed towards the barycenter. As a result, we obtain a new set of scores for the N
candidates, which can be interpreted as the scores that would have been obtained, had
the candidates been judged by an average board of examiners.

5.2 Discriminant analysis with Wasserstein distance

Once we have succeeded in defining a mean of a collection of distributions, then the
second step consists in trying to differentiate the different experiments with respect to
this average distribution. For this consider Sj, j = 1, . . . , J the transport plan between
the µj’s and µB and write µj = Sj#µB. Clustering the experiments in order to build
coherent groups is usually achieved by comparing a distance between these distributions.
Here by choosing the Wasserstein distance we get that

W 2
2 (µB, µj) =

∫
|Sj(x)− x|2dµB = ‖Sj − id‖2L2(µB).

Hence statistical analysis of the distributions µj’s amounts to clustering their Wasserstein
square distance ‖Sj − id‖2L2(µB) ∈ R

+, which can be easily achieved by any clustering
methodology.

Moreover PCA analysis can be conducted by generalizing the ideas of the usual PCA
on Euclidean space. To extend the framework, one replaces the principal component
directions with principal component curves from a suitable family of curves, e.g. geodesics.
Following this idea, classical principal component analysis has been extended to situations
such as manifolds, Kendall’s shape spaces, and functional settings, see [21].

It is known that the Wasserstein metric endows the space of probability measures
with a formal Riemannian structure, in which it is possible to define geodesics, tangents
spaces, etc., see [16], [3]. We propose here a method of principal component analysis using
Wasserstein distance based on geodesics of the intrinsic metric for the one dimensional
case, which follows the ideas developed in [16]. For this, consider a geodesic segment γ at
point µ with direction T , which can be written as

∀t ∈ [0, 1], γ(t) = ((1− t)Id+ tT )#µ.

We extend the definition of γ to every t ∈ R, with the important provision that γ is in
general not a geodesic curve for the whole range of t ∈ R. We perform PCA with respect
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to this family of curves which we somewhat abusively refer to as “geodesic curves“ on their
extended range. We will come back to this discussion at the end of our analysis.

For every µ, the natural distance to the geodesic curve γ is given by

d2(µ, γ) = inf
t∈R

W 2
2 (µ, γ(t)).

Hence for any µj, j = 1, . . . , J let FB and respectively Fj be the distribution functions of
the barycenter measure µB and respectively the measures µJ , then define

d2(µj, γ) = inf
t∈R

∫ [
((1− t)Id+ tT ) ◦ F−1

B − F−1
j

]2
dt.

A geodesic γ1 is called a first component geodesic to the µj’s if it minimizes the following
quantity

γ 7→
1

J

J∑

j=1

d2(µj, γ) (1)

Then we call a geodesic γ2 minimizes (1) over all geodesics that have at least one point in
common with γ1 and that are orthogonal to γ1 at all points in common. Every point µ⋆

that minimizes µ 7→ 1
J

∑J
j=1 W

2
2 (µj, µ) over all common points of γ1 and γ2 will be called a

principal component geodesic mean. Given the first and the second principal component
geodesics γ1 and γ2 with principal component geodesic mean µ⋆ we say that a geodesic
γ3 is a third principal component geodesic if it minimizes (1) over all geodesics that meet
previous principal components orthogonally at µ⋆. Analogously, principal component
geodesics of higher order are defined.
Here we will focus on the computation of the first geodesic component γ1. We first define
a geodesic starting at a measure µ with distribution function F and directed by their
increasing function T as γ(t) = ((1 − t)Id + tT )#µ. Hence, in that case, the distance of
any measure µj with respect to such a geodesic can be written as

d2(µj, γ) = inf
t∈R

∫ [
((1− t)Id+ tT ) ◦ F−1 − Sj ◦ F

−1
B

]2
dx

= ‖Sj ◦ F
−1
B − F−1‖2 −

< Sj ◦ F
−1
B − F−1, (Sj − Id) ◦ F−1

B >2

‖(T − Id) ◦ F−1‖2

where ‖.‖ denotes the usual L2 norm with corresponding scalar product < ., . >. Finally
PCA with respect to Wasserstein distance amounts to minimizing with respect to T and
F the following quantity

T 7→
J∑

j=1

d2(µj, γ)

=
J∑

j=1

‖Sj ◦ F
−1
B − F−1‖2 −

J∑

j=1

| < Sj ◦ F
−1
B − F−1,

(T − Id) ◦ F−1

‖(T − Id) ◦ F−1‖
> |2.

This optimization program can not be solved easily. Note that it requires to maximize in
T the quantity

T 7→
J∑

j=1

| < Sj ◦ F
−1
B − F−1,

(T − Id) ◦ F−1

‖(T − Id) ◦ F−1‖
> |2.

12



If we set v = (T − Id) ◦ F−1, this maximization can be written as finding the solution to

arg max
v, ‖v‖=1

J∑

j=1

| < Sj ◦ F
−1
B − F−1, v > |2,

which corresponds to the functional principal component analysis of the maps Sj◦F
−1
B , j =

1, . . . , J where F plays the role of the mean of the data. Hence, in this framework, choosing
F equal to FB is a natural approximation of the solution of the initial optimization
program. Then the final PCA is conducted by considering geodesics starting at µB with
direction found by maximizing

T 7→
J∑

j=1

| < (Sj − Id) ◦ F−1
B ,

(T − Id) ◦ F−1
B

‖(T − Id) ◦ F−1
B ‖

> |2

=
J∑

j=1

| < Sj − Id, T − Id >L2
(µB)

|2

which corresponds to a functional PCA in L2
(µB). This analysis can be achieved using

tools defined for instance in [21]. Finally, if we get T (1) the map corresponding to the
first functional principal component, the corresponding principal geodesic if obtained by
setting γ(1) = ((1− t)Id + tT (1))#µB. The other principal components can be computed
using the same procedure.

Let us come back to the caveat that the curves chosen are not Wasserstein geodesics
on the entire parameter range. It is easy to check (see [3]) that a curve γ(t) = ((1 −
t)Id + tT )#µ is a geodesic curve for all t ∈ R such that (1 − t)Id + tT is an increasing
function. Assuming T ′ takes values in the interval [a, b], 0 < a < 1 < b, this means that
γ is a geodesic curve for all t ∈ [1/(a− 1), 1/(b− 1)]. Once the analysis above yields the
expression of T (1) and the t∗j minimizing d2(µj, γ), it is possible to check whether they fall
in this range. Actually,

t∗j =
< F−1

j − F−1
B , (T (1) − Id) ◦ F−1

B >

‖(T (1) − Id) ◦ F−1
B ‖2

.

Hence, when the measures µj are not too far from their barycenter (i.e. when the ‖Sj −
Id‖∞ are small) these conditions are met.

6 Appendix

Proof of Theorem 3.1

Proof. Let

T : (x1, . . . , xJ) 7→
J∑

j=1

λjxj.
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Following [1], we call γ ∈ P(Rd×J) a solution of the multi-marginal problem associated
with µ1, . . . , µJ if it is a minimizer for the functional

F (γ̃) =

∫
(

J∑

j=1

λj|xi − T (x)|2)γ̃(dx1, . . . , dxJ)

among all measures γ̃ ∈ P(Rd×J) with marginals µ1, . . . , µJ . Theorem 4.1 in [1], quot-
ing from W.Gangbo and A.Świȩch [13], shows that when the µj are absolutely continuous
w.r.t. Lebesgue measure the multi-marginal problem has a unique solution γ (actually
absolute continuity of the measures is more than is required in the theorem). Moreover
(Proposition 4.2 in [1]) the barycenter of the µj is obtained as µB = T#γ.

For every n ≥ 1, we associate to µn
j , 1 ≤ j ≤ J , the solution γn of the multi-

marginal problem. We also denote by γ∗ the solution of the multi-marginal problem
w.r.t. µ1, . . . , µJ .

We show that the sequence γn is weakly tight. Let B1, . . . , BJ be large balls in R
d, we

have

γn((B1 × . . . BJ)
c) = γn(∪J

j=1E × . . .× E × Bj × E . . .× E)

≤
J∑

j=1

γn(E × . . .× E × Bj × E . . .× E)

=
J∑

j=1

µn
j (Bj).

Tightness of the sequences µn
j guarantees tightness of γn. If convergence of µn

j , n ≥ 1,
holds in Waserstein distance, we also recover tightness of γn in Wasserstein topology.
Indeed, the second moments are bounded as they form a convergent sequence :

∫
|x|2dγn =

J∑

j=1

∫
|xj|

2dµn
j

→

∫
|xj|

2dµj.

The above implies tightness of the sequence of barycenters : indeed, it is the push-
forward of the tight sequence (γn)n≥1 by the application T : Rd×J → R

d, which is Lipschitz
continuous (with Lipschitz constant bounded by 1). It is readily checked that this opera-
tion preserves tightness, as it preserves convergence (in weak and Wasserstein topologies).

We conclude by showing that any limiting point µ̂∞ is a minimizer for the barycenter
problem associated with µ1, . . . , µJ , and by invoking the uniqueness of the barycenter.
Since µ̂n is the barycenter for µn

1 , . . . , µ
n
J , we have

J∑

j=1

λjW
2
2 (µ̂

n, µn
j ) ≤

J∑

j=1

λjW
2
2 (µ̂

∗, µn
j ).
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Assume now that up to a subsequence, µ̂n → µ̂∞ in Wasserstein distance, and let
n → +∞. Since W2 is weakly lower semi-continuous, we get

J∑

j=1

λjW
2
2 (µ̂∞, µj) ≤ lim inf

J∑

j=1

λjW
2
2 (µ̂

n, µn
j ) ≤ lim inf

J∑

j=1

λjW
2
2 (µ̂

∗, µn
j ).

The right-hand side converges to the value
∑J

j=1 λjW
2
2 (µ̂

∗, µj), which is minimal by
definition. This shows that the inequalities are equalities and it concludes the proof.

Proof of Theorem 3.2

Proof. One sees from the definition that it is sufficient to prove the result for two measures,
because then the result may be obtained by recurrence. Consider then µn → µ and
νn → ν (convergence is understood in Wasserstein topology), and fix t ∈ (0, 1). The
Brenier transport map between µ and ν (resp. µn and νn) will be denoted by T (resp.
Tn). Also denote by µt, resp. µt

n the point in the Wasserstein geodesic between µ and ν
(resp. µn and νn) at time t, that is to say

µt = ((1− t)Id + tT )#µ (2)

µt
n = ((1− t)Id + tTn)#µn. (3)

As noted earlier, µt is the barycenter of µ and ν with weights 1− t and t, so that we
need only prove weak continuity of (µ, ν) 7→ µt. We first take care of weak convergence, i.e.
we assume that µn ⇀ µ, νn ⇀ ν and we show that µt

n → µt. The measure π ∈ P(Rn×R
n)

defined by π = (Id×T )#µ is the unique optimal transport plan between µ and ν. Likewise,
πn = (Id × Tn)#µn is the optimal transport plan between µn and νn. Now, Theorem
5.20 in [26] (stability of transport plans) ensures that πn weakly converges to π. Let
ft : R

n × R
n → R

n be defined by ft(x, y) = (1 − t)x + ty. The map ft is continuous, so
that pushing forward by ft is a weakly continuous mapping. Therefore, ft#πn ⇀ ft#π. It
only remains to check that in fact, ft#πn = µt

n and ft#π = µt.
We now look at the convergence in W2 distance. Observe that the transport plans

converge for the W2 metric over P2(R
n×R

n) : to see this, we use the fact that convergence
in W2 topology is equivalent to weak convergence plus convergence of second moments.
And indeed, as we noted, πn ⇀ π, and on the other hand,

∫
|(x, y)|2dπn(x, y) =

∫ (
|x|2 + |y|2

)
dπn(x, y)

=

∫
|x|2dµn(x) +

∫
|y|2dνn(y)

n→+∞
−→

∫
|x|2dµ(x) +

∫
|y|2dν(y)

=

∫
|(x, y)|2dπ.
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Now we observe that µt
n = ft#πn and µt = ft#π. But ft is Lipschitz, and it suffices to

use the fact that W2(ft#πn, ft#π) ≤ ‖ft‖LipW2(πn, π).

Proof of Theorem 4.2

Proof. We use induction on J . For J = 1, the result is obvious. Suppose then that it
is established for J ≥ 1. Choose T1, . . . , TJ+1 from a family of admissible deformations,
and fix λ1, . . . , λJ+1 with

∑J+1
j=1 λj = 1. Using the definition of the iterated barycenter,

we have

IB((µj, λj)1≤j≤J+1) = Bar

(
IB

(
(µj, λj)1≤j≤J),

J∑

j=1

λ,j

)
, (µJ+1, λJ+1)

)

= Bar

((
(
1

Λj

J∑

j=1

λjTj)#µ,ΛJ

)
, (µJ+1, λJ+1)

)

where we set ΛJ =
∑J

j=1 λj.

Set ν = ( 1
Λj

∑J
j=1 λjTj)#µ. As µJ+1 = TJ+1#µ, we have also µ = (TJ+1)

−1
# µJ+1, and

ν = (
1

Λj

J∑

j=1

λjTj) ◦ (TJ+1)
−1
# µ

= (
1

Λj

J∑

j=1

λjTj ◦ (TJ+1)
−1)#µJ+1.

Now, observe that by assumption all the maps Tj ◦ (TJ+1)
−1 are gradients of convex

functions, so that their convex combination also is. By Brenier’s theorem, the map

T =
1

Λj

J∑

j=1

λjTj ◦ (TJ+1)
−1

is the Brenier map from µJ+1 to ν. We deduce that the barycenter of ν and µJ+1 is

(λJ+1Id + ΛJT )# µJ+1

= (λJ+1TJ+1 + ΛJT ◦ TJ+1)# µ

= (
J+1∑

j=1

λjTj)#µ.

This finishes the proof.

Proof of Proposition 4.3
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Proof. Set T (x1, . . . , xJ) =
∑J

j=1 λjxj for x1, . . . , xJ ∈ R
d. Proposition 4.2 of [1] claims

that the barycenter of (µj, λj)1≤j≤J , denoted by µB, satisfies µB = T#γ where γ ∈
P((Rd)J) is the unique solution of the optimization problem

inf

{∫ J∑

j=1

λj|T (x)− xi|
2dγ(x1, . . . , xJ), γ ∈ Π(µ1, . . . , µJ)

}

where Π(µ1, . . . , µJ) is the set of probability measures on R
dJ with j-th marginal µj,

1 ≤ j ≤ J . This can be rewritten as

inf

{∫ J∑

i,j=1

λiλj|xi − xj|
2dγ(x1, . . . , xJ), γ ∈ Π(µ1, . . . , µJ)

}
.

The integral is bounded below by
∑J

i,j=1 λiλjW
2
2 (µi, µj) (because each term of the sum

is bounded by W 2
2 (µi, µj)). On the other hand, choosing

γ = (T1, . . . , Tj)#µ,

we see that γ ∈ Π(µ1, . . . , µJ), and that

∫
|xj − xi|

2dγ =

∫
|Tj(x)− Ti(x)|

2dµ(x) =

∫
[Tj ◦ Ti

−1(x)− x|2µi(dx) = W 2
2 (µi, µj).

Thus γ is optimal, and we have

µB = T#γ = (
J∑

j=1

λjTj)#µ.

Proof of Theorem 4.4

Proof. Using the results of Corollary 4.5, we get that

W 2
2 (µB, µ) ≤

∫
|
1

J

J∑

j=1

Tj(x)− x|2µ(dx).

Almost sure convergence towards 0 of 1
J

∑J
j=1(Tj − id) is directly deduced from Corollary

7.10 (p. 189) in [18], which is an extension of the Strong Law of Large Numbers to Banach
spaces. Then the result follows from dominated convergence.

Likewise, obtaining error bounds is straightforward. Assuming that ‖T − id‖L2 ≤ M
a.s., we can use Yurinskii’s version of Bernstein’s inequality in Hilbert spaces ([27], p.
491) to get the result announced.

Proof of Proposition 5.1
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Proof. By the empirical law of large numbers, µn
j ⇀ µj weakly. Moreover W2(µ̂n

j , µ
n
j ) ≤

1
n
,

so that µ̂n
j → µj in W2 metric, see for instance in [26]. Hence using Theorem 3.2, we obtain

the consistency of the barycenter. Moreover, if µj = Tj#µ for all j = 1, . . . , J , where the
Tj’s are an admissible family of bounded deformations, hence Theorem 4.4 enables to get
that

W2(µ
n,J
B , µB) −→ 0

when both n and J goes to infinity.
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