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Mean field propagation of infinite dimensional Wigner

measures with a singular two-body interaction potential

Z. Ammari∗ F. Nier†

June 25, 2014

Abstract

We consider the quantum dynamics of many bosons systems in the mean field limit with
a singular pair-interaction potential, including the attractive or repulsive Coulombic case in
three dimensions. By using a measure transportation technique developed in [3], we show that
Wigner measures propagate along the nonlinear Hartree flow. Such property was previously
proved only for bounded potentials in our works [5, 6] with a slightly different strategy.

Keywords: mean field limit, Bosons, Semiclassical analysis, Wigner measure, measure transporta-
tion. 2010 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55, 28A33

1 Introduction

The evolution of a non relativistic system of many quantum particles is described by an n-body
Schrödinger equation. The mean field limit consists in replacing this problem by a non linear 1-
particle problem, by considering a one generic particle interacting with the average field of all the
others, when the number of particles is large and the interaction potential is weak. It is common
knowledge that this approximation starts to be very effective when the number of particles exceeds
a few tens. In the last decades, many works have been devoted to justify this limit. Most of them
considered the mean field dynamics of well prepared quantum states, coherent states or Hermite
states, by following and extending the phase-space approach, also known as the Hepp method (see
[25, 27, 32, 33, 39, 44, 57]), or by studying the BBGKY hierarchy of reduced density matrices (see
[8, 17, 19, 20, 42, 59]). Some of these results deal with very singular pair interaction potentials
in [9, 19, 20, 44] or considered the rate of convergence (see [7, 57, 44]), sometimes motivated by
the modelling of Bose-Einstein condensates (see a.e.[1, 21, 48]). In this article, we continue our
program, which consists in deriving the mean field limit, for general initial data in the bosonic
framework. Our strategy is inspired by older attempts to give substance to the formal link between
bosonic Quantum Field Theory and the finite dimensional microlocal or phase-space analysis (see
[10, 23, 24, 45, 47]). With this respect, the small parameter ε = 1

n asymptotics is the infinite
dimensional version of semiclassical analysis. And it has been realized in the 90’s, that the Wigner
(or semiclassical) measures provide a powerful tool in order to obtain the leading term in the
semiclassical limit (see [29, 30, 37, 49]), because they flexibly and efficiently incorporate a priori
estimates (see [13, 14, 22, 51, 53]).

In [4] Wigner measures were introduced in the infinite dimensional setting and their main prop-
erties were studied. The above-mentioned work exploited and clarified the intimate relationship
between pseudo-differential calculus, phase-space geometry and the probability approach, inherent
to bosonic QFT. In [5], the dynamics for well prepared data and bounded interaction potentials
was reconsidered within this approach. The general propagation result was obtained in [6] for
bounded interaction potentials. In particular, we showed that the BBGKY hierarchy dynamics is
a projected picture of the evolution of the Wigner measure, for which there is a closed equation.
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One difficulty which was solved in [6] is concerned with the integration of a weak Liouville equa-
tion valid after testing with cylindrical or polynomial observables: Such classes of observables are
not preserved by the nonlinear Hamiltonian mean field flow. For bounded interaction potentials,
the number conservation allows polynomial approximations of the nonlinear deformation in balls
of the phase-space. This is done by adapting a truncated Dyson expansion approach presented
in [25, 26, 27]. In applications, an important case is the 2-body Coulomb interaction since it
models the general non relativistic motion of charged (or gravitational) particles. Again there are
results about the mean field problem for specific initial data (see [9, 44]), but the approach we
have followed in [6] essentially fails. With a singular pair interaction potential, a solution to this
problem is provided by measure transportation techniques developed for optimal transport theory
(see [3, 61]). Hence, the dynamical mean field limit relies even more on the fact that Wigner
measures are probability measures on the phase-space.

We now expose our main result. The Hamiltonian of an n-body quantum system, with a pair
interaction potential, is given by the Schrödinger operator

H(n)
ε = ε

n∑

i=1

−∆xi + ε2
∑

1≤i<j≤n
V (xi − xj) ,

where ε is a positive parameter and xi, xj ∈ Rd . We assume that the particles obey Bose statistics.

So, we consider H
(n)
ε as an operator acting on the space L2

s(R
dn) of symmetric square integrable

functions. This means that

Ψ ∈ L2
s(R

dn) iff Ψ ∈ L2(Rdn) and Ψ(x1, · · · , xn) = Ψ(xσ1 , . . . , xσn) a.e

for any permutation σ on the symmetric group Sn . The mean field asymptotics is concerned with
the limit as ε→ 0 and nε→ 1 , where n =

[
1
ε

]
represents the number of particles of the system.

Let H be the direct sum of Hilbert spaces of the form

H =

∞⊕

n=0

L2
s(R

dn) ,

and consider the Hamiltonian of the many-bosons system (with arbitrary number of particles) as

Hε =

∞⊕

n=0

H(n)
ε . (1)

An obvious feature of the operator Hε is the conservation of the number of particles. Hence, it is
useful to define the number operator

N =

∞⊕

n=0

εn 1lL2
s(R

dn).

The free Hamiltonian, corresponding to V = 0 , will be denoted by H0
ε :

H0
ε =

∞⊕

n=0

H0,(n)
ε , H0,(n)

ε = ε
n∑

i=1

−∆xi .

Second quantization is a natural framework for the study of many-body problems and, even more,
it helps to understand the mean field limit and the structures behind it. However, the result can be
presented without using the language of quantum field theory. We just mention that the operator
Hε can be formally rewritten as

Hε =

∫

Rd

∇a∗(x).∇a(x) dx+
1

2

∫

R2d

V (x − y)a∗(x)a∗(y)a(x)a(y) dxdy ,
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with the ε-dependent canonical commutation relations [a(x) , a∗(y)] = εδ(x− y) . It is interpreted
as the Wick quantization of the classical Hamiltonian

h(z, z̄) =

∫

Rd

|∇z(x)|2 dx+
1

2

∫

R2d

|z(x)|2|z(y)|2V (x− y) dxdy . (2)

In our analysis, an operator which violates the number of particles conservation, will play an
important role, namely the Weyl operator. Such operators are given for f ∈ L2(Rd) by

W (f) = e
i√
2
[a∗(f)+a(f)]

,

where a∗(f), a(f) are the creation-annihilation operators on H satisfying the ε-canonical commu-
tation relations (CCR):

[a(f1), a
∗(f2)] = ε〈f1, f2〉L2(Rd) 1l, [a∗(f1), a

∗(f2)] = 0 = [a(f1), a(f2)] .

Accurate definitions on second quantized operators can be found in Appendix B.

Our approach is based on Wigner measures which are Borel probability measures on the infinite
dimensional phase-space Z0 := L2(Rd;C) . The states of the many-bosons system are positive
trace-class operators on H of normalized trace equal to 1 (i.e.: normal states or density operators).
To every family of those states (̺ε)ε∈(0,ε̄) , we asymptotically assign, when ε → 0 , at least one

Borel probability measure µ on Z0 := L2(Rd;C) , called Wigner measure, such that there exists a
sequence (εk)k∈N , such that limk→∞ εk = 0 and

lim
k→0

Tr[̺εk W (
√
2πξ)] = F−1(µ)(ξ) ,

under the sole uniform estimate Tr
[
̺εN

δ
]
≤ Cδ for some δ > 0 . Here F−1(µ) is the inverse

Fourier transform of µ .
The problem of the mean field dynamics questions whether the asymptotic quantities, namely
Wigner measures, as ε→ 0 associated with

̺ε(t) = e−i
t
εHε̺εe

i tεHε , t ∈ R

are transported by the flow Φ(t, s) = Φ(t − s) generated by the classical Hamiltonian h(z, z̄) and
given, after writing zt = Φ(t, s)(zs) , by

i∂tzt = (∂z̄h)(zt, z̄t) = −∆zt + V ∗ |zt|2zt . (3)

After checking that the Hamiltonian (1) has a self-adjoint realization so that the quantum dynamics
are well defined on H and after checking that the mean field flow is well defined on Z1 = H1(Rd) ,
our main result is stated below.
Throughout the paper, we assume that the real valued potential V satisfies the assumptions

V (−x) = V (x) ∈ R , (A1)

V (1 −∆)−1/2 ∈ L(Z0) , (A2)

and (1 −∆)−1/2V (1 −∆)−1/2 ∈ L∞(Z0) . (A3)

We use the notation L(h) for the space of bounded operators on the Hilbert space h and Lp(h) ,
1 ≤ p ≤ +∞ , for the Schatten classes, L∞(h) being the space of compact operators for p = +∞ .

Theorem 1.1. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H with a single Wigner measure µ0

such that the bound
Tr[(N+H0

ε )
δ̺ε] ≤ Cδ < +∞ , (4)

holds uniformly w.r.t ε ∈ (0, ε̄) for some δ > 0 .
Then for all t ∈ R , the family (e−i

t
εHε̺εe

i tεHε)ε∈(0,ε̄) has a unique Wigner measure µt which is a

Borel measure on Z1 = H1(Rd) . This measure µt = Φ(t, 0)∗µ0 is the push forward of the initial
measure µ0 by the flow associated with (3), well defined on Z1 .
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In a formal level the proof of the above theorem is rather simple. Writing first the integral
formula

Tr[̺ε(t)W (ξ)] = Tr[̺εW (ξ)] + i

∫ t

0

Tr[̺ε(s)W (ξ)

4∑

j=1

εj−1Oj ] ds ,

where ̺ε(t) = e−it/εHε̺εe
it/εHε and Oj are some Wick quantized observables. By taking the limit

as ε→ 0 , the only term j = 1 is left in the r.h.s. So, we formally end up with a transport equation
on the Wigner measures

∂tµ+ i {h , µ} = 0, {h, µ} = ∂zh ∂z̄µ− ∂zµ∂z̄h

which is then solved by appealing to the results in [3].

Outline: The self-adjointness of the Hamiltonian Hε and the existence of a global flow on Z1 =
H1(Rd) for the Hartree equation (3) are proved in Section 2. The derivation of the mean field
dynamics is done in Section 3 where Theorem 1.1 is proved. Some additional properties are stated
in Section 4: in particular, we draw the link with former results on bounded potential and reduced
density matrices and provide non trivial examples elucidated by the Wigner measure approach.
The article ends with several appendices dedicated to second quantization, absolutely continuous
curves in Prob2(Z) as well as some weak Lp conditions for the potential V ensuring the fulfillment
of the assumptions (A2) and (A3).

2 Well defined dynamics

In this section we shall prove that:

• the quantum dynamics is well defined, namely Hε has a natural self-adjoint realization;

• the mean field dynamics is well defined on Z1 = H1(Rd) , with additional useful estimates.

2.1 Self-adjoint realization of Hε

The Hamiltonian Hε has a particular structure explained in a general framework in Appendix A.
Let V be a real-valued Lebesgue measurable function a.e. finite and satisfying the assumptions
(A1) and (A2). The multiplication operator

V (n)
ε = ε2

∑

1≤i<j≤n
V (xi − xj)

with its natural domain D(V
(n)
ε ) = {Ψ ∈ L2

s(R
dn) : V

(n)
ε Ψ ∈ L2

s(R
dn)} is self-adjoint on L2

s(R
dn)

as well as the differential operator

H0,(n)
ε = ε

n∑

i=1

−∆xi , with D(H0,(n)
ε ) = L2

s(R
dn) ∩H2(Rdn) .

Therefore, according to Appendix A

Vε =

∞∑

n=0

V (n)
ε , and H0

ε =

∞∑

n=0

H0,(n)
ε

endowed with their natural domains are self-adjoint on H .

Proposition 2.1. Under the assumptions (A1) and (A2):
(i) The operator

H(n)
ε := H0,(n)

ε + V (n)
ε
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is self-adjoint on D(H
0,(n)
ε ) ⊂ D(V

(n)
ε ) .

(ii) The operator

Hε :=

∞∑

n=0

H(n)
ε , D(Hε) := {Ψ ∈ H ,

∞∑

n=0

‖H(n)
ε Ψ(n)‖2 <∞},

is self-adjoint and essentially self-adjoint on ⊕algn∈N
Dn where Dn is any core of H

0,(n)
ε .

Proof. (i) By assumption (A2), V
(n)
ε is infinitesimally small with respect to H

0,(n)
ε . So that,

D(H
0,(n)
ε ) ⊂ D(V

(n)
ε ) and the operator H

(n)
ε = H

0,(n)
ε + V

(n)
ε is self-adjoint on the domain of

H
0,(n)
ε by Kato-Rellich theorem.

(ii) Applying Proposition A.1, we see thatHε is self-adjoint and essentially self-adjoint on⊕algn∈N
Dn .
�

Later, it will be useful to use the reference operator

Sε(λ) =
∞∑

n=0

H0,(n)
ε + εn+ λ(εn)3 . (5)

which is self-adjoint by Proposition A.1. Moreover, by functional calculus of strongly commuting
self-adjoint operators we observe that D(Sε(λ)) is invariant with respect to the parameter λ > 0 .

Proposition 2.2. Under the assumptions (A1) and (A2), for any λ > 0 , the operator Vε is
Sε(λ)-bounded with

∀Ψ ∈ D(Sε(λ)), ‖VεΨ‖H ≤ λ‖V (1−∆)−1/2‖L(L2(Rd)) ‖Sε(λ−2)Ψ‖H .

Therefore Hε is essentially self-adjoint on D(Sε(λ)) .

Proof. The multiplication operator by V (x1 −x2) , at least defined as a symmetric operator from
S(R2d) into S ′(R2d) , satisfies

eix2Dx1V (x1 − x2)(1 −∆x1)
−1/2e−ix2Dx1 = eix2Dx1V (x1 − x2)e

−ix2Dx1 (1−∆x1)
−1/2

= V (x1)(1 −∆x1)
−1/2 ∈ L(L2(R2d)) . (6)

For Ψ ∈ H,Φ ∈ D(Sε(λ)) , taking advantage of the symmetry of those wave functions, we compute

〈Ψ , VεΦ〉 =

∞∑

n=2

〈Ψ(n) ,
n(n− 1)

2
ε2V (x1 − x2)Φ

(n)〉L2
s(R

dn)

=

∞∑

n=2

〈Ψ(n) ,
n(n− 1)

2
ε2V (x1 − x2)(1 −∆x1)

−1/2(1−∆x1)
1/2Φ(n)〉L2

s(R
dn) .

By noticing that

(n2ε2)2‖(1−∆x1)
1/2Φ(n)‖2L2(Rnd) = (εn)3〈Φ(n), ε

n∑

i=1

(1−∆xi)Φ
(n)〉L2

s(R
dn)

= ‖N3/2(N+H0
ε )

1/2Φ(n)‖2H ,

the Cauchy-Schwarz inequality leads to

|〈Ψ , VεΦ〉| ≤ ‖V (1−∆)−1/2‖ ‖Ψ‖H ‖N3/2 (N+H0
ε )

1/2Φ‖H . (7)

Now with the inequality ab ≤ (λa)2 + (b/λ)2 , we see that

‖N3/2 (N+H0
ε )

1/2Φ‖2H = 〈Φ,N3(N+H0
ε )Φ〉

≤ 〈Φ, λ−2N6 + λ2(N+H0
ε )

2Φ〉
≤ λ2‖Sε(λ−2)Φ‖2H . (8)
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Putting together (7) and (8) yields the estimate.

To prove the last statement, observe that ⊕algn∈N
D(H

0,(n)
ε ) is a core for Hε . Owing to the inclusions

⊕algn∈N
D(H0,(n)

ε ) ⊂ D(Sε(λ)) ⊂ D(Vε) ∩D(H0
ε ) ⊂ D(Hǫ) ,

Hǫ is essentially self-adjoint on D(Sε(λ)). �

We end this section with some invariance properties of the domain D(Sε(λ)) with respect to
the Hamiltonian Hε and the Weyl operators.

Proposition 2.3. For any λ > 0 and t ∈ R

e−i
t
εHεD(Sε(λ)) ⊂ D(Sε(λ)) .

Moreover there exists Cλ > 0 such that

‖Sε(λ)e−i
t
εHε(Sε(λ) + 1)−1‖L(H) ≤ Cλ , for all t ∈ R.

Proof. For any Ψ ∈ D(Sε(λ)) ⊂ D(Hε) , observe that e−i
t
εHεΨ belongs to D(N3) ∩ D(Hε) since

D(Sε(λ)) is contained in D(N3) and Hε strongly commutes with N . Proposition 2.2 implies
D(Sε(β) + Vε) = D(Sε(β)) = D(Sε(λ)) when β > 0 is large enough, so that for any Φ ∈ D(Sε(λ))

〈(Sε(β) + Vε)Φ, e
−i t

ε
HεΨ〉H = 〈(Hε +N+ βN3)Φ, e−i

t
ε
HεΨ〉H

= 〈Φ, (Hε +N+ βN3)e−i
t
εHεΨ〉H

and hence e−i
t
εHεΨ belongs to D((Sε(β) + Vε)

∗) = D(Sε(β)) = D(Sε(λ)) .
Again for β large enough

1 + Sε(β) + Vε = (1 + Vε(Sε(β) + 1)−1)(Sε(β) + 1) ,

and
(1 +N+ βN3 +Hε)

−1 = (Sε(β) + 1)−1(1 + Vε(Sε(β) + 1)−1)−1 .

Therefore, the operators (1 + Sε(β))(1 +N+ βN3 +Hε)
−1 and (1+N+ βN3 +Hε)(Sε(β) + 1)−1

are bounded. Thus, we conclude that

Sε(λ)e
−i t

εHε(1 + Sε(λ))
−1 = Sε(λ)(1 + Sε(β))

−1(1 + Sε(β))(1 +N+ βN3 +Hε)
−1

◦ e−i tεHε(1 +N+ βN3 +Hε)(1 + Sε(β))
−1(1 + Sε(β))(1 + Sε(λ))

−1 ,

is bounded. �

Proposition 2.4. For any ξ ∈ H2(Rd) and any λ > 0 , the domain D(Sε(λ)) is invariant under
the action of the Weyl operator W (ξ) with

‖(Sε(λ) + 1)−1W (ξ)Sε(λ)‖L(H) ≤ Cλ,ξ ,

uniformly w.r.t ε ∈ (0, ε̄) for some constant Cλ,ξ > 0 .

Proof. For all Φ,Ψ ∈ D(Sε(λ)) , one can write

〈Φ,W (ξ)∗Sε(λ)W (ξ)Ψ〉 = 〈Φ, (Sε(λ) +QWick
ε )Ψ〉,

where Qε is the following polynomial

Qε(z) = 〈z + iε√
2
ξ,−∆(z +

iε√
2
ξ)〉Z0 − 〈z,−∆z〉Z0 + Pε(z +

iε√
2
ξ)− Pε(z)

and Pε(z) = |z|6Z0
+ 3ε|z|4Z0

+ ε2|z|2Z0
is the complete Wick symbol of N3 , according to Propo-

sition B.2 or by direct computation . The assumption ξ ∈ H2(Rd) ensures that Qε is uniformly
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bounded in ⊕p+q≤3Pp,q(Z0) and the number estimate of Proposition B.3 says that QWick
ε 〈N〉− 3

2

is a bounded operator and therefore

QWick
ε (Sε(λ) + 1)−1 ∈ L(H) .

Hence for Ψ ∈ D(Sε(λ)) ,

Sε(λ)W (ξ)Ψ =W (ξ)

[
Sε(λ)

Sε(λ) + 1
+QWick

ε (Sε(λ) + 1)−1

]

(Sε(λ) + 1)Ψ

and W (ξ)Ψ belongs to D(Sε(λ)) , with ‖Sε(λ)W (ξ)Ψ‖ ≤ Cλ,ξ‖(Sε(λ) + 1)Ψ‖ . �

Proposition 2.5. For any function χ ∈ C∞
0 (R2) and λ > 0 , the operator χ(N, Hε) satisfies

∀k ∈ N, ‖NkSε(λ)χ(N, Hε)‖L(H) ≤ Ck+1
λ,χ

for some Cλ,χ > 0 .

Proof. The operators N , Hε (like N and N+H0
ε ) are strongly commuting self-adjoint operators

so that the functional calculus is well defined for the pair (N, Hε) . With a cut-off function χ1 ∈
C∞
0 (R) such that χ1(x) ≡ 1 on a neighborhood of supp χ , the operator Nk(1 + N + βN3 +
Hε)χ1(N)χ(Hε,N) is bounded with

‖(1 +N+ βN3 +Hε)N
kχ1(N)χ(H,N)‖L(H) ≤ CβC

k
χ .

For sufficiently large β , Proposition 2.2 says

‖(1 + Sε(β))(1 +N+ βN3 +Hε)
−1‖L(H) ≤ C′

β .

This is done with

NkSε(λ)χ(N, Hε) = Sε(λ)(1 + Sε(β))
−1(1 + Sε(β)(1 +N+ βN3 +Hε)

−1

◦ (1 +N+ βN3 +Hε)N
kχ(N, Hε) ,

and Cλ,χ = max
{

Cχ, CβC
′
β‖Sε(λ)(1 + Sε(β))

−1‖
}

. �

2.1.1 Mean field dynamics

We shall use another more convenient writing of the Cauchy problem

{
i∂tzt = −∆zt + V ∗ |zt|2zt
zt=0 = z0 .

(9)

After setting z̃t = eit(−∆)zt = e−it∆zt it becomes

{
i∂tz̃t = e−it∆

[
V ∗ |eit∆z̃t|2(eit∆z̃t)

]

z̃t=0 = z0 .
(10)

Proposition 2.6. Assume (A1) and (A2). For any z0 ∈ Z1 = H1(Rd) the Cauchy problem (9)
admits a unique solution (t 7→ zt) ∈ C0(R;H1(Rd))∩C1(R;H−1(Rd)) . More precisely, the Cauchy
problem (10), which is equivalent to (9), admits a unique solution in C1(R;H1(Rd)) . Moreover
these solutions verify

|zt|L2 = |z̃t|L2 = |z0|L2 (11)

and h(zt, zt) = h(z0, z0) , (12)

for h(z, z) =

∫

Rd

|∇z|2(x) dx+
1

2

∫

R2d

V (x− y)|z(x)|2|z(y)|2 dxdy .

7



Finally, the time-dependent velocity field defined on R×Z1 by

v(t, z) = e−it∆([V ∗ |eit∆z|2]eit∆z)

satisfies the estimates

|v(t, z)|Z0 ≤ ‖V (1−∆)−1/2‖ |z|2Z0
|z|Z1 (13)

and |v(t, z)|Z1 ≤ ‖V (1−∆)−1/2‖ |z|2Z1
|z|Z0 . (14)

Proof. The first results are standard (see e.g. [16, 31]) in the analysis on nonlinear evolution
equation. Nevertheless, we recall the details of the proof because it also contains (13)(14), which
is crucial in our analysis.
By considering the second formulation (10), it suffices to prove that the mapping z → (V ∗ |z|2)z
is locally Lipschitz in H1(Rd) . After noticing that the distributional derivative of (V ∗ |z|2)z or
more generally of (V ∗ (z1z2)z3) is

∂x[(V ∗ (z1z2))z3] = (V ∗ (∂xz1z2 + z1∂xz2))z3 + (V ∗ (z1z2))(∂xz3) , (15)

it is reduced to the estimate of V ∗ (z1z2)z3 in L2 in terms of the L2 and H1- norms of z1, z2, z3 .
For ξ ∈ L2(Rd) , write

〈ξ , (V ∗ (z1z2))z3〉L2(Rd) = 〈z1 ⊗ ξ , V (x1 − x2)z2 ⊗ z3〉L2(R2d) .

When b̃ is the multiplication operator by V (x1 − x2) , the estimate (6) says that b̃(1−∆x1)
−1/2 is

bounded, with

|〈ξ ⊗ z1 , V (x1 − x2)z2 ⊗ z3〉L2(R2d)| ≤ ‖V (1−∆)−1/2‖ |ξ|L2 |z1|L2 |z2|H1 |z3|L2 .

A symmetric version of (6) says b̃(1−∆x2)
−1/2 is bounded, with

|〈ξ ⊗ z1 , V (x1 − x2)z2 ⊗ z3〉L2(R2d)| ≤ ‖V (1−∆)−1/2‖ |ξ|L2 |z1|L2 |z2|L2 |z3|H1 .

Finally the symmetry of the expression V ∗ (z1z2)z3 w.r.t the exchange of z1 and z2 gives

|〈ξ ⊗ z1 , V (x1 − x2)z2 ⊗ z3〉L2(R2d)| ≤ ‖V (1−∆)−1/2‖ |ξ|L2 |z1|H1 |z2|L2 |z3|L2 .

Thus we have proved, owing to (15),

|V ∗ (z1z2)z3|L2 ≤ ‖V (1 −∆)−1/2‖ min
σ∈S3

|zσ(1)|H1 |zσ(2)|L2 |zσ(3)|L2 (16)

which gives

|(V ∗ (z1z2))z3|H1 ≤ ‖V (1−∆)−1/2‖ min
σ∈S3

|zσ(1)|H1 |zσ(2)|H1 |zσ(3)|L2 . (17)

Since z 7→ eit∆z preserves the L2 and H1 norms, the velocity field estimates (13) and (14) are
consequences of (16) and (17).
For the sake of completeness, let us finish the proof of the global well-posedness of the Cauchy prob-
lem. The estimate (17) provides the Lipschitz property of z → V ∗ |z|2z in H1(Rd) . This implies
the local in time existence and uniqueness of a solution to (10) in C1((−Tz0 , Tz0);H1(Rd)) , and
therefore the local in time existence and uniqueness of a solution to (9) in C0((−Tz0 , Tz0);H1(Rd))∩
C1([−Tz0 , Tz0];H−1(Rd)) . The global in time existence then comes as usual from the control of
|zt|H1 = |z̃t|H1 deduced from the conservations of (11) and (12). For (11), take the real part of
the scalar product of each member of (9) with zt . This implies ∂t|zt|2L2 = 0 .
For (12) take the scalar product with χ(−R−1∆)∂tzt where χ ∈ C∞

0 (R) satisfies 0 ≤ χ ≤ 1 and
χ ≡ 1 in a neighborhood of 0 , with R > 0 :

0 = 2Re 〈∂tzt , χ(−R−1∆)i∂tzt〉
= ∂t〈zt , −∆χ(−R−1∆)zt〉+ 2Re 〈∂tzt , χ(−R−1∆)[(V ∗ |zt|2)zt]〉
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Integrating this identity from 0 to t and taking the limit as R → ∞ with the help of (17) gives

∫

Rd

|∇zt|2dx−
∫

Rd

|∇z0|2 dx+ 2

∫ t

0

Re 〈∂szs , (V ∗ |zs|2)zs〉 ds = 0 .

Due to the symmetry of V (x) = V (−x) , the last integrand equals

Re 〈∂szs , (V ∗ |zs|2)zs〉 =

∫

R2d

∂s(|zs(x)|2)V (x− y)|zs(y)|2 dxdy

=
1

2
∂s

∫

R2d

|zs(x)|2V (x− y)|zs(y)|2 dxdy .

The conserved quantities (11) and (12) combined with (16) imply |zt|H1 ≤ C|z0|H1 for some con-
stant independent of t ∈ (−Tz0, Tz0) , and hence Tz0 = +∞ . �

3 Derivation of the mean field dynamics

This section contains the proof of our main Theorem 1.1. Below, we recall from our previous work
[4] the notion of infinite dimensional Wigner measures and collect some of their properties. We
will often make use of Weyl and Wick quantization throughout this section. So, we suggest first
the reading of Appendix B.
Two phase-spaces will be necessary for this analysis: Z0 = L2(Rd;C) (resp. Z1 = H1(Rd;C))
endowed with its scalar product 〈 , 〉 (resp. 〈z1, z2〉Z1 = 〈z1 , (1 − ∆)z2〉), its norm |z|2Z0

=
〈z , z〉 = |z|2L2 (resp. |z|2Z1

= |z|2H1), its real scalar product Re 〈z , z〉 (resp. Re 〈z1 , z2〉Z1). Only
on Z0 , we will use the symplectic structure with σ(z1, z2) = Im 〈z1 , z2〉 . Meanwhile, the real
euclidean structure on Z1 is important especially when the Liouville transport equation is written
as a gradient flow according to Appendix C.

3.1 Wigner measures

The Wigner measures are defined after the next result proved in [4, Theorem 6.2].

Theorem 3.1. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H parametrized by ε . Assume

Tr[̺εN
δ] ≤ Cδ uniformly w.r.t. ε ∈ (0, ε) for some fixed δ > 0 and Cδ ∈ (0,+∞) . Then for every

sequence (εn)n∈N with limn→∞ εn = 0 , there exist a subsequence (εnk
)k∈N and a Borel probability

measure µ on Z0 , such that

lim
k→∞

Tr[̺εnk
bWeyl] =

∫

Z0

b(z) dµ(z) ,

for all b in the cylindrical Schwartz space Scyl(Z0) defined in Subsection B.1.

Moreover this probability measure µ satisfies

∫

Z0

|z|2δZ0
dµ(z) <∞ .

Definition 3.2.
The set of Wigner measures associated with a family (̺ε)ε∈(0,ε̄) (resp. a sequence (̺εn)n∈N) which
satisfies the assumptions of Theorem 3.1 is denoted by

M(̺ε, ε ∈ (0, ε̄)) , (resp. M(̺εn , n ∈ N)) .

Moreover this definition can be extended to any family (̺ε)ε∈(0,ε̄) such that

‖(1 +N)δ̺ε(1 +N)δ‖L1(H) ≤ Cδ

for some δ > 0 with the decomposition ̺ε = λR,+ε ̺R,+ε − λR,−ε ̺R,−ε + iλI,+ε ̺I,+ε − iλI,−ε ̺I,−ε .
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Wigner measures are in practice identified via their characteristic functions according to the
relation

M(̺ε, ε ∈ (0, ε̄)) = {µ} ⇔ lim
ε→0

Tr[̺εW (
√
2πξ)] = F−1(µ)(ξ)

⇔ lim
ε→0

Tr[̺εW (ξ)] =

∫

Z0

ei
√
2Re 〈ξ,z〉dµ(z) .

The expression M(̺ε, ε ∈ (0, ε̄)) = {µ} simply means that the family (̺ε)ε∈(0,ε̄) is ”pure” in the
sense

lim
ε→0

Tr
[
̺εb

Weyl
]
=

∫

Z
b(z) dµ ,

for all cylindrical symbol b without extracting a subsequence. Actually the general case can be
reduced to this one, after reducing the range of parameters to ε ∈ {εnk

, k ∈ N} . For checking
properties of the elements of M(̺ε, ε ∈ (0, ε̄)) , extracting a subsequence in this way allows to
suppose without loss of generality M(̺ε, ε ∈ (0, ε̄)) = {µ} .
A simple a priori estimate argument allows to extend the convergence to symbols which have
a polynomial growth and to take Wick quantized symbols, with compact kernels, belonging to
P∞
alg(Z0) = ⊕algp,q∈N

P∞
p,q(Z0) (see [4, Corollary 6.14]).

Proposition 3.3. Let (̺ε)ε∈(0,ε̄) be a family of normal states on L(H) parametrized by ε such

that Tr[̺εN
α] ≤ Cα holds uniformly with respect to ε ∈ (0, ε̄) , for all α ∈ N ,and such that

M(̺ε, ε ∈ (0, ε̄)) = {µ} . Then the convergence

lim
ε→0

Tr[̺εb
Wick] =

∫

Z0

b(z) dµ(z) , (18)

holds for any b ∈ P∞
alg(Z0) .

A variant of the above result was provided in [4, Theorem 6.13].

Proposition 3.4. Assume that the family of operators (̺ε)ε∈(0,ε) satisfies

‖(1 +N)α̺ε(1 +N)α‖L1(H) ≤ Cα

uniformly w.r.t ε ∈ (0, ε) for all α ∈ N . For any fixed β belonging to P∞
alg(Z0) the family

(βWick̺ε)ε∈(0,ε) satisfies the assumptions of Definition 3.2 and

M(βWick̺ε) = {βµ , µ ∈ M(̺ε)} . (19)

A closely related question is whether Wigner measures are completely identified via Wick-
quantized observable. Of course this is related with the Hamburger moment problem even in finite
dimension and we again refer to [4] for further discussions about this.

3.2 Weak mean field limit of the dynamics in terms of the characteristic

function

After some extraction process and for some specific initial data (̺ε)ε∈(0,ε̄) , a family (µt)t∈R of

measures can be defined and solves weakly a transport equation. We consider on L2
s(R

2d) the
(unbounded) multiplication operators

Ṽ =
1

2
V (x1 − x2) and Ṽs = (e−is∆x1 ⊗ e−is∆x2 )Ṽ (eis∆x1 ⊗ eis∆x2 ) ,

and respectively associate with them the polynomials, well defined on Z1 = H1(Rd) ,

V (z) =
1

2
〈z⊗2, V (x− y)z⊗2〉L2

s(R
2d) and Vs(z) = 〈z⊗2, Ṽs z

⊗2〉L2
s(R

2d) , z ∈ Z1 .

Instead of considering
̺ε(t) = e−i

t
εHε̺εe

i tεHε ,
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we will rather work with
˜̺ε(t) = ei

t
εH

0
ε e−i

t
εHε̺εe

i tεHεe−i
t
εH

0
ε . (20)

Our assumptions will be made in terms of the operator Sε(1) already introduced in (5) and which
can be rewritten as a Wick observable.

Definition 3.5. The operator Sε is defined by

Sε =

∞∑

n=0

H0,(n)
ε + εn+ (εn)3 = dΓ(1−∆) +N3 ,

with domain D(Sε) =
{

Ψ ∈ H ,
∑∞

n=0 ‖(H
0,(n)
ε + εn+ (εn)3)Ψ(n)‖2L2

s(R
dn) <∞

}

and H
0,(n)
ε =

dΓ(1−∆)
∣
∣∨n Z0

.

Remember that it is self-adjoint with this domain (see (5)). Moreover it can be written Sε =
sWick
ε with

sε(z) = 〈z , (1 −∆)z〉+
[
|z|6Z0

+ 3ε|z|4Z0
+ ε2|z|2Z0

]
.

Proposition 3.6. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H satisfying for some finite
constant C > 0 the estimate

Tr[(1 + Sε)̺ε(1 + Sε)] ≤ C uniformly w.r.t ε ∈ (0, ε̄) .

The operator Sε is the one given in Definition 3.5 and ˜̺ε(t) is the operator given by (20). Then
for any sequence (εn)n∈N in (0, ε̄) such that limn→∞ εn = 0 there exist a subsequence (εnk

)k∈N and
a family (µ̃t)t∈R of Borel probability measures on Z0 satisfying for any t ∈ R

M(˜̺εnk
(t), k ∈ N) = {µ̃t} ,

with the Liouville equation

µ̃t(e
i
√
2Re 〈ξ,.〉) = µ̃0(e

i
√
2Re〈ξ,.〉)− 2

√
2i

∫ t

0

µ̃s(e
i
√
2Re 〈ξ,z〉 Im 〈z⊗2, Ṽsξ ⊗ z〉) ds ,

= µ̃0(e
i
√
2Re 〈ξ,.〉) + i

∫ t

0

µ̃s({Vs(.); ei
√
2Re 〈ξ,.〉}) ds , for all ξ ∈ Z1 . (21)

Proof. The proof uses several preliminary lemmas stated below. The first step is to prove the
existence of Wigner measures defined for all times t ∈ R . This is done in Proposition 3.9. Let us
now prove the Liouville equation.
By Lemma 3.8 we have

Tr[ ˜̺ε(t)W (ξ)] = Tr[̺εW (ξ)] + i

∫ t

0

Tr[˜̺ε(s)W (ξ)
4∑

j=1

εj−1bj(s, ξ)
Wick] ds , (22)

where bj are the following polynomials

b1(s, ξ) = −2
√
2 Im 〈z⊗2, Ṽs ξ ⊗ z〉 b2(s, ξ) = −Re 〈z⊗2, Ṽs ξ

⊗2〉+ 2〈ξ ∨ z, Ṽsξ ∨ z〉

b3(s, ξ) =
√
2Im 〈ξ⊗2, Ṽs ξ ⊗ z〉 b4(s, ξ) =

1

4
〈ξ⊗2, Ṽs ξ

⊗2〉 .

With the number estimate in Proposition B.1, Lemma 3.7 below will ensure that the sum in the
r.h.s over j = 2, · · · , 4 converges to 0 when ε→ 0 . On the other hand, the term with j = 1 has a
limit according to Lemma 3.10 applied with ˜̺ε(t) after noticing that Tr [(1 + Sε)˜̺ε(t)(1 + Sε)] ≤ C′

owing to ‖(1 + Sε)
±1ei

t
εH

ε
0 e−i

t
εHε(1 + Sε)

∓1‖ ≤ C′′ due to Proposition 2.3. �

The above proof is completed in essentially three steps: 1) The relation (22) is first established
by extending Wick-calculus arguments to the case when V is unbounded, and rough estimates for
bj(s, ξ)

Wick , j = 1, . . . , 4 , are given; 2) An Ascoli type argument, relying on these rough estimates
allows to make the subsequence extraction (εnk

)k∈N uniform for all t ∈ R ; 3) An additional
compactness argument is given in order to ensure the convergence of the term with j = 1 in (22).
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3.2.1 Wick calculus with unbounded kernels

The results presented in this paragraph would be direct applications of the Wick calculus given
in Proposition B.2 for a bounded potential V ∈ L∞(Rd) . Although the algebra is the same as in
the bounded case, justifying the formulas for unbounded potentials fulfilling (A1), (A2) and (A3)
requires some analysis.

Lemma 3.7. The identity

(
VWick
s W (ξ)−W (ξ)VWick

s

)
Ψ =W (ξ)





4∑

j=1

εjbj(s, ξ)
Wick



Ψ , (23)

holds for any ξ ∈ H2(Rd) and Ψ ∈ D(Sε) , with Sε given by Definition 3.5. Additionally, for all

Ψ ∈ D(Sε) ⊂ D(S
1/2
ε ) ⊂ D(N

3
2 ) , the estimates

‖bj(s, ξ)Wick Ψ‖ ≤ C(1 + |ξ|4Z1
)‖(1 + N)

3
2Ψ‖ ≤ C′(1 + |ξ|4Z1

)‖(1 + Sε)
1/2Ψ‖ , (24)

hold uniformly w.r.t j ∈ {1, . . . , 4} , s ∈ R , when ξ ∈ H1(Rd) .

Proof. We first remark that, owing to the assumption (A2) and the estimate (16), the polynomials
bj(s, ξ) , j = 1, · · · , 4 belong to the set ⊕p,q≤3Pp,q(Z0) , with

|bj |⊕p+q≤3Pp,q(Z0) ≤ C(1 + |ξ|4Z1
) .

Hence, Proposition B.1 and Proposition 2.2 prove (24) with

D(Sε) ⊂ D(N3/2) ⊂ D(bj(s, ξ)
Wick) , j = 1, . . . , 4 , and D(Sε) ⊂ D(VWick

s ) . (25)

By Proposition 2.4 the domain D(Sε) is invariant under the action of W (ξ) for all ξ ∈ H2(Rd) . A
Taylor expansion yields, for all z ∈ Z1 , the equality

Vs(z +
iε√
2
ξ) = Vs(z) +

4∑

j=1

εjbj(s, ξ)[z] .

The formula (23) is standard for bounded Ṽ due to W ∗(ξ)bWickW (ξ) = b(. + iε√
2
ξ)Wick when

b ∈ Palg(Z0) = ⊕algp,q∈N
Pp,q(Z0) . Let us reconsider the proof of this result for our unbounded Ṽ .

With the previous estimates, the quantity A(t) = 〈Φ,W (tξ)Vs(. +
iε√
2
tξ)WickW (tξ)∗Ψ〉 is well

defined for all Φ,Ψ ∈ D(Sε) with

A(t) =

4∑

j=1

εjtj〈Φ,W (tξ)bj(s, ξ)
WickW (tξ)∗Ψ〉+ 〈Φ,W (tξ)V Wick

s W (tξ)∗Ψ〉 .

We first establish in a weak sense the equality (23): Differentiate A(t) for any Ψ,Φ ∈ D(Sε) ,

d

dt
A(t) =

4∑

j=1

εj〈Φ,W (tξ)
{
[iφ(ξ), bj(s, ξ)

Wick]tj + jtj−1bj(s, ξ)
Wick

}
W (tξ)∗Ψ〉

+〈Φ,W (tξ)[iφ(ξ), V Wick
s ]W (tξ)∗Ψ〉

=

3∑

j=0

εjtj〈Φ,W (tξ)
{
[iφ(ξ), bj(s, ξ)

Wick] + (j + 1)bj+1(s, ξ)
Wick

}
W (tξ)∗Ψ〉

where b0(z) = Vs(z) . Now, a direct calculation with φ(ξ) = 1√
2
(a(ξ) + a∗(ξ)) gives

[iφ(ξ), bj(s, ξ)
Wick] = −(j + 1)bj+1(s, ξ)

Wick
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for j = 0, · · · , 3 . Therefore A(1) = A(0) and, knowing (25), we conclude that

W (ξ)



VWick
s +

4∑

j=1

εjbj(s, ξ)
Wick



W (ξ)∗Ψ = VWick
s Ψ . (26)

for any Ψ ∈ D(Sε) . With Ψ = W (ξ)Ψ̃ in (26) for any Ψ̃ ∈ D(Sε) , while Ψ ∈ D(Sε) owing to
ξ ∈ H2(Rd) , the claimed equality is obtained.

�

Lemma 3.8. Let (̺ε)ε∈(0,ε̄) a family of normal states on H . Assume that ̺ε(Sε+1) ∈ L1(H) for

all ε ∈ (0, ε̄) , with Sε given by Definition 3.5 and ˜̺ε(t) by (20). Then for any ξ ∈ H2(Rd) , the
map s 7→ Tr[˜̺ε(s)W (ξ)] belongs to C1(R) and the following integral formula holds true

Tr[˜̺ε(t)W (ξ)] = Tr[̺εW (ξ)] +
i

ε

∫ t

0

Tr[˜̺ε(s)W (ξ)

4∑

j=1

εjbj(s, ξ)
Wick] ds .

Proof. Write

Tr[(˜̺ε(t)− ˜̺ε(s))W (ξ)]

= Tr
[

̺ε(Sε + 1)(Sε + 1)−1
(

ei
t
εHεe−i

t
εH

0
ε − ei

s
εHεe−i

s
εH

0
ε

)

W (ξ)ei
s
εH

0
ε e−i

s
εHε

]

+Tr
[

̺εe
i tεHεe−i

t
εH

0
εW (ξ)(Sε + 1)(Sε + 1)−1

(

ei
t
εH

0
ε e−i

t
εHε − ei

s
εH

0
ε e−i

s
εH

0
ε

)]

.

The following limits hold true on D(Sε)

lim
s→t

1

t− s
(Sε + 1)−1

(

ei
t
εHεe−i

t
εH

0
ε − ei

s
εHεe−i

s
εH

0
ε

)

=
i

ε
(Sε + 1)−1ei

t
εHε(Hε −H0

ε )e
−i tεH

0
ε

lim
s→t

1

t− s
(Sε + 1)−1

(

ei
t
εH

0
ε e−i

t
εHε − ei

s
εH

0
ε e−i

s
εH

0
ε

)

=
i

ε
(Sε + 1)−1ei

t
εH

0
ε (H0

ε −Hε)e
−i tεHε ,

by Stone’s theorem and the invariance of D(Sε) w.r.t eitH
0
ε and eitHε . By using the estimate in

Proposition 2.3, the latter limits are limits in L(H) w.r.t the strong convergence topology. After

noticing that ̺εe
i tεHεe−i

t
εH

0
εW (ξ)(Sε+1) is trace class when ξ ∈ H2(R), owing to Proposition 2.4

and Proposition 2.3, we take the trace and let s→ t .
Now integrating the derivative from 0 to t yields

Tr[ ˜̺ε(t)W (ξ)] = Tr[̺εW (ξ)] +
i

ε

∫ t

0

Tr
[
˜̺ε(s)

(
VWick
s W (ξ)−W (ξ)V Wick

s

)]
ds .

When ξ ∈ H2(Rd) , the equality

Tr
[
(1 + Sε)˜̺ε(s)

(
VWick
s W (ξ)−W (ξ)V Wick

s

)
(1 + Sε)

−1
]
= Tr[˜̺ε(s)W (ξ)

4∑

j=1

εjbj(s, ξ)
Wick] ,

makes sense, since (1 + Sε)˜̺ε(s) ∈ L1(H) and by Lemma 3.7

(
VWick
s W (ξ)−W (ξ)V Wick

s

)
(1 + Sε)

−1 =W (ξ)





4∑

j=1

εjbj(s, ξ)
Wick



 (1 + Sε)
−1 in L(H) .

�
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3.2.2 Subsequence extraction for all times

The first step in the proof of Proposition 3.6 is to show the existence of Wigner measures for all
times. This is accomplished below by following merely the same lines as [6, Proposition 3.3].

Proposition 3.9. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H satisfying for some finite
constant C > 0 the estimate

Tr[̺ε(1 + Sε)] ≤ C uniformly w.r.t ε ∈ (0, ε̄) .

The operator Sε and ˜̺ε(t) are respectively given by Definition 3.5 and (20). Then for any sequence
(εn)n∈N in (0, ε̄) such that limn→∞ εn = 0 there exists a subsequence (εnk

)k∈N and a family of
Borel probability measures on Z0 , (µ̃t)t∈R , satisfying

M(˜̺εnk
(t), k ∈ N) = {µ̃t} ,

for any t ∈ R .

Proof. We only sketch the proof and essentially indicate the points which differ from [6, Propo-
sition 3.3]. Let us write

Gε(t, ξ) = Tr[˜̺ε(t)W (ξ)] .

By using Proposition B.1 and (1 +N) ≤ 2(1 +N3) ≤ 2(1 + Sε) , one can prove like in [6] that

|Gε(s, ξ)−Gε(s, η)| ≤ C|ξ − η|
1
2

Z0
(|ξ|2Z0

+ |η|2Z0
+ 1)

1
4 (27)

for some constant C > 0 . We have

|Gε(t, η)−Gε(s, ξ)| ≤ |Tr [(˜̺ε(t)− ˜̺ε(s))W (ξ)]|+ |Gε(s, ξ)−Gε(s, η)| .

On the other hand, by making use of Lemma 3.8 we get

|Tr[˜̺ε(t)− ˜̺ε(s)]W (ξ)]| ≤

∣
∣
∣
∣
∣
∣

∫ t

s

Tr[˜̺ε(w)

4∑

j=1

εj−1bj(w, ξ)
wick] dw

∣
∣
∣
∣
∣
∣

≤ C0|t− s|‖(1 + Sε)
1/2̺ε(1 + Sε)

1/2‖L1(H)

× sup
w∈[t,s]

‖(1 + Sε)
−1/2





4∑

j=1

εj−1bj(w, ξ)
wick



 (1 + Sε)
−1/2‖L(H)

≤ C1|t− s|(1 + |ξ|Z1)
4 ,

when ξ ∈ H2(Rd) . Taking an approximation ξn ∈ H2(R) , n ∈ N , such that limn→∞ |ξ−ξn|Z1 = 0 ,
Z1 = H1(Rn) , and taking the limit as n → ∞ of the left-hand side with the help of (27), allows
first to extend the previous inequality to any ξ ∈ Z1 .
Thus, we conclude that

|Gε(t, η)−Gε(s, ξ)| ≤ C̃
(

|t− s|(|ξ|Z1 + 1)4 + |η − ξ|Z0

√

|η|2Z0
+ |ξ|2Z0

)

, (28)

holds for all (s, ξ), (t, η) ∈ R×Z1 , uniformly w.r.t. ε ∈ (0, ε) . Remember also the uniform estimate
|Gε(s, ξ)| ≤ 1 .
Now, we apply the same Ascoli type argument the one used in [6, Proposition 3.3] in order to prove
the existence of a subsequence (εnk

)k and a continuous function G(., .) : R × Z1 → C such that
Gεk(t, ξ) converges to G(t, ξ) for any t ∈ R and ξ ∈ Z1 . Furthermore (27) allows to extend G(., .) to
a continuous function on R×Z0 . An “δ/3”-argument shows that for any (t, ξ) ∈ R×Z0 , limn→∞
Gεn(t, ξ) exists and equals G(t, ξ) , so that G(t, .) is a norm continuous normalized function of
positive type. Therefore, for any t ∈ R , G(t, .) is a characteristic function of weak distribution (or
projective family of probability measures) µ̃t on Z0 . Finally the proof is ended as in [6, Proposition
3.3]. �
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3.2.3 An additional compactness argument

Here, the compactness assumption (A3) is converted into some compactness property of the Wick
symbol b1 . It allows to refer indirectly to Proposition 3.3 and to take the limit as ε → 0 in the
term with j = 1 in (22). With the rough estimates used in Proposition 3.9, the terms in (22)
corresponding to j > 1 with a factor εj−1 will vanish as ε → 0 . The next Lemma applied with
˜̺ε(s) in the integral term of (22), will end the proof of Proposition 3.6.

Lemma 3.10. Let ̺ε be a family of normal states on H satisfying for some finite constant C > 0
the estimate

Tr [(1 + Sε)̺ε(1 + Sε)] ≤ C uniformly w.r.t ε ∈ (0, ε̄) .

Here Sε is given by Definition 3.5 . Assume that M(̺ε, ε ∈ (0, ε̄)) = {µ} , then for any ξ ∈ Z1 ,

lim
ε→0

Tr[̺εW (ξ)b1(s, ξ)
Wick] =

∫

Z0

e
√
2iRe 〈ξ,z〉b1(s, ξ)[z] dµ(z) .

Proof. The polynomial b1(s, ξ) ∈ P1,2 + P2,1 splits into two similar terms, namely

B1(z) = 〈ξ ⊗ z, Ṽsz
⊗2〉 and B2(z) = 〈z⊗2, Ṽs(z ⊗ ξ)〉

with their associated operators

B̃1 = (〈ξ| ⊗ 1l) Ṽs ∈ L(L2
s(R

2d), L2(Rd)) and B̃2 = S2Ṽs (1l⊗ |ξ〉) ∈ L(L2(Rd), L2
s(R

2d)) .

Let χ ∈ C∞
0 (R) with χ(x) = 1 if |x| ≤ 1 , χ(x) = 0 if |x| ≥ 2 and 0 ≤ χ ≤ 1 . For m ∈ N∗ , set

χm(x) = χ( xm ) and define

B̃1,m = χm(|Dx|)B̃1 (1l⊗ χm(|Dx|))S2 and B̃2,m = S2(1l⊗ χm(|Dx|)) B̃2χm(|Dx|)

as bounded operators in L(L2
s(R

2d), L2(Rd)) and L(L2(Rd), L2
s(R

2d)) respectively. We claim that
both operators B̃1,m and B̃2,m are compact. Actually, B̃2,m = B̃∗

1,m and

B̃1,m =
1

2
(1l⊗ e−is∆x2 )(〈eis∆ξ| ⊗ 1l)(e−ix1Dx2χm(|Dx2 |)V (x2)χm(|Dx2 |)eix1Dx2 )(eis∆x1 ⊗ eis∆x2 )S2 .

Moreover, the linear norm continuous application

A ∈ L(L2(Rd)) 7−→ (〈eis∆ξ| ⊗ 1l)e−ix1Dx2 (1⊗A) ∈ L(L2
s(R

2d), L2(Rd))

preserves the class of Hilbert-Schmidt operators since

‖(〈eis∆ξ| ⊗ 1l)e−ix1Dx2 (1⊗A)‖L2(L2
s(R

2d),L2(Rd)) = |ξ|Z0‖A‖L2(Z0)

comes by computing the Schwartz kernel with ‖K‖2L2(L2(µ);L2(ν)) =
∫
|K(x, y)|2 dν(x)dµ(y) . Hence

it maps compact operators into compact operators, because the space of compact operators, L∞ , is
the norm closure of L2 in L . Therefore, by taking A = χm(|Dx|)V (x)χm(|Dx|) which is compact
by assumption (A3), we conclude that B̃1,m and B̃2,m are compact.
Now, writing for j = 1, 2

|Tr[̺εW (ξ)BWick
j ]− µ(e

√
2iRe 〈ξ,z〉Bj(z))| ≤ |Tr[̺εW (ξ)(BWick

j −BWick
j,m )]| (29)

+|Tr[̺εW (ξ)BWick
j,m ]− µ(e

√
2iRe 〈ξ,z〉Bj,m(z))| (30)

+|µ(e
√
2iRe 〈ξ,z〉Bj,m(z))− µ(e

√
2iRe 〈ξ,z〉Bj(z))| , (31)

with Bj,m ∈ P∞
alg(Z0) . The right hand side (30) converges to 0 owing to Proposition 3.4. Since

s− limm→∞ χm(|Dx|) = 1l , the polynomials Bj,m(z) converge to Bj(z) for any z ∈ Z0 , while the
estimate

|Bj,m(z)| ≤ c|ξ|Z1 ‖(1−∆)−1/2V ‖ |z|3Z0
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holds true uniformly w.r.t m for some constant c > 0 . Additionally, the estimate Tr[̺εN
3/2] ≤ C

implies ∫

Z0

|z|3Z0
dµ ≤ C .

Therefore the dominated convergence theorem applies and the right hand side (31) tends to 0 as
m→ ∞ . It remains to prove the convergence of the r.h.s of (29). Writing

Tr[̺εW (ξ)(BWick
j −BWick

j,m )] = Tr[(Sε + 1)̺ε(Sε + 1)(Sε + 1)−1W (ξ)(Sε + 1)

×(Sε + 1)−1(BWick
j −BWick

j,m )(Sε + 1)−1]

and referring to Proposition 2.4 lead to the estimate

|Tr[̺εW (ξ)(BWick
j −BWick

j,m )]| ≤ c‖(Sε + 1)−1(BWick
j −BWick

j,m )(Sε + 1)−1‖L(H) .

By functional calculus of strongly commuting self-adjoint operators we see that (Sε + 1)−1(
√
N+

dΓ(1 − ∆) + 1) is uniformly bounded with respect to ε ∈ (0, ε̄) . By applying Lemma B.4 (with
A = 1−∆), we conclude that

|Tr[̺εW (ξ)(BWick
j −BWick

j,m )]| . ‖(1−∆x2)
−1/2(B̃j − B̃j,m)(1 −∆x2)

−1/2‖
. |ξ|Z0 ‖(1−∆)−1/2V ‖L(Z0) ‖(1−∆x)

−1/2(1 − χm(|Dx|))‖L(Z0)

Again by functional calculus ‖(1−∆x)
−1/2(1−χm(|Dx|))‖ is estimated by 1

m and the r.h.s of (29)
goes to 0 as m → ∞ uniformly w.r.t ε ∈ (0, ε̄) . Finally, a ”δ/3-argument” with the established
convergence of (29), (30) and (31) yields the result. �

3.3 Asymptotic a priori estimates

In this section, a priori information on Wigner measures are derived from a priori estimates on the
state ̺ε . In particular, we shall prove the next result.

Proposition 3.11. Let Sε be the operator given by Definition 3.5 and assume that the family of
normal states (̺ε)ε∈(0,ε̄) satisfies

∀α ∈ N, ∃Cα > 0, ∀ε ∈ (0, ε̄), Tr [(1 + Sε)̺ε(1 + Sε)(1 +N)α] ≤ Cα ,

and M(̺ε, ε ∈ (0, ε̄)) = {µ} . Then the measure µ is carried by Z1 , its restriction to Z1 is a Borel
probability measure on Z1 and

∫

Z0

|z|4Z1
|z|2Z0

dµ(z) =

∫

Z1

|z|4Z1
|z|2Z0

dµ(z) < +∞ . (32)

The proof of the above proposition requires the two next Lemmas.

Lemma 3.12. Let b̃ be a non negative (self-adjoint) operator on
∨pZ0 and assume that the family

of normal states (̺ε)ε∈(0,ε̄) , with Tr [̺εN
α] ≤ Cα for all α ∈ N , satisfies

Tr
[
̺εb

Wick
]
≤ C and M(̺ε, ε ∈ (0, ε̄)) = {µ} .

Then Z0 ∋ z 7→ b(z) = 〈z⊗p , b̃z⊗p〉 ∈ [0,+∞] is a Borel function on Z0 and
∫

Z0
b(z) dµ(z) ≤ C .

Proof. When b ∈ P∞
p,p(Z0) has a compact kernel b̃ we know after Proposition 3.3 (see [4, Corollary

6.14] for a complete proof) that

C ≥ lim
ε→0

Tr
[
̺εb

Wick
]
=

∫

Z0

b(z) dµ(z) .

We use the fact that b̃ → bWick is operator monotone, in the following sense: if the (possibly
unbounded) non negative operators b̃1, b̃2 in

∨pZ0 satisfy b̃2 ≥ b̃1 ≥ 0 , then the densely defined
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essentially self-adjoint operators bWick
j , j = 1, 2 in H satisfy bWick

2 ≥ bWick
1 ≥ 0 .

By taking b̃ ∈ L(∨pZ) , for b ∈ Pp,p(Z) , as the supremum of b̃n with b̃n compact, we obtain firstly
for all n ∈ N

C ≥ lim inf
ε→0

Tr
[

̺1/2ε bWick̺1/2ε

]

≥ lim
ε→0

Tr
[

̺1/2ε bWick
n ̺1/2ε

]

=

∫

Z0

bn(z) dµ(z) .

Secondly, the monotone convergence yields

C ≥ sup
n∈N

∫

Z0

〈z⊗p , b̃nz⊗p〉 dµ(z) =
∫

Z0

b(z) dµ(z) .

When b̃ is unbounded, it can be approximated by b̃n = b̃

1+ b̃
n

∈ L(
∨pZ0) , for n ≥ 1 . Set

bn(z) = 〈z⊗p , b̃nz⊗p〉 . The function b(z) = 〈z⊗p , b̃z⊗p〉 = supn∈N bn(z) is a Borel function on Z0

as a supremum of a sequence of continuous functions. The uniform estimate

Tr
[
̺εb

Wick
n

]
≤ Tr

[
̺εb

Wick
]
≤ C

with the result for b̃n ∈ L(∨pZ0) gives
∫

Z0
bn(z) dµ(z) ≤ C , for all n ∈ N∗ . Again by monotone

convergence, we get ∫

Z0

b(z) dµ(z) = sup
n∈N∗

∫

Z0

bn(z) dµ(z) ≤ C .

�

Lemma 3.13. Let A be a non negative, self-adjoint with domain D(A) , operator in Z0 . Assume
that the family (̺ε)ε∈(0,ε̄) satisfies the uniform estimate Tr [̺εN

α] ≤ Cα , for all α ∈ N , and
M(̺ε, ε ∈ (0, ε̄)) = {µ} . Then the following implication hold:

(∀ε ∈ (0, ε̄), Tr [̺εdΓ(A)] ≤ C) ⇒
(∫

Z0

〈z , Az〉 dµ(z) ≤ C

)

,

(
∀ε ∈ (0, ε̄), Tr

[
̺εdΓ(A)

2
]
≤ C

)
⇒

(∫

Z0

〈z , Az〉2 dµ(z) ≤ C

)

,

(
∀ε ∈ (0, ε̄), Tr

[
̺εdΓ(A)

2N
]
≤ C

)
⇒

(∫

Z0

〈z , Az〉2|z|2Z0
dµ(z) ≤ C

)

.

In all the three cases, the measure µ is carried by the form domain Q(A) of A .

Proof. The first implication is a direct application of Lemma 3.12 applied with

b(z) = 〈z , Az〉 , b̃ = A , bWick = dΓ(A) .

The second one is the consequence of

dΓ(A)2 =
(
〈z⊗2 , (A⊗A)z⊗2〉

)Wick
+ εdΓ(A2) ≥

(
〈z⊗2 , (A⊗A)z⊗2〉

)Wick

and Lemma 3.12 with
b(z) = 〈z , Az〉2 and b̃ = A⊗ A .

For the last one, notice that N = dΓ(1) and dΓ(A) commute so that

dΓ(A)2N ≥ N
(
〈z⊗2 , (A⊗A)z⊗2〉

)Wick
.

With N = (|z|2Z0
)Wick , the composition formula of Proposition B.2 (extended to an unbounded

A) says that N
(
〈z⊗2 , (A⊗A)z⊗2〉

)Wick
= bWick

ε with

bε(z) = |z|2Z0
〈z , Az〉2 + 2ε〈z , Az〉2 .
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Hence we get

dΓ(A)2N ≥
(
|z|2Z0

〈z , Az〉2
)Wick

.

So, the result is again a consequence of Lemma 3.12 with

b(z) = |z|2Z0
〈z , Az〉2 , b̃ =

1

3
(1l⊗A⊗A+A⊗ 1l⊗A+A⊗A⊗ 1l) .

For the last statement it suffices to notice that the integrand is infinite in the Borel subset of Z0 ,
Z0 \Q(A) = {z ∈ Z0, 〈z , Az〉 = +∞} . �

Proof of Proposition 3.11: With Sε = dΓ(1−∆) +N3 , while dΓ(1−∆) and N commute, we
know

(1 + Sε)(1 +N) ≥ dΓ(1−∆) .

Hence Lemma 3.13 says that the measure µ is carried by Q(1−∆) = Z1 with
∫

Z0

|z|2Z1
dµ(z) =

∫

Z1

|z|2Z1
dµ(z) ≤ C . (33)

Let us check that µ is a Borel measure on (Z1, | |Z1) . The tightness property is given by the above
inequality. According to [4, 54, 58], it suffices to check that

G1(ξ) =

∫

Z1

e−2iπRe 〈ξ , z〉Z1 dµ(z)

with 〈u , v〉Z1 = 〈u , (1 −∆)v〉Z0 ,

is a positive type function which is continuous w.r.t ξ restricted to any finite dimensional subspace
of Z1 .
Consider the regularized version

G1,n(ξ) =

∫

Z1

e
−2iπRe 〈 A

1+A
n

ξ , z〉Z0
dµ(z) =

∫

Z0

e
−2iπRe 〈 A

1+A
n

ξ , z〉Z0
dµ(z)

with A = (1−∆) . For all ξ ∈ Z1 the pointwise convergence

∀z ∈ Z1 , lim
n→∞

〈 A

1 + A
n

ξ , z〉Z0 = 〈ξ , z〉Z1

and the uniform bound

|e
−2iπRe 〈 A

1+A
n

ξ , z〉Z0 | ≤ 1

imply the pointwise convergence of the integrals

∀ξ ∈ Z1, lim
n→∞

G1,n(ξ) = G1(ξ) .

But G1,n(ξ) equals G((1 +
A
n )

−1Aξ) , where G is the characteristic function of µ in Z0:

G(η) =

∫

Z0

e−2iπRe 〈η , z〉Z0 dµ(z) .

Hence for every n ∈ N , the function G1,n(ξ) is a positive type function. As a pointwise limit of
G1,n , the function G1 is also a positive type function.
For the continuity, the equality

G1(ξ)−G1(ξ
′) =

∫

Z1

(

e−iπRe 〈ξ−ξ′,z〉Z1 − eiπRe 〈ξ−ξ′,z〉Z1

)

e−iπRe 〈ξ+ξ′ , z〉Z1 dµ(z)

implies

|G1(ξ)−G1(ξ
′)| ≤ 2π|ξ − ξ′|Z1

∫

Z1

|z|Z1 dµ(z) ≤ π

(∫

Z1

1 + |z|2Z1
dµ(z)

)

|ξ − ξ′|Z1 , (34)
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and the function G1 is a Lipschitz function on Z1 . This finishes the proof that µ is a Borel
probability measure on Z1 .
For the inequality (32), it suffices to notice the inequality of (commuting) operators

(1 + Sε)
2(1 +N) ≥ (dΓ(1 −∆)2)N .

Applying Lemma 3.13 yields ∫

Z1

|z|4Z1
|z|2Z0

dµ(z) ≤ C .

�

3.4 Uniqueness of the mean field dynamics via measure transportation

technique

Now we are in position to prove Theorem 1.1. This will be done in three steps: 1) Writing a
transport equation, in a weak sense in Z1 for µt ; 2) Solving this equation as µt = Φ(t, 0)∗µ0 when
the initial state ̺ε fulfills strong decay estimates; 3) Relaxing the strong decay estimates.

3.5 The transport equation on Z1

We shall need similar notions about cylindrical functions, as the one used in Z0 and recalled in
Appendix B.1. Let P1 denote the set of all finite rank orthogonal projections on Z1 and for a given
℘ ∈ P1 let L℘,1(dz) denote the Lebesgue measure on the finite dimensional subspace ℘Z1 , with
volume 1 for a Z1-orthonormal hypercube. A function f : Z1 → C is said cylindrical if there exists
℘ ∈ P1 and a function g on ℘Z1 such that f(z) = g(℘z), for all z ∈ Z1 . In this case we say that
f is based on the subspace ℘Z1 . The set of C∞

0 (resp. S) cylindrical functions on Z1 , is denoted
by C∞

0,cyl(Z1) (resp. Scyl(Z1)). We shall also need C∞
0,cyl(Z1 × R) , in which the algebraic tensor

product C∞
0,cyl(Z1)

alg
⊗ C∞

0 (R) is dense. Finally the Fourier transform of elements of Scyl(Z1) is
given by

F1[f ](ξ) =

∫

℘Z1

f(ξ) e−2πiRe 〈z,ξ〉Z1 L℘,1(dz) ,

f(z) =

∫

℘Z1

F1[f ](ξ) e2πiRe 〈z,ξ〉Z1 L℘,1(dξ) .

Proposition 3.14. Let Sε and ˜̺ε(t) be the operators given by Definition 3.5 and (20). Assume
that the family of normal states (̺ε)ε∈(0,ε̄) satisfies

∀α ∈ N, ∃Cα > 0, ∀ε ∈ (0, ε̄), Tr [(1 + Sε)̺ε(1 + Sε)(1 +N)α] ≤ Cα ,

and consider a subsequence (εk)k∈N , εk
k→∞→ 0 such that

M(˜̺εk(t), k ∈ N) = {µ̃t}
according to Proposition 3.6. Then the measure µ̃t is a Borel probability measure on Z1 which
satisfies the following properties:

•
∫

Z1
|z|2Z1

dµ̃t(z) +
∫

Z1
|z|4Z1

|z|2Z0
dµ̃t(z) ≤ C′ for some C′ independent of t ∈ R .

• When (en)n∈N∗ is a Hilbert basis of Z1 and Z1 is endowed with the distance dω(z1, z2) =
√
∑

n∈N∗
|〈z1−z2,en〉|2

(1+n)2 , µ̃t is narrowly continuous with respect to t ∈ R .

• The measure µt is a solution to the Liouville equation

∂tµ̃t + i {Vt, µ̃t} = 0 ,

in the weak sense,

∀f ∈ C∞
cyl,0(Z1 × R) ,

∫

R

∫

Z1

(∂tf + i {Vt, f}) dµ̃t(x)dt = 0 . (35)

19



Proof. The Proposition 2.3 as well as the commutations [eitHε ,N] = [eitH
0
ε ,N] = 0 ensure

∀α ∈ N, ∃C′
α > 0, ∀t ∈ R, ∀ε ∈ (0, ε̄) , Tr [(1 + Sε)˜̺ε(t)(1 + Sε)(1 +N)α] ≤ C′

α .

The Proposition 3.11 and (33) applied for any t ∈ R , provides the first results.
It remains to check the narrow continuity and the Liouville equation.
a) Take the Z1-characteristic function

G1(η, t) = µ̃t(e
−2iπRe 〈η , z〉Z1 ) .

The inequality (34) and the uniform estimate
∫

Z1
(1 + |z|2Z1

) dµ̃t(z) ≤ 1 + C′ ensures that the
inequality

|G1(η, t)−G1(η
′, t)| ≤ π(1 + C′)|η − η′|Z1 (36)

holds uniformly for all η, η′ ∈ Z1 and all t ∈ R . From the identity (21), we deduce

µ̃t′(e
i
√
2Re 〈ξ,.〉)− µ̃t(e

i
√
2Re〈ξ,.〉) = −2

√
2i

∫ t′

t

µ̃s(e
i
√
2Re 〈ξ,z〉 Im 〈z⊗2, Ṽsξ ⊗ z〉) ds ,

The estimate (17) implies

|Im 〈z⊗2 , Ṽs(ξ ⊗ z)〉| ≤ C|z|2Z1
|z|Z0 |ξ|H−1(Rd) .

Taking ξ =
√
2π(1 −∆)η with η ∈ H1(R) = Z1 leads to

|G1(η, t)−G1(η, t
′)| ≤ 4πC|η|Z1 |t− t′| sup

s∈[t,t′]

∫

Z1

|z|2Z1
|z|Z0 dµ̃s(z)

and, with the uniform estimate
∫

Z1
|z|4Z1

|z|2Z0
dµ̃t(z) ≤ C′ , to

∀η ∈ Z1, ∀t, t′ ∈ R, |G1(η, t)−G1(η, t
′)| ≤ 4πC(1 + C′)|η|Z1 |t− t′| . (37)

When g ∈ Scyl(Z1) , based on ℘Z1 , the relation

∫

Z1

g(z) dµ̃t(z) =

∫

℘Z1

F1[g](η)G1(η, t) dL℘,1(z) ,

combined with the continuity properties (36)(37), implies that t →
∫

Z1
g(z) dµ̃t(z) is continuous.

This continuity holds for all g ∈ Scyl(Z1) . The uniform weak tightness property
∫

Z1
|z|2Z1

dµ̃t(z) ≤
C′ and Lemma 5.12-f) in [3] ensure that t 7→ µ̃t is narrowly continous when Z1 is endowed with
the distance dω .
b) Integrating (21) with F1[g](η) L℘,1(dz) also provides

∫

Z1

g(z) dµ̃t(z) =

∫

Z1

g(z) dµ̃0(z) + i

∫ t

0

∫

Z1

{Vs , g} (z) dµ̃s(z) ds .

Hence for any g ∈ Scyl(Z1) , the function Ig : t 7→
∫

Z1
g(z) dµ̃t(z) belongs to C1(R) with

∂tIg(t) = i

∫

Z1

{Vt , g} (z) dµ̃t(z) .

By multiplying the above relation by ϕ(t) , with ϕ ∈ C∞
0 (R) , and integrating by part proves (35)

when f(t, z) = ϕ(t)g(z) . We conclude by the density of C∞
0,cyl(Z1)

alg
⊗ C∞

0 (R) in C∞
0,cyl(Z1 ×R) . �
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3.6 Uniqueness of the measure for regular initial data

According to the notations of [3] and Appendix C, we consider the space Prob2(Z1) of Borel
probability measures µ such that

∫

Z1

|z|2Z1
dµ(z) < +∞ .

On this space, we introduce the Wasserstein distance

W2(µ1, µ2) =

[

min
µ∈Γ(µ1,µ2)

∫

Z2
1

|z1 − z2|2Z1
dµ(z1, z2)

]1/2

(38)

where Γ(µ1, µ2) is the set of Borel probability measures µ on Z1×Z1 with the marginals (Π1)∗µ =
µ1 and (Π2)∗µ = µ2 .

Proposition 3.15. Let Sε and ˜̺ε(t) be the operators given by Definition 3.5 and (20). Assume
that the family of normal states (̺ε)ε∈(0,ε̄) satisfies

∀α ∈ N, ∃Cα > 0, ∀ε ∈ (0, ε̄), Tr [(1 + Sε)̺ε(1 + Sε)(1 +N)α] ≤ Cα

and M(̺ε, ε ∈ (0, ε̄)) = {µ0} .

Then for any time t ∈ R , the family (̺ε(t) = e−i
t
εHε̺εe

i tεHε)ε∈(0,ε̄) admits a unique Wigner
measure µt = Φ(t, 0)∗µ0 , where Φ is the Hartree flow defined by (3) on Z1 . It is a Borel probability
measure on Z1 with t 7→ µt being an absolutely continuous curve in Prob2(Z1) w.r.t the Wasserstein
distance W2 and which satisfies

∀t ∈ R ,

∫

Z1

|z|4Z1
|z|2Z0

dµt(z) ≤ C .

Proof. We still start with the state ˜̺ε(t) defined in (20). Proposition 2.6 says that the group
Φ(t, s) associated with (3) and the dynamical system Φ̃(t, s) associated with

i∂tz = v(t, z) , v(t, z) = e−it∆([V ∗ |eit∆z|2]eit∆z)

are well defined on Z1 . Further it gives the estimate for the velocity field

|v(t, z)|Z1 ≤ ‖V (1 −∆)−1/2‖ |z|2Z1
|z|Z0 .

When µ̃t is the Wigner measure defined for all times and associated with a subsequence (εnk
)k∈N ,

we obtain

∀t ∈ R,

∫

Z1

|v(t, z)|2Z1
dµ̃t(z) ≤ C

∫

Z1

|z|4Z1
|z|2Z0

dµ̃t(z) ≤ C′ .

With Proposition 3.14, t 7→ µ̃t is narrowly continuous (on (Z1, dω)) with respect to time t ∈ R .
According to Lemma C.7, the Liouville equation (35) is nothing but the weak form of

∂tµ+∇T (v(t, z)µ) = 0 .

According to Proposition C.1, the curve R ∋ t 7→ µ̃t ∈ Prob2(Z1) is absolutely continuous for the
Wasserstein distance W2 .
Therefore all the conditions of Proposition C.8 are fulfilled and hence we deduce that µ̃t =
Φ̃(t, 0)∗µ0 . Moreover this uniqueness implies M(˜̺ε(t), ε ∈ (0, ε̄)) = {µ̃t} for the whole family
(˜̺ε(t))ε∈(0,ε̄) and all times t ∈ R .

Going back to ̺ε(t) = e−i
t
εH

0
ε ˜̺ε(t)e

i tεH
0
ε , it gives µt = Φ(t, 0)∗µ0 .

The last uniform estimate is given by Proposition 3.14. �
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3.7 Evolution of the Wigner measure for general data

We follow the truncation scheme used in [6]. When the initial data satisfies only

‖(N+H0
ε )
δ/2̺ε(N+H0

ε )
δ/2‖ ≤ Cδ

for some δ > 0 , we approximate ̺ε by

̺ε,R =
1

Tr [χR(N, H0
ε )̺εχR(N, H

0
ε )]

χR(N, H
0
ε )̺εχR(N, H

0
ε )

as R → +∞ where χR(n, h) = χ( nR ,
h
R ), with 0 ≤ χ ≤ 1 , χ ∈ C∞

0 (R2) and χ ≡ 1 in a neighborhood
of 0 . The time evolved state is defined by

̺ε,R(t) = e−i
t
εHε̺ε,R e

i tεHε .

The assumptions ensure that for all times

‖̺ε(t)− ̺ε,R(t)‖L1(H) ≤ ν(R)

with ν independent of (t, ε) and limR→∞ ν(R) = 0 . We recall the Proposition 2.10 of [6].

Proposition 3.16. Let (̺jε)ε∈(0,ε̄) , j = 1, 2 , be two families (or sequences) of normal states on

H such that Tr
[
̺jεN

δ
]
≤ Cδ uniformly w.r.t ε ∈ (0, ε̄) for some δ > 0 and Cδ ∈ (0,+∞) . Assume

further M(̺jε, ε ∈ (0, ε̄)) = {µj} for j = 1, 2 . Then
∫

|µ1 − µ2| ≤ lim inf
ε→0

‖̺1ε − ̺2ε‖L1(H) .

End of the proof of Theorem 1.1: For R ∈ (0,+∞) , the state ̺ε,R fulfills the conditions of
Proposition 3.15 except the uniqueness of the Wigner measure at time t = 0 . Out of any sequence
(εn)n∈N , a subsequence (εnk

)k∈N can be extracted in order to ensure

M(̺εnk
,R, k ∈ N) = {µ0,R} .

Thus after this extraction we obtain

∀t ∈ R , M(̺εnk
,R(t), k ∈ N) = {Φ(t, 0)∗µ0,R} .

Take t ∈ R and let µ belong to M(̺ε(t), ε ∈ (0, ε̄)) . There exists a sequence (εn)n∈N such that

M(̺εn(t), n ∈ N) = {µ} .

After extracting a subsequence like above and by using Proposition 3.16, we obtain
∫

|µ− Φ(t, 0)∗µ0| ≤
∫

|µ− Φ(t, 0)∗µ0,R|+
∫

|µ0,R − µ0| ≤ 2ν(R) ,

since the total variation of Φ(t, 0)∗µ0,R − Φ(t, 0)∗µ0 and µ0,R − µ0 are equal. Taking the limit as
R → ∞ implies µ = Φ(t, 0)∗µ0 and therefore

M(̺ε, ε ∈ (0, ε̄)) = {Φ(t, 0)∗µ0} .

This also proves that limR→∞
∫

Z0
|µt − Φ(t, 0)∗µ0,R| = 0 , while all the measures Φ(t, 0)∗µ0,R are

Borel probability measures carried by, and on, Z1 . This implies that µt is carried by Z1 and is
also a Borel measure on Z1 . This ends the proof of Theorem 1.1 �

4 Complements

Additional results are given in the three first paragraphs, concerned with the BBGKY hierarchy
or the propagation of energy. The fourth one shows some examples and the last one is an informal
discussion about the classical mean field problem.
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4.1 BBGKY hierarchy

Although the analysis here is different from our previous work [6] it is possible to combine them,
in order to strengthen the result of Theorem 1.1. It is also interesting to reformulate our result in
terms of reduced density matrices since, in the literature, several mathematical results on mean
field limit use the BBGKY hierarchy method (see for example [8, 9, 42]). For a family of normal

states (̺ε)ε∈(0,ε̄) on H and p ∈ N , the reduced density matrices γ
(p)
ε ∈ L1(L2

s(R
dp)) is defined

according to

Tr
[

γ(p)ε b̃
]

=
Tr [̺ε]

Tr [̺ε(|z|2p)Wick]
Tr
[
̺εb

Wick
]
, ∀b̃ ∈ L(L2

s(R
dp)) , (39)

with the convention that the right-hand side is 0 when Tr
[
̺ε(|z|2p)Wick

]
= 0 and p > 0 .

Theorem 4.1. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H , satisfying the hypothesis of
Theorem 1.1, with a single Wigner measure µ0 such that

∀α ∈ N, lim
ε→0

Tr[̺εN
α] =

∫

Z0

|z|2α dµ0(z) < +∞ . (40)

Then for all t ∈ R , the convergence

lim
ε→0

Tr
[
̺ε(t)b

Wick
]
=

∫

Z0

b(Φ(t, 0)z) dµ0(z) =

∫

Z0

b(z) dµt(z)

holds for any b ∈ Palg(Z0) = ⊕algp,q∈N
Pp,q(Z0) , with µt = Φ(t, 0)∗µ0 .

Finally, the convergence of the reduced density matrices

lim
ε→0

γ(p)ε (t) =
1

∫

Z0
|z|2p dµt(z)

∫

Z0

|z⊗p〉〈z⊗p| dµt(z) ,

holds in the L1(L2
s(R

dp))-norm for all p ∈ N .

Proof. By Theorem 1.1 the the family of normal states (̺ε(t))ε∈(0,ε̄) admits a single Wigner
measure µt equal to Φ(t, 0)∗µ0 . Since the quantum and classical flows preserve the total number,
the state ̺ε(t) satisfies as well the condition (40) for any time t ∈ R . Then [6, Proposition 2.11,
2.13] provide the claimed results. �

4.2 Moment upper bounds

In [4], it was proved that the sole a priori estimate Tr
[
̺εN

δ
]
≤ Cδ for a given δ > 0 (possibly

small), with M(̺ε, ε ∈ (0, ε̄)) = {µ} leads to

∫

Z0

|z|2δ dµ(z) < +∞ .

The a priori estimate, assumed in Theorem 1.1 at time t = 0 , leads to

∫

Z1

|z|2δZ1
dµ(z) < +∞ ,

according to the following result which is a variation of Lemma 3.12.

Proposition 4.2. Let (A,D(A)) be a self-adjoint operator on Z0 such that A ≥ 1l . If the family
of normal states (̺ε)ε∈(0,ε̄) satisfies Tr

[
̺ε(dΓ(A))

δ
]
≤ Cδ for some δ > 0 and M{̺ε, ε ∈ (0, ε̄)} =

{µ} , then
∫

Z0

〈z , Az〉δ dµ(z) < +∞ .
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Proof. By Wick calculus (see Proposition B.2 when A is bounded), one gets

dΓ(A)k ≥
(
〈z , Az〉k

)Wick
, ∀k ∈ N .

Let (ej)j∈N be an orthonormal basis of Z0 such that ej ∈ D(A) for all j ∈ N , and set

AJ =

J∑

j=0

A1/2|ej〉〈ej |A1/2 =

J∑

j=0

|A1/2ej〉〈A1/2ej| .

The inequality A⊗k ≥ A⊗k
J holds for all J ∈ N , while b̃ → bWick is operator monotone when

restricted to operators b̃ acting in
∨2k Z0 . Therefore, we obtain

(1 + dΓ(A))n =

n∑

k=0

CkndΓ(A)
k ≥

(
n∑

k=0

Ckn〈z , Az〉k
)Wick

≥
(

n∑

k=0

Ckn〈z , AJz〉k
)Wick

= [(1 + 〈z , AJz〉)n]Wick . (41)

We shall use the same argument as the one in [4, Theorem 6.2] when A = Id , relying on the
semiclassical calculus in finite dimension (see [12, 40, 50, 52, 56]).
Let ℘J be the orthogonal projection from Z0 onto ⊕Jj=0A

1/2ej . The symbol 1 + 〈z , AJz〉 is a

cylindrical symbol based on ℘JZ0 . Since kerA1/2 = {0} and e0, . . . , eJ are linearly independent,
the symbol

(1 + 〈z , AJz〉) = 1 +

J∑

j=0

|〈A1/2ej , z〉|2

is an elliptic symbol on ℘JZ0 ∼ CJ+1 in the Hörmander class S(1 + |z|2
CJ+1,

|dz|2
CJ+1

1+|z|2
CJ+1

) . The

functional calculus of Weyl ε-quantized elliptic operators in finite dimensions gives

∀s ∈ R,
[
(1 + 〈z , AJz〉)Weyl

]s ≥ (1 − CJ,sε) [(1 + 〈z , AJz〉)s]Weyl
. (42)

The finite dimensional comparison of Wick and Weyl quantization, also gives

∀n ∈ N, [(1 + 〈z , AJz〉)n]Wick ≥ (1 − CJ,nε)
[
(1 + 〈z , AJz〉)Weyl

]n
. (43)

From (41)(43) and the operator monotonicity of B → Bt for t ∈ (0, 1] , we deduce

∀s ∈ R , (1 + dΓ(A))s ≥ (1− C′
J,sε)

[
(1 + 〈z , AJz〉)Weyl

]s
,

and (42) gives

∀s ∈ R , (1 + dΓ(A))s ≥ (1 − C′′
J,sε) [(1 + 〈z , AJz〉)s]Weyl

. (44)

The definition of Wigner measures, recalled in Theorem 3.1, says

lim
ε→0

Tr
[
̺εb

Weyl
]
=

∫

Z0

b(z) dµ(z) ,

for all b ∈ Scyl(Z0) , in particular the b’s based on ℘JZ0 . Take now s = δ in (44). The a priori
estimate

Tr
[

̺ε
[
(1 + 〈z , AJz〉)δ

]Weyl
]

≤ (1 + CJ,δε)Tr
[
̺ε(1 + dΓ(A))δ

]
≤ Cδ(1 + CJ,δε) ,

and the ellipticity of (1 + 〈z , AJz〉)δ allows to extend the above convergence to any cylindrical

b = f ◦ ℘J with f ∈ S((1 + |z|2
CJ+1)

δ,
|dz|2

CJ+1

1+|z|2
CJ+1

) . In particular, this leads to

C′
δ ≥ lim sup

ε→0
Tr
[
̺ε(1 + dΓ(A))δ

]
≥ lim

ε→0
Tr
[

̺ε
[
(1 + 〈z , AJz〉)δ

]Weyl
]

=

∫

Z0

(1+〈z , AJz〉)δ dµ(z) .
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Since A = supJ AJ with AJ′ ≥ AJ for J ′ ≥ J , the monotone convergence implies

C′
δ ≥

∫

Z0

(1 + 〈z , Az〉)δ dµ(z) ≥
∫

Z0

〈z , Az〉δ dµ(z) .

�

Proposition 4.3. Within the framework of Theorem 1.1 with the assumption Tr[(N+H0
ε )
δ̺ε] ≤

Cδ for δ ≤ 6 , the measure µt satisfies the additional estimate
∫

Z1

|z|
2δ
3

Z1
dµt(z) ≤ Cδ

for all times t ∈ R .

Proof. The functional calculus of commuting operators implies

cδ(1 + Sε)
δ/3 ≤ (1 +N+H0

ε )
δ ≤ (1 + Sε)

δ .

Thus the initial state ̺ε , satisfies

Tr
[

̺ε(1 + Sε)
δ/3
]

≤ C′
δ .

From Proposition 2.3, we deduce

ei
t
εHε(1 + Sε)

2e−i
t
εHε ≤ C(1 + Sε)

2 .

Since B → Bs is operator monotone for s ∈ (0, 1] , this implies

ei
t
εHε(1 + Sε)

δ/3e−i
t
εHε ≤ Cδ/6(1 + Sε)

δ/3

as soon as δ
3 ≤ 2 . The inequality

Tr
[

̺ε(t)(dΓ(1 −∆))δ/3
]

≤ Tr
[

̺ε(t)(1 + Sε)
δ/3
]

≤ C′
δ

and the previous Proposition 4.2 applied with A = (1−∆) , yields the result. �
A more accurate version of this last result is given below by making use of the conservation of
energy.

4.3 Convergence of moments and energy conservation

For a family (̺ε)ε∈(0,ε̄) of normal states with a single Wigner measure µ0 the condition (40) is an
important and non trivial assumption. Indeed, we proved in [6] the following equivalence
(

∀α ∈ N, lim
ε→0

Tr [̺εN
α] =

∫

Z
|z|2α dµ0(z)

)

⇔
(

∀b ∈ Palg(Z0), lim
ε→0

Tr
[
̺εb

Wick
]
=

∫

Z
b(z) dµ0

)

. (45)

Hence the condition (40), although it involves only the number operator, is exactly the one which
leads to a good asymptotic behaviour of the reduced density matrices.

Proposition 4.4. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H , satisfying the hypothesis
of Theorem 1.1, with a single Wigner measure µ0 . Assume Tr[̺ε Nα] ≤ Cα uniformly w.r.t
ε ∈ (0, ε̄) , for all α ∈ N .
Then for every α ∈ N , the quantity

lim inf
ε→0

Tr[̺ε(t)N
α]−

∫

Z0

|z|2αZ0
dµt(z),

does not depend on time when ̺ε(t) = e−i
t
εHε̺εe

i tεHε and M(̺ε(t), ε ∈ (0, ε̄)) = {µt} .
The condition (40) is satisfied by (̺ε(t))ε∈(0,ε̄) and µt , for all times t ∈ R , as soon as it is true
for one t0 ∈ R .
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Proof. According to Theorem 1.1, we know that M(̺ε(t), ε ∈ (0, ε̄)) = {µt} with µt = Φ(t, 0)∗µ0 .
The conservation of the |.|Z0 -norm by the nonlinear flow Φ(t, 0) yields

∫

Z0

|z|2αZ0
dµt(z) =

∫

Z0

|z|2αZ0
dµ0(z)

for any t ∈ R . On the other hand, Hε and N are strongly commuting self-adjoint operators and
therefore Tr[̺ε(t)N

α] = Tr[̺εN
α] for every α ∈ N . �

Proposition 4.5. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H with a single Wigner measure
µ0 satisfying the hypothesis of Theorem 1.1 with δ = 2 and condition (40). Then for any t ∈ R

lim
ε→0

Tr[̺ε(t)Hε] =

∫

Z1

h(z, z̄) dµt(z) ∈ (−∞,∞) (46)

where ̺ε(t) = e−i
t
εHε̺εe

i tεHε , µt = Φ(t, 0)∗µ0 and h(z, z̄) is the classical energy given in (2), and
both sides of the identity do not depend on time.

Proof. With the energy conservation, it suffices to prove (46) for t = 0 . Let χ ∈ C∞
0 (R) such that

0 ≤ χ ≤ 1 , χ(s) = 1 if |s| ≤ 1 and χ(s) = 0 if |s| ≥ 2 . For m ∈ N∗ , set χm(x) = χ( xm) . Let B1(z)
and B2(z) be respectively the polynomial 〈z,−∆z〉 and B2(z) = V (z) = 1

2 〈z⊗2, V (x− y)z⊗2〉 well
defined for z ∈ Z1 . Remember that although the kernels of B1 and B2 are unbounded operators
their Wick quantization still have a meaning as densely defined operators on H (see Appendix B).
Write for j = 1, 2

|Tr[̺εBWick
j ]−

∫

Z1

Bj(z) dµ0(z)| ≤ |Tr[̺ε (BWick
j −BWick

j,m )]| (47)

+|Tr[̺εBWick
j,m ]−

∫

Z0

Bj,m(z) dµ0(z)| (48)

+|
∫

Z1

Bj,m(z) dµ0(z)−
∫

Z1

Bj(z) dµ0(z)| , (49)

where B1,m(z) = 〈z,−∆[χm(−∆)]z〉 and B2,m(z) = 1
2 〈z⊗2, V (x−y)[χm(−∆x)]z

⊗2〉 . Observe that
Lemma B.6 leads to

‖(dΓ(−∆) +N+ 1)−1 dΓ(∆[(1− χm)(−∆)]) (dΓ(−∆) +N+ 1)−1‖

≤ ‖ −∆

(1−∆)2
[(1− χm)(−∆)]‖ m→∞→ 0

and

‖(dΓ(−∆) +N2 + 1)−1/2 (BWick
2 −BWick

2,m ) (dΓ(−∆) +N2 + 1)−1/2‖
≤ CV ‖(1−∆)−1/2(1− χm)(−∆)‖ m→∞→ 0 .

Therefore the r.h.s (47) tends to 0 when m → ∞ thanks to the regularity of ̺ε and by noticing
that (dΓ(−∆) +N2 + 1)1/2(dΓ(−∆) +N+ 1)−1 is bounded. Now, since Bj,m, j = 1, 2 belong to
Palg(Z0) then by the statement (45), proved in [6, Proposition 2.12], the r.h.s (48) converges to 0
when ε → 0 . Further, by the dominated convergence theorem and with the help of Lemma 3.13,
the r.h.s (49) vanishes as m→ ∞ . Hence an δ/3-argument gives

lim
ε→0

Tr[̺εB
Wick
j ] =

∫

Z1

Bj(z) dµ0(z) for j = 1, 2 .

Thus (46) is proved. �
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4.4 Examples

We give here two examples, other can be found in our previous articles [4, 5, 6]. The first one
recalls that the transport of the Wigner measure takes into account some correlations. The second
one is about the mean field dynamics of states, which do not satisfy (40) and makes a connection
with Bose-Einstein condensation.

4.5 Deformed tori

For two elements ψ1, ψ2 ∈ Z1 ⊂ Z0 such that ‖ψ1‖ = ‖ψ2‖ = 1 and 〈ψ1 , ψ2〉 = 0 , the space Z0

can be decomposed into

Z0 = Cψ1

⊥
⊕ Cψ1

⊥
⊕ ψ⊥ .

This decomposition is second-quantized into the Hilbert tensor product

H = Γs(Z0) = Γs(Cψ1)⊗ Γs(Cψ2)⊗ Γs(ψ
⊥) ,

which allows an analysis by separating the variables. The number observable is now

N = (N1 ⊗ 1l⊗ 1l)⊕ (1l⊗N2 ⊗ 1l)⊕ (1l⊗ 1l⊗N′) ,

simply written as N = N1 + N2 + N′ and where N1 , N2 and N′ are respectively the number
operators on Γs(Cψ1) , Γs(Cψ2) and Γs(ψ

⊥) . Consider in this decomposition, the state

̺ε = ̺1ε ⊗ ̺2ε ⊗ (|Ω′〉〈Ω′|)

where |Ω′〉 is the vacuum state of Γs(ψ
⊥) and

̺1ε = |ψ⊗n1
1 〉〈ψ⊗n1

1 | , ̺2ε = |ψ⊗n2
2 〉〈ψ⊗n2

2 | ,

with lim
ε→0

εn1 = lim
ε→0

εn2 =
1

2
.

In H = Γs(Z0) , this state is explicitly written (see [6]) as

̺ε = |ψ∨(n1,n2)〉〈ψ∨(n1,n2)| (50)

with ψ∨(n1,n2) =
1√

εn1+n2n1!n2!

n1 times
︷ ︸︸ ︷

a∗(ψ1) . . . a
∗(ψ1)

n2 times
︷ ︸︸ ︷

a∗(ψ2) . . . a
∗(ψ2) |Ω〉 . (51)

The state satisfies

lim
ε→0

Tr
[
Nk̺ε

]
= (

1

2
+

1

2
)k = 1 ,

owing to N = N1+N2+N′ . Moreover, with (50)(51), N+H0
ε = dΓ(1−∆) and the help of Wick

calculus, it also fulfills

lim
ε→0

Tr
[
(N+H0

ε )̺ε
]
=

|ψ1|2Z1
+ |ψ2|2Z1

2
.

Meanwhile the separation of variables allows to compute explicitly the (it is unique) Wigner mea-
sure of (̺ε)ε∈(0,ε̄)

µ0 = δS
1

√
2

2 ψ1
⊗ δS

1
√

2
2 ψ1

⊗ δ0 on Z1 = (Cψ1)× (Cψ2)× ψ⊥ ,

with δS
1

u =
1

2π

∫ 2π

0

δeiθu dθ .

We get

∫

Z1

|z|2k dµ0(z) =

∫

Z1

(
|z1|2 + |z2|2 + |z′|2

)k
dµ0(z) = 1 = lim

ε→∞
Tr
[
Nk̺ε

]
.
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Hence all the assumptions of Theorem 1.1 and Theorem 4.1 are fulfilled.
This measure is carried by a torus in Z1 better described by using an other orthonormal basis of
Cψ1 ⊕ Cψ2:

ψ0 =

√
2

2
(ψ1 + ψ2) , ψπ

2
= i

√
2

2
(ψ1 − ψ2) ,

ψϕ = cos(ϕ)ψ0 + sin(ϕ)ψπ
2
,

√
2

2
(eiθψ1 + eiθ

′
ψ2) = ei

θ+θ′
2 ψ θ−θ′

2

,

µ0 =
1

2π

∫ 2π

0

δS
1

ψϕ
dϕ .

Two elements eiθψϕ and eiθ
′
ψϕ′ in the support of µ0 are equal when

(θ′ = θ and ϕ′ = ϕ) or (θ′ = θ + π and ϕ′ = ϕ+ π) .

Hence a one to one parametrization of the torus can be done by ϕ ∈ [0, 2π) and θ ∈ [ϕ, ϕ+ π) .
Let ψϕ(t) = Φ(t, 0)ψϕ , be the solution to the Hartree equation

{
i∂tψϕ(t) = −∆ψϕ(t) + (V ∗ |ψϕ(t)|2)ψϕ(t)
ψϕ(t = 0) = ψϕ = ei

π
4 cos(ϕ)ψ1 + e−i

π
4 sin(ϕ)ψ2

,

The gauge invariance of the equation says that for any θ ∈ [0, 2π] , eiθψϕ(t) = Φ(t, 0)
[
eiθψϕ

]
. By

applying the result of Theorem 1.1 and Theorem 4.1 we get

µt =
1

2π

∫ 2π

0

δS
1

ψϕ(t) dϕ =
1

4π2

∫ 2π

0

∫ 2π

0

δeiθψϕ(t) dϕdθ

∀p ∈ N, lim
ε→0

γ(p)ε (t) =
1

2π

∫ 2π

0

|[ψϕ(t)]⊗p〉〈[ψϕ(t)]⊗p| dϕ .

Since the Hartree flow is nonlinear, the complete hierarchy of reduced density matrices have to be
taken into account if one wants to write evolution equation for them. More simply, they can be
computed after solving an autonomous equation for the Wigner measure. Due to the nonlinear
term the dynamics of correlations is by far nontrivial. This can also be thought geometrically:
The initial measure is initially supported by a torus which lies in a 2-dimensional complex vector
space (think of the circle in the plane Rψ0⊕Rψπ

2
); along the time evolution, the measure µt is still

carried by a torus in Z1 , which nevertheless, is a priori not embedded in any finite dimensional
subspace .

0.
Rψ0

.
Rψ0

.0.

. Rψπ
2

.Rψπ
2

× .
.×.

ψϕ(t)
ψϕ
.

.ψ⊥

Fig.1: Evolution of the measure initially carried by a torus in Cψ0 ⊕ Cψπ
2
.

The complex gauge parameter eiθ is represented by the small circle.
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In Figure 1, the deformed torus for time t 6= 0 , has to be imagined in the infinite-dimensional
phase-space Z1 ⊂ Z0 . Contrary to the picture, there might be no intersection with the real plane
Rψ0 ⊕ Rψπ

2
.

This discussion can also be extended to higher dimensional tori after taking a finite (or countable)

orthornormal family (ψn)1≤n≤N for building the initial states ̺ε with a measure
∏N
j=1 δ

S1

λjψj
(see

[6]) .

4.6 Propagation without the convergence of moments

In [4] we considered the thermodynamic limit of a free Bose gas on a torus with the one particle
energy given by −∆. We showed that in the regime which may exhibit a Bose condensation,
the condition (40) fails and illustrates what we called a dimensional defect of compactness, in
opposition to the phase space or microlocal defect of compactness (see [28, 60]). Others examples
were given. In [6] the propagation result for bounded interactions but without any compactness
condition, cannot be applied for such initial states. With Theorem 1.1 the propagation holds for
this kind of initial states. Since our analysis is valid on R

d the analysis for the torus does not
apply directly and we adapt the presentation of the Bose-Einstein condensation.
Moreover the dimensional defect of compactness which plays with all the directions of the phase-
space Z0 = L2(Rd) , can be geometrically thought in the one particle phase-space T ∗Rd . The
condition (4), which leads to estimates of

∫

Z0
|z|2δH1 dµ , suggests that the dimensional defect of

compactness is due to mass going to ∞ in the position variable rather than in the momentum vari-
able, in T ∗Rd . The mean field limit that we consider here, can be tested by using the harmonic

oscillator Hamiltonian A = −∂2x+ x2

4 − d
4 . The motivated reader will then see that the dimensional

defect of compactness ̺ε is incompatible with the condition (4).

We work in dimension d ≥ 2 . Let e0 be an L2-normalized C∞ function supported in the
hypercube (− 1

2 ,
1
2 )
d and set

∀k ∈ N
d , ek(x) = e0(x− k) .

The family (ek)k∈N is orthonormal in Z0 = L2(Rd) . The spanned Hilbert subspace and the
corresponding orthogonal projection are respectively denoted by Ze and Πe , RanΠe = Ze . Note
that

Πe(−∆)Πe =

(∫

R

|∇e0|2
)

Πe .

Consider now the self-adjoint operator defined on Z0 = L2(Rd) by

A =
∑

k∈Nd

|k||ek〉〈ek| , |k| =
d∑

j=1

kj ,

which restricted to Ze is unitarily equivalent to the harmonic oscillator Hamiltonian A = −∂2x +
x2

4 − d
4 on R

d . We use the tensor decomposition

Z0 = Ze
⊥
⊕ Z⊥

e , H = Γs(Z0) = Γs(Ze)⊗ Γs(Z⊥
e ) ,

N = Ne ⊗ 1l + 1l⊗N⊥
e = Ne +N⊥

e , |Ω〉 = |Ωe〉 ⊗ |Ω⊥
e 〉 ,

∀Be ∈ L(Ze) , ‖Be‖ ≤ 1, Γ(Be)⊗ (|Ω⊥
e 〉〈Ω⊥

e |) = Γ(ΠeBeΠe) ,

∀B ∈ L(Z0) , ‖B‖ ≤ 1, Γ(ΠeBΠe) = Γ(Πe ◦B|Ze)⊗ (|Ω⊥
e 〉〈Ω⊥

e |) .

In particular the last relation with B = eiεt∆ differentiated at time t = 0 gives

Γ(Πe)dΓ(−∆)Γ(Πe) =

(∫

Rd

|∇e0|2
)

Ne .
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Consider on H , the ε-dependent gauge invariant (tensorized) quasi-free state

̺ε =
1

Tr
[
Γ(Πee−βε(A−µε)Πe)

]Γ(Πee
−βε(A−µε)Πe) (52)

=
1

Tr [Γ(ΠeZεe−βεAΠe)]
Γ(ΠeZεe

−βεAΠe) ,

=
1

Tr
[
Γ(Zεe

−βεA|Ze∩D(A))
]Γ(Πe)Γ(Zεe

−βεA|Ze∩D(A))Γ(Πe) .

The chemical potential µε is negative of order ε1−1/d and the temperature is large according to

Zε = eβεµε = 1− ε

νC
, βε = ε1/d .

With the ε-dependent definition of a(f) , a∗(f) , [a(g), a∗(f)] = ε〈g, f〉 , and W (f) , this quasi-free
state is characterized by the two-point function

Tr [̺εa
∗(f)a(g))] = ε

〈
Πeg , Zεe

−βεAε(1− Zεe
−βεAε)−1Πef

〉
. (53)

or Tr [̺εW (f)] = exp
[
−ε〈Πef , (1 + Zεe

−βεAε)(1− Zεe
−βεAε)−1Πef〉/4

]
. (54)

In particular the total number (multiplied by ε) is given by

Tr [̺εN] = Tr [̺εNe]
∑

k∈Nd

Tr [̺εa
∗(ek)a(ek)]

= νC + ν + r(ε) with lim
ε→0

r(ε) = 0 , (55)

and ν =

∫

Rd

e−|u|

1− e−|u| du = |Sd−1|
∫ +∞

0

e−t

1− e−t
td−1 dt , (d ≥ 2) . (56)

We deduce

lim
ε→0

Tr [̺εN] = νC + ν ,

lim
ε→0

Tr
[
̺εH

0
ε

]
= lim

ε→0
Tr [̺εΓ(Πe)dΓ(−∆)Γ(Πe)] =

(∫

Rd

|∇e0|2
)

(νC + ν) ,

and the condition (4) of Theorem 1.1 is satisfied.
Actually νC > 0 corresponds, in the analysis of the free Bose gas (see [4]), to the density associated
with the condensate phase. In the scaling that we consider, it is the other part which produces
the dimensional defect of compactness. Let us compute the Wigner measure, by considering the
limit of Tr

[
̺εW (

√
2πf)

]
as ε→ 0 . With

f =
∑

k∈Nd

fkek + f⊥ , |f |2 =
∑

k∈Nd

|fk|2 + |f⊥|2 = |Πef |2 + |f⊥|2 ,

the expression (54) gives

Tr
[

̺εW (
√
2πf)

]

= e−επ
2|Πef |2/2 × exp



−επ2
∑

k∈Nd

|fk|2
Zεe

−ε1/d|k|

(1− Zεe−ε
1/d|k|)




ε→0→ e−π

2νC |f0|2 . (57)

The family (̺ε)ε∈(0,ε̄) admits the unique Wigner measure

µ0 =
e
− |z0|2

νC

πνC
⊗ δ0 on Z0 = (Ce0)× e⊥0 ,

which is carried by Ce0 ⊂ Z1 and which can also be written

µ0 =

∫

Ce0

e
− |z|2

νC

πνC
δze0 LCe0(dz) =

∫ +∞

0

e
− u

νC

νC
δS

1
√
ue0

du .
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In particular, we get
∫

Z1

|z|2Z0
dµ0(z) = νC < νC + ν = lim

ε→0
Tr [̺εN]

and

∫

Z1

|z|2Z1
dµ0(z) = νC

(∫

Rd

|∇e0|2
)

< (νC + ν)

(∫

Rd

|∇e0|2
)

= lim
ε→0

Tr [̺εdΓ(1−∆)] ,

and the condition (40) does not hold. Even at time t = 0 , no formula is available for the reduced
density matrices in terms of the Wigner measure. Nevertheless the time-dependent Wigner measure
of ̺ε(t) = e−i

t
εHε̺εe

i tεHε is given by Theorem 1.1, since the condition (4) is verified. Consider the
solutions to the Hartree initial value problems

{
i∂tψu = −∆ψu + (V ∗ |ψu|2)ψu
ψu(t = 0) =

√
ue0 , u ∈ (0,+∞) .

Then the Wigner measure of ̺ε(t) = e−i
t
εHε̺εe

i tεHε is given by

µt =

∫ +∞

0

e
− u

νC

νC
δS

1

ψu(t)
du .

Again like in the example of the previous section, the measure µt is carried by surface containing
0 and topologically equivalent to C , but this 2-dimensional surface does not remain a priori in any
finite dimensional subspace of Z1 for t 6= 0 .

4.7 About the classical mean field problem

The classical analogue of our analysis is the derivation of the Vlasov equation






∂tf + v.∂xf − 1
m (∂xVf (x, t)).∂vf = 0

f(t, x, v) = f0(x, v)
Vf (x, t) = V ∗ ̺f (x, t) , ̺f (x, t) =

∫

Rd f(x, v, t) dv

where f(x, v, t) represents the particle density in the 1-particle phase space R2d
x,v , from the classical

Hamilton many body system

{
ẋi = vi ,

v̇i = − 1
mN (

∑N
j=1 ∂xiV (xi − xj))

, i = 1, . . . , N ,

in the limit N → ∞ . This problems is still open for singular potential and C. Villani, in a recent
survey article about the Landau damping [62] quotes the work of Hauray-Jabin [36] as the most
advanced one in this direction. It works for a potential such that |∇V | = O(|x|−s) , s ∈ (0, 1) , and
does not include the Coulomb interaction.
Indirectly our result, justifies the mean field model up to Coulomb interaction in dimension d = 3 .
In [49] and more recently [2], the Vlasov equation is proved to be the semiclassical limit of the semi-
classical Hartree equation. This means that there are two “semiclassical” limits, one in the phase-
space L2(Rd;C) with the small parameter 1/N , another one on the phase-space T ∗Rd ∼ R2d for
the one particle nonlinear problem. This double asymptotic regime is well presented in [25, 27, 35].

A possible strategy, for deriving directly the classical mean field limit from the classical many
body problem, consists in adapting our approach by, as usual, replacing traces by integrals. For
information, we refer the reader to the presentation [18] by J. Derezinski of the classical analogue
of second quantization. Of course classical mechanics, although living in the commutative world, is
often more singular than quantum mechanics, from the analysis point of view. With the Coulomb
interaction, the Kustaanheimo-Stiefel desingularization of the hamiltonian flow may be useful (see
a.e. [15, 38, 41, 43, 46]).

Appendix
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A Commuting self-adjoint operators on a graded Hilbert

space

We briefly study the general structure of self-adjoint operators on a graded Hilbert space. Prop-
erties collected in this section are useful for the analysis of the quantum Hamiltonian (1). In this
appendix, the small parameter is not required and we work with ε = 1 .
Remember that a graded Hilbert space H is a direct sum of Hilbert spaces Hn, n ∈ N, of the form

H =
∞⊕

n=0

Hn .

Let (An)n∈N be a sequence of self-adjoint operators where each An acts on Hn . We define the
operator

D(A) = {Ψ ∈ H :

∞∑

n=0

‖AnΨ(n)‖2Hn
<∞}, AΨ =

∞∑

n=0

AnΨ
(n) , for all Ψ ∈ D(A) . (58)

Taking in particular An = n1lHn for n ∈ N , we obtain the number operator

N =

∞∑

n=0

n1lHn . (59)

We say that two self-adjoint operators B and C on a Hilbert space strongly commute if their
spectral projections mutually commute. This is equivalent to the commutation of their resolvents
for some z ∈ C\R and also to the commutation of their associated unitary groups. More precisely,
B and C strongly commute if and only if for all t, s ∈ R

eitCeisB = eisBeitC .

Proposition A.1. Let A and N be the operators given by (58)-(59). The following assertions
hold:
(i) A and N are self-adjoint.
(ii) For any bounded Borel function on R ,

f(A) =

∞∑

n=0

f(An) .

(iii) The operators A and N strongly commute.

(iv) If Dn is a core for An for each n ∈ N then ⊕algn∈N
Dn is a core for A .

(v) For any real polynomial p the operator A+ p(N)|D(A)∩D(p(N)) is essentially self-adjoint and

A+ p(N)|D(A)∩D(p(N)) =
∞∑

n=0

An + p(n)1lHn .

Proof. (i) Clearly, A is a densely defined operator. It is also symmetric, since for any Ψ,Φ ∈ D(A)

〈Φ, AΨ〉H =
∞∑

n=0

〈Φ(n), AnΨ
(n)〉Hn =

∞∑

n=0

〈AnΦ(n),Ψ(n)〉Hn = 〈AΦ,Ψ〉H .

For any Ψ ∈ D(A) and Φ ∈ D(A∗) ,

〈A∗Φ,Ψ〉 =
∞∑

n=0

〈Φ(n), AnΨ
(n)〉Hn

Hence the inequality holds
∣
∣
∣
∣
∣

∞∑

n=0

〈Φ(n), AnΨ
(n)〉Hn

∣
∣
∣
∣
∣
≤ ‖A∗Φ‖H ‖Ψ‖H .
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By taking any Ψ(n) ∈ D(An) , this means Φ(n) ∈ D(A∗
n) = D(A∗

n) = D(An) . The extension to any
Ψ ∈ H gives Φ ∈ D(A) . This proves that A and N are self-adjoint.
(ii) For each n ∈ N , the map t 7→ eitAe−itAnΨ(n) is of class C1 for any Ψ(n) ∈ D(An) by Stone’s
theorem with the derivative

d

dt
eitAe−itAnΨ(n) = ieitA(A−An)e

−itAnΨ(n) = 0 .

Hence, for any Ψ ∈ ⊕algn∈N
D(An) (and then for any Ψ ∈ H since ⊕algn∈N

D(An) is dense in H) we see
that for all t ∈ R

eitAΨ =

∞∑

n=0

eitAnΨ(n) . (60)

By functional calculus we extend the identity (60) to any bounded Borel function f on R .
(iii) By using (ii), we get for all s, t ∈ R and Ψ ∈ H

eitNeisAΨ = eitN
∞∑

n=0

eisAnΨ(n) =
∞∑

n=0

eitneisAnΨ(n) = eisAeitNΨ .

(iv) The algebraic direct sum Dfin = ⊕algn∈N
D(An) ⊂ D(A) is dense in H and invariant with

respect to the group (eitA)t∈R . Therefore, Dfin is a core for A . On the other hand, the subspace

D0
fin = ⊕algn∈N

Dn satisfies

A|Dfin
⊂ A|D0

fin
⊂ A|D(A) .

Hence D0
fin is also a core for A since A|Dfin

= A|D(A) .

(v) The operator B =
∑∞
n=0An + p(n)1lHn (with its natural domain) is self-adjoint by assertion

(i). It is clear that

Dfin = ⊕algn∈N
D(An) ⊂ D(A) ∩D(p(N)) ⊂ D(B) ,

and furthermore

B|Dfin
= A+ p(N)|Dfin

⊂ A+ p(N)|D(A)∩D(p(N)) ⊂ B|D(B) .

Therefore, the operator A+ p(N)|D(A)∩D(p(N)) is essentially self-adjoint since B|Dfin
= B|D(B) . �

B Second quantization

For the reader’s convenience; the general framework of second quantization and some related
notations are recalled.
The phase-space, a complex separable Hilbert space, is denoted by Z with the scalar product 〈., .〉 .
The symmetric Fock space over Z is defined as the following direct Hilbert sum

Γs(Z) =

∞⊕

n=0

n∨

Z ,

where
∨nZ is the n-fold symmetric tensor product. The orthogonal projection from Z⊗n onto

the closed subspace
∨nZ is given by

Sn(ξ1 ⊗ ξ2 · · · ⊗ ξn) =
1

n!

∑

σ∈Sn

ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n) .

Algebraic direct sums or tensor products are denoted with a alg superscript. Hence

Hfin =

alg
⊕

n∈N

n∨

Z
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denotes the subspace of vectors with a finite number of particles. The creation and annihilation
operators a∗(z) and a(z) , parameterized by ε > 0 , are then defined by :

a(z)ϕ⊗n =
√
εn 〈z, ϕ〉ϕ⊗(n−1)

a∗(z)ϕ⊗n =
√

ε(n+ 1) Sn+1( z ⊗ ϕ⊗n) , ∀ϕ, z ∈ Z.
They extend to closed operators and they are adjoint of one another. They also satisfy the ε-
canonical commutation relations (CCR):

[a(z1), a
∗(z2)] = ε〈z1, z2〉1l, [a∗(z1), a

∗(z2)] = 0 = [a(z1), a(z2)] . (61)

The Weyl operators are given for z ∈ Z by

W (z) = e
i√
2
[a∗(z)+a(z)]

,

and they satisfy Weyl commutation relations in the Fock space

W (z1)W (z2) = e−
iε
2 Im 〈z1,z2〉 W (z1 + z2), z1, z2 ∈ Z . (62)

The number operator is also parametrized by ε > 0 ,

N|
∨n Z = εn1l|

∨n Z .

For any self-adjoint operator A : Z ⊃ D(A) → Z, the operator dΓ(A) is the self-adjoint operator
given by

dΓ(A)|∨n,alg D(A) = ε

[
n∑

k=1

1l⊗ · · · ⊗ A
︸︷︷︸

k

⊗ · · · ⊗ 1l

]

.

B.1 Weyl, Anti-Wick quantized operators

Let P denote the set of all finite rank orthogonal projections on Z and for a given ℘ ∈ P let
L℘(dz) denote the Lebesgue measure on the finite dimensional subspace ℘Z , with volume 1 for
an orthonormal hypercube in ℘Z . A function f : Z → C is said cylindrical if there exists ℘ ∈ P

and a function g on ℘Z such that f(z) = g(℘z), for all z ∈ Z . In this case we say that f is based
on the subspace ℘Z . We set Scyl(Z) to be the cylindrical Schwartz space:

(f ∈ Scyl(Z)) ⇔ (∃℘ ∈ P, ∃g ∈ S(℘Z), f(z) = g(℘z)) .

The Fourier transform of a function f ∈ Scyl(Z) based on the subspace ℘Z is defined as

F [f ](ξ) =

∫

℘Z
f(z) e−2πiRe 〈z,ξ〉 L℘(dz)

and its inverse Fourier transform as

f(z) =

∫

℘Z
F [f ](ξ) e2πiRe 〈z,ξ〉 L℘(dξ) .

With any symbol b ∈ Scyl(Z) based on ℘Z , a Weyl observable can be associated according to

bWeyl =

∫

℘Z
F [b](z) W (

√
2πz) L℘(dz) . (63)

Notice that bWeyl is a well defined bounded operator on H for all b ∈ Scyl(Z) and that this
quantization of cylindrical symbols depends on the parameter ε .

We also recall the Anti-Wick quantization through its usual finite dimensional relation to Weyl
operators :

bA−Wick =



b ∗
℘Z

e−
|z|2℘Z
ε/2

(πε/2)dim℘Z





Weyl

(64)

=

∫

℘Z
F [b](ξ) W (

√
2πξ) e−

επ2

2 |ξ|2℘Z L℘(dξ) , (65)

for any b ∈ S(℘Z) by setting b ∗℘Z γ(z) =
∫

℘Z b(z)γ(z − z′) L℘(dz′) .
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B.2 Wick quantized operators

For any p, q ∈ N , the space Pp,q(Z) of complex-valued polynomials on Z is defined with the
following continuity condition:

b ∈ Pp,q(Z) iff there exists b̃ ∈ L(
p
∨

Z,
q
∨

Z)

such that:
b(z) = 〈z⊗q, b̃z⊗p〉 .

On these spaces the norms are given by |b|p,q = ‖b̃‖L(
∨p Z;

∨q Z) .

The subspace of Pp,q(Z) made of polynomials b such that b̃ is a compact operator is denoted by
P∞
p,q(Z) .

The Wick monomial of a ’symbol’ b ∈ Pp,q(Z) is the linear operator

bWick : Hfin → Hfin

defined as :

bWick
|∨n Z = 1[p,+∞)(n)

√

n!(n+ q − p)!

(n− p)!
ε

p+q
2 Sn−p+q

(

b̃⊗ 1l(n−p)
)

. (66)

where b̃⊗ 1l(n−p) is the operator with the action (b̃⊗ 1l(n−p)ϕ⊗n = (b̃ϕ⊗p)⊗ ϕ⊗(n−p) . Notice that
bWick depends on the scaling parameter ε . When b̃ is an unbounded operator with domain D(b̃)

containing
∨p,alg D , the formula (66) makes sense when applied to Ψ ∈ ∨n,alg D .

Proposition B.1. For b ∈ Pp,q(Z) , the following number estimate holds

∣
∣
∣〈N〉−

q
2 bWick 〈N〉−

p
2

∣
∣
∣
L(H)

≤ |b|Pp,q
. (67)

An important property of our class of Wick polynomials is that a composition of bWick
1 ◦ bWick

2

with b1, b2 ∈ ⊕algp,qPp,q(Z) is a Wick polynomial with symbol in ⊕alg
p,qPp,q(Z) . This was checked

with a convenient writing in [4] and widely used also in [5, 6].
We need some notations: For b ∈ Pp,q(Z) , the k-th differential is well defined according to

∂kz b(z) ∈ (

k∨

Z)∗ and ∂kz b(z) ∈
k∨

Z ,

for any fixed z ∈ Z . Actually (
∨k Z)∗ is the dual of (

∨k Z) with a C-bilinear duality bracket. For
two symbols bi ∈ Ppi,qi(Z) , i = 1, 2 , and any k ∈ N , the new symbol ∂kz b1.∂

k
z̄ b2 is now defined by

∂kz b1 . ∂
k
z̄ b2(z) = 〈∂kz b1(z), ∂kz̄ b2(z)〉(∨k Z)∗,

∨k Z . (68)

We also use the following notation for multiple Poisson brackets:

{b1, b2}(k) = ∂kz b1.∂
k
z̄ b2 − ∂kz b2.∂

k
z̄ b1,

{b1, b2} = {b1, b2}(1).

With these notations, the composition formula of Wick symbols has a very familiar form.

Proposition B.2. Let b1 ∈ Pp1,q1(Z) and b2 ∈ Pp2,q2(Z) .
For any k ∈ {0, . . . ,min {p1, q2}} , ∂kz b1.∂kz̄ b2 belongs to Pp1+p2−k,q1+q2−k(Z) with the estimate

|∂kz b1.∂kz̄ b2|Pp1+p2−k,q1+q2−k
≤ p1!

(p1 − k)!

q2!

(q2 − k)!
|b1|Pp1,q1

|b2|Pp2,q2
.
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The formulas

(i) bWick
1 ◦ bWick

2 =





min{p1,q2}∑

k=0

εk

k!
∂kz b1.∂

k
z̄ b2





Wick

=
(

eε〈∂z ,∂ω̄〉b1(z)b2(ω) |z=ω
)Wick

,

(ii) [bWick
1 , bWick

2 ] =





max{min{p1,q2} ,min{p2,q1}}∑

k=1

εk

k!
{b1, b2}(k)





Wick

,

hold as identities on Hfin .

Combined with Proposition B.1 and (bWick)∗ =
(

b(z)
)Wick

this also gives the

Proposition B.3. For b ∈ Pp,q(Z) , 〈N〉− (p+q)
2 bWick and bWick〈N〉− (p+q)

2 extend as bounded op-

erators on H with norm smaller that Cp,q‖b̃‖L(
∨p Z;

∨q Z) , for all ε ∈ (0, ε̄) .

We will also need some more particular estimates stated in the following two lemmata.

Lemma B.4. Let A be a self-adjoint operator on Z with A ≥ 1l . For any polynomials b1 ∈ P1,2(Z)
and b2 ∈ P2,1(Z) the estimates below hold true:

(i) ‖(dΓ(A) +
√
N+ 1)−1 bWick

1 (dΓ(A) +
√
N+ 1)−1‖ ≤ ‖A−1/2 b̃1 (1l⊗A−1/2)‖L(

∨2 Z,Z) ,

(ii) ‖(dΓ(A) +
√
N+ 1)−1 bWick

2 (dΓ(A) +
√
N+ 1)−1‖ ≤ ‖(1l⊗ A−1/2) b̃2A

−1/2‖L(Z,∨2 Z) .

Remark B.5. The term
√
N can be absorbed in dΓ(A) + 1 , if one accepts constants larger than

1 as factors of the right-hand sides of (i) and (ii).

Proof. The estimate (ii) follows from (i) by taking the adjoint. Let us prove (i).

For Φ,Ψ ∈ ⊕algn∈N

∨n,alg D(A) , we write

〈Ψ, bWick
1 Φ〉 =

∞∑

n=2

ε3/2
√

n(n− 1)2 〈Ψ(n−1), (b̃1 ⊗ 1l(n−2))Φ(n)〉

=

∞∑

n=2

ε3/2
√

n(n− 1)2〈(A1/2 ⊗ 1l(n−2))Ψ(n−1) , BA(1l⊗A1/2 ⊗ 1l(n−2)) Φ(n)〉 ,

with
BA = [(A−1/2b̃1)(1l⊗A−1/2)]⊗ 1l(n−2) .

Hence, by the Cauchy-Schwarz inequality, we get

|〈Ψ, bWick
1 Φ〉| ≤ ‖A−1/2b̃1 (1l⊗A−1/2)‖L(

∨2 Z,Z)

×
( ∞∑

n=2

ε3/2
√

n(n− 1)2‖(A1/2 ⊗ 1l(n−2))Ψ(n−1)‖2
)1/2

×
( ∞∑

n=2

ε3/2
√

n(n− 1)2‖(1l⊗A1/2 ⊗ 1l(n−2))Φ(n)‖2
)1/2

.

Now, observe that

ε3/2
√

n(n− 1)2‖(A1/2 ⊗ 1l(n−2))Ψ(n−1)‖2 ≤ 2
√

ε(n− 1)〈Ψ(n−1), (ε(n− 1))(A⊗ 1l(n−2))Ψ(n−1)〉
≤ 2〈Ψ(n−1),

√
NdΓ(A)Ψ(n−1)〉
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and

ε3/2
√

n(n− 1)2‖(1l⊗A1/2 ⊗ 1l(n−2))Φ(n)‖2 ≤
√
nε〈Φ(n), nε (1l⊗A⊗ 1l(n−2))Φ(n)〉

≤
√
nε〈Φ(n), nε (A⊗ 1l(n−1))Φ(n)〉

≤ 〈Φ(n),
√
NdΓ(A)Φ(n)〉 .

On the other hand, with the inequality 2ab ≤ a2 + b2 , we see that

2〈Ψ(n−1),
√
NdΓ(A)Ψ(n−1)〉 ≤ 〈Ψ(n−1), (N+ dΓ(A)2)Ψ(n−1)〉 ≤ ‖(

√
N+ dΓ(A))Ψ(n−1)‖2

and 2〈Φ(n),
√
NdΓ(A)Φ(n)〉 ≤ 〈Φ(n), (N+ dΓ(A)2)Ψ(n)〉 ≤ ‖(

√
N+ dΓ(A))Φ(n)‖2 ,

where the last inequalities come from 2
√
NdΓ(A) ≥ 0 . Therefore, we obtain

|〈Ψ, bWick
1 Φ〉| ≤ ‖A−1/2b̃1 (1l⊗A−1/2)‖ ‖(

√
N+ dΓ(A))Ψ‖ ‖(

√
N+ dΓ(A))Φ‖

and hence the estimate extends to Φ,Ψ ∈ D(
√
N+dΓ(A)) ∩Hfin . This means that the operator

(dΓ(A) +
√
N + 1)−1bWick

1 (dΓ(A) +
√
N + 1)−1

|D(
√
N+dΓ(A))∩Hfin

extends to a bounded operator

satisfying (i). �

Lemma B.6. Let A,B two self-adjoint operators on Z with D(A) ⊂ D(B) and B ≥ 0 . Let C be

a self-adjoint operator on
∨2 Z such that D(C) ⊂ D(B2) where B2 = B ⊗ 1l + 1l ⊗ B . Then the

estimates below hold true:

(i) ‖(dΓ(B) +N+ 1)−1 dΓ(A) (dΓ(B) +N+ 1)−1‖ ≤ ‖(1 +B)−1 A (1 +B)−1‖L(Z) ,

(ii) ‖(dΓ(B) +N2 + 1)−1/2 CWick (dΓ(B) +N2 + 1)−1/2‖ ≤ ‖(1 +B2)
−1/2 C (1 +B2)

−1/2‖L(
∨

2 Z) .

Proof. We follow a similar argument as in the proof of Lemma B.4. Indeed, the Cauchy-Schwarz
inequality gives for every Ψ,Φ ∈ ⊕algn∈N

∨n,alg D(B)

|〈Ψ, dΓ(A)Φ〉| ≤ ‖(1 +B)−1A (1 +B)−1‖L(Z)

( ∞∑

n=1

εn‖((1 + B)⊗ 1l(n−1))Ψ(n)‖2
)1/2

×
( ∞∑

n=1

εn‖((1 +B)⊗ 1l(n−1))Φ(n)‖2
)1/2

.

Now, observe that

εn‖((1 +B)⊗ 1l(n−1))Ψ(n)‖2 = 〈Ψ(n), dΓ((1 +B)2)Ψ(n)〉
≤ ‖dΓ(1 +B)Ψ(n)‖2∨n Z ,

since in the sense of quadratic forms dΓ((1 +B)2) ≤ dΓ(1 +B)2 . Hence we obtain

|〈Ψ, dΓ(A)Φ〉| ≤ ‖(1 +B)−1A (1 + B)−1‖L(Z) ‖dΓ(1 +B)Ψ‖ ‖dΓ(1 +B)Φ‖ .

This proves (i).

Expressing CWick as a quadratic form for Ψ,Φ ∈ ⊕algn∈N

∨n,alg D(B) and then applying the Cauchy-
Schwarz inequality yield

|〈Ψ, CWick Φ〉| ≤ ‖(1l +B ⊗ 1l + 1l⊗B)−1/2C (1l +B ⊗ 1l + 1l⊗B)−1/2‖L(
∨2 Z)

×
( ∞∑

n=2

ε2n(n− 1)‖[(1l +B ⊗ 1l + 1l⊗B)1/2 ⊗ 1l(n−2)]Ψ(n)‖2
)1/2

×
( ∞∑

n=2

ε2n(n− 1)‖[(1l +B ⊗ 1l + 1l⊗B)1/2 ⊗ 1l(n−2)]Φ(n)‖2
)1/2

.
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Due to the symmetry of the vector Φ(n) we remark that

ε2n2‖[(1l +B ⊗ 1l + 1l⊗B)1/2 ⊗ 1l(n−2)]Φ(n)‖2 = ε2n2〈Φ(n), [(1l +B ⊗ 1l + 1l⊗B)⊗ 1l(n−2)]Φ(n)〉
= 〈Φ(n), (1 + dΓ(B))N2 Φ(n)〉
≤ ‖(1 + dΓ(B) +N2)Φ(n)‖2

So we obtain

|〈Ψ, CWick Φ〉| ≤ ‖(1 +B2)
−1/2C (1 +B2)

−1/2‖L(
∨

2 Z) ‖(1 + dΓ(B) +N2)Ψ‖
×‖(1 + dΓ(B) +N2)Φ‖ .

This proves (ii). �

C Absolutely continuous curves in Prob2(Z1,R)

This section firstly gathers results presented in [3] about Borel probability measures on a separable
real Hilbert space which are weak solutions to continuity equations. In a second step, we shall
adapt it to a complex Hilbert space Z1 endowed with its real euclidean structure.

C.1 Absolutely continuous curves in Prob2(E)

Let E be a real Hilbert space, with scalar product 〈 , 〉 and norm | | . The symbol Probp(E) (resp.
Prob(E)) refers to the set of Borel probability measures µ on E such that

∫

E |x|p dµ(x) < +∞
(resp. with no momentum condition), and we simply work with p = 2 . On Prob2(E) , the
2-Wasserstein distance, W2 , is defined by

W 2
2 (µ

1, µ2) := min

{∫

E2

|x1 − x2|2E dµ(x1, x2) ; Πj,∗µ = µj

}

,

where Πj : E2 → E is the natural projection, j = 1, 2 . The narrow convergence of a sequence
(µn)n∈N of Prob2(E) , with a uniform control of

∫

E |x|2 dµn is equivalent to the W2 convergence
on Prob2(E) (see Proposition 7.1.5 in [3]) . Remember also that the tightness property of subsets
of Prob2(E) can be checked in the infinite dimensional case with the weak topology, or after

introducing a Hilbert basis (en)n∈N∗ , with the distance dω(x1, x2) =
√
∑

n∈N∗
|〈x1−x2,en〉|2

(1+n)2 . This

use of weak or dω topology, is done also when considering probability measures on the set of
absolutely continuous curves in E .
This tightness property is called the weak tightness property in [3] since it refers to the weak
topology on E . Especially when one considers the narrow convergence in Prob2(E) , there is
a weak narrow convergence and a strong narrow convergence (see the discussions about this in
Chapter 5 and 7 of [3]). The terms “narrow convergence” or “narrow continuity” refer to the
strong ones and we shall specify “weak narrow convergence” and “weak narrow continuity” when
necessary.
We recall two results of [3] and give a complete proof in the infinite dimensional case of the second
one, for the sake of completeness (it is left as an exercise to the reader in [3]).

The following result is the second part of Theorem 8.3.1 in [3] with p = 2 . Although it is
not clearly stated in Theorem 8.3.1 in [3], the proof contains a “weak⇒ strong” result about the
narrow continuity w.r.t time.

Proposition C.1. Let I be an open interval in R . If a weakly narrowly continuous curve µt :
I → Prob2(E) satisfies the continuity equation

∂tµt +∇T (vtµt) = 0 (69)

in the weak sense
∫

I

∫

E

(∂tϕ(x, t) + 〈vt(x) , ∇xϕ(x, t)〉E) dµt(x)dt = 0 , ∀ϕ ∈ C∞
0,cyl(E × I) , (70)
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for some Borel velocity field vt , with |vt|L2(E,µt) ∈ L1(I) , then µt : I → Prob2(E) is absolutely

continuous with W2(µt′ , µt) ≤
∫ t′

t
|vs|L2(E,µs) ds . Moreover for Lebesgue almost every t ∈ I , vt

belongs to the closure in L2(E, µt) of the subspace spanned by
{

∇ϕ, ϕ ∈ C∞
0,cyl(E)

}

.

Proof. The proof is given in [3]. We simply insist here on the “weak⇒ strong” narrow continuity
argument. The proof of Theorem 8.3.1 ends with the following statements. For any time t ∈ I ,
µt is the weak narrow limit of a sequence (µ̂dt )d∈N (of which the definition is recalled below) which
satisfies

W2(µ̂
d
t2 , µ̂

d
t1) ≤

∫ t2

t1

|vt|L2(E,µt) dt .

Then the authors refer to the weak narrow lower semicontinuity of W2 ,

W2(µt2 , µt1) ≤ lim inf
d→∞

W2(µ̂
d
t2 , µ̂

d
t1)

stated in their Lemma 7.1.4 and relation (7.1.11).
This implies absolute continuity in terms of W2 and the narrow continuity w.r.t time:

W2(µt1 , µt2) ≤
∫ t2

t1

|vt|L2(E,µt) dt .

Finally notice that the weak narrow continuity of µt suffices for the strong narrow continuity of µ̂dt
w.r.t t ∈ I because µ̂dt is constructed after taking the image of µt via a finite rank projection. �

The previous result concerns non regular (non Lipschitz) vector fields for which there is no
uniqueness result for the Cauchy problem. Remember that the infinite dimensional case, which re-
lies on the cylindrical integration of vt and cylindrical disintegration of the measure µt , requires the
introduction of such singular vector fields (see the proof of Theorem 8.3.1 in [3]). Nevertheless an
interpretation of the continuity equation (69)(70) in terms of characteristic curves can be done via
a probabilistic representation. For the sake of completeness, we adapt the proof of Theorem 8.2.1
stated in [3] for the finite dimensional case, to our infinite dimensional case. For T ∈ (0,+∞) ,
consider the set ΓT = C0([−T, T ];E) endowed with the norm |γ|∞,T = maxt∈[−T,T ] |γ(t)|E or for
weak topology argument with the distance maxt∈[−T,T ] dω(γ1(t), γ2(t)) . For a Borel probability
measure η defined on E × ΓT , consider the time dependent Borel probability measure µη

t defined
by ∫

E

ϕ dµη

t =

∫

E×ΓT

ϕ(γ(t)) dη(x, γ) , ∀ϕ ∈ C0
b,cyl(E), t ∈ [−T, T ] . (71)

The measure µη

t is the push-forward of η by the evaluation map

et : (x, γ) ∈ E × ΓT → γ(t) ∈ E , for t ∈ [−T, T ] .

Proposition C.2. Let µt : [−T, T ] → Prob2(E) be a W2-continuous solution to the continuity
equation (69)(70), with I = (−T, T ) , for a suitable Borel vector field v(t, x) = vt(x) such that
|vt|L2(E,µt) ∈ L1([−T, T ]) . Then there exists a Borel probability measure η in E × ΓT such that

(i) η is concentrated on the set of pairs (x, γ) such that γ ∈ AC2([−T, T ];E) is a solution to the
ODE γ̇(t) = vt(γ(t)) for Lebesgue almost every t ∈ (−T, T ) with γ(0) = x ;

(ii) µt = µη

t for any t ∈ [−T, T ] , with µη

t defined as in (71).

Conversely, any η satisfying (i) and

∫ T

0

∫

E×ΓT

|vt(γ(t))|E dη(x, γ)dt < +∞ ,

induces via (71) a solution to the continuity equation, with µ0 = γ(0)∗η .
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Remark C.3. The notation AC2([−T, T ];E) refers to the set of absolutely continuous curves
in E with L2([−T, T ];E) derivative. We keep the notation Φ∗µ of differential geometry, for the
push-forward or direct image of a measure µ , by the Borel map Φ .

Proof. The result is proved in [3] when E is finite dimensional. The proof of the second (converse)
part of the statement, is exactly the same as in finite dimension, after replacing regular (Lipschitz)
test functions by cylindrical ones. We now show, for the first part, how the infinite dimensional case
is deduced from the finite dimensional result, following an approximation scheme like in the proof
of [3, Theorem 8.3.1]. After introducing an Hilbert basis (en)n∈N∗ of E , the maps πd : E → Rd ,
πd,T : Rd → E and π̂d : E → E are defined according to

πd(x) = (〈e1, x〉, . . . , 〈ed, x〉) ,

πd,T (y1, . . . , yd) =

d∑

j=1

yjej ,

π̂d = πd,T ◦ πd .

With the measure µt ∈ Prob2(E) , the measure µdt ∈ Prob2(R
d) is defined by µdt = πd∗µt and

{
µt,y, y ∈ Rd

}
denotes the disintegration of µt w.r.t µ

d
t . Within the space E endowed with the basis

(en)n∈N∗ , µ̂dt is nothing but µdt ⊗δ0 in the decomposition Z = Fd×F⊥
d with Fd = span(e1, . . . , ed) .

The vector field vdt (resp. v̂dt ) is defined on Rd (resp. on E) by

vdt (y) =

∫

(πd)−1(y)

πdvt(x) dµt,y(x) , y ∈ R
d

resp. v̂dt (y) =

∫

(π̂d)−1(π̂dy)

π̂dvt(x) dµt,πdy(x) , y ∈ E .

Within the proof of Theorem 8.3.1 in [3], it was checked that µdt (resp. µ̂dt ) is a weak solution to
the continuity equation

∂tµ
d
t +∇T (vdt µ

d
t ) = 0 ,

resp. ∂tµ̂
d
t +∇T (v̂dt µ̂

d
t ) = 0 .

with the following properties:

1) |v̂dt |L2(E,µ̂d
t )

= |vdt |L2(Rd,µd
t )

≤ |vt|L2(E,dµt) ;

2) W2(µ
d
t1 , µ

d
t2) ≤

∫ t2
t1

|vdt |L2(Rd,µd
t )
dt ≤

∫ t2
t1

|vt|L2(E,µt) dt , for −T < t1 ≤ t2 < T ;

3) the sequence (µ̂dt )d∈N∗ converges weakly narrowly to µt with the estimate

W2(µt1 , µt2) ≤ lim inf
d→∞

W2(µ
d
t1 , µ

d
t2) ≤

∫ t2

t1

|vt|L2(E,µt) dt , −T < t1 ≤ t2 < T . (72)

Additionally a time rescaling argument (see Lemma 1.1.4 and Theorem 8.1.3 in [3]) allows to
assume without restriction

|vt|L2(E,µt) ∈ L∞((−T, T )) .
The set of continuous maps from [−T, T ] to Rd is denoted by ΓdT . The mapping from ΓT to ΓdT , still
denoted by πd is defined by [πdγ](t) = πd(γ(t)) . By using the finite dimensional result, stated in
Theorem 8.2.1 of [3], there exists for any d ∈ N a probability measure, ηd , on Rd×ΓdT such that the
properties (i) and (ii) hold when (µt, vt, E) is replaced by (µdt , v

d
t ,R

d) . Equivalently the result can
be formulated in E after using (µ̂dt , v̂

d
t , E) instead of (µdt , v

d
t ,R

d) and using η̂
d = (πd,T ×πd,T )∗ηd .

Hence we have a sequence (η̂d)d∈N of probability measures on E × ΓT which satisfy
∫

E

ϕ ◦ πd dµ̂dt =
∫

Rd

ϕ dµdt =

∫

Rd×Γd
T

ϕ(γ(t)) dηd(x, γ)

=

∫

E×ΓT

ϕ ◦ πd(γ(t)) dη̂d(x, γ) , ∀ϕ ∈ C0
b (R

d), t ∈ [−T, T ] , (73)
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where ϕ ◦ πd can be replaced by ϕ ◦ π̂d with ϕ ∈ C0
b (Fd) .

After some regularization done [3] pp179-180, it is proved that any measure η̂
d satisfies

∫

ΓT

∫ T

−T
|γ̇(t)|2 dtdη̂d ≤

∫ T

−T

∫

E

|vdt (x)|2 dµ̂dt dt ≤
∫ T

−T

∫

E

|vt(x)|2 dµ̂tdt .

Since the functional g →
∫ T

−T |ġ(t)|2 dt , defined on {g ∈ ΓT , g(0) = 0} and set to +∞ if g 6∈
AC2([−T, T ];E) , has compact sublevel sets in ΓT , the two mappings

r1 : (x, γ) ∈ E × ΓT → x ∈ E , r2 : (x, γ) ∈ E × ΓT → gγ,x = γ − x ∈ ΓT

give rise to (weakly) tight families of marginals (r1∗η̂
d)d∈N = (µ̂d0)d∈N and (r2∗η̂

d)d∈N . Remember
that the compactness of subsets of E or ΓT is considered with the weak topology on E or the
distance dω . Hence the family (η̂d)d∈N is (weakly) tight in Prob(E×ΓT ) and we take for η a weak
narrow limit point of η̂d . By assuming the test function ϕ in (73) to depend only on d′ coordinates
with d′ ≤ d , and by taking the limit d→ +∞ while d′ and ϕ are fixed, we get

∫

E

(ϕ ◦ πd′) dµt =
∫

E×Γ

(ϕ ◦ πd′)(γ(t)) dη(x, γ) ,

for all ϕ ∈ C0
b (R

d′) and t ∈ [−T, T ] , where ϕ ◦πd′ can then be replaced by any cylindrical function
or Borel bounded function on E . It remains to prove the condition (i) for η , namely that this
measure is concentrated on curves verifying γ̇ = v(γ(t)) for Lebesgue almost every t ∈ (−T, T )
(γ(0) = x is already known) .
The estimate (8.2.6) used in [3] for the finite dimensional case, provides the inequality

∫

Rd×Γd
T

|γ(t)− x−
∫ t

0

ws(γ(s)) ds|2 dηd(x, γ) ≤ (2T )

∫ T

−T

∫

Rd

|vdt − wt|2dµdt dt ,

for any family ws(x) = w(s, x) uniformly bounded continuous function from [−T, T ]× Rd to Rd .
After assuming that w actually belongs to C0

b ([−T, T ]× Rd
′
;Rd

′
) with d′ ≤ d fixed and, by using

ŵt = πd
′,T ◦ wt ◦ πd′ ∈ C0

b ([−T, T ]× E;E) , taking the limit as d→ ∞ gives

∫

E×ΓT

|γ(t)− x−
∫ t

0

ŵs(γ(s)) ds|2 dη(x, γ) ≤ (2T ) lim sup
d→∞

∫ T

−T

∫

Rd

|v̂dt − ŵt|2dµ̂dt dt .

But the condition 1) for |v̂dt |L2(E,µ̂d
t )

is easily extended to

|v̂dt − ŵt|L2(E,µ̂d
t )

≤ |vt − ŵt|L2(E,µt) ,

by the same argument, relying on

∣
∣
∣
∣

∫

E

〈v̂dt − ŵt , χ〉 dµ̂dt
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

E

〈π̂d(vt(x)− ŵt(x)) , χ(π̂
d(x))〉 dµt(x)

∣
∣
∣
∣

≤ |vt − ŵt|L2(E;µt)|χ|L2(E,µ̂d
t )
, ∀χ ∈ L2(E, µ̂dt ) .

This uniform upper bound leads to

∫

E×ΓT

|γ(t)− x−
∫ t

0

ŵs(γ(s)) ds|2 dη(x, γ) ≤ (2T )

∫ T

0

∫

E

|vt(x)− ŵt(x)|2 dµtdt .

According to the last statement of Proposition C.1, vt can be approximated in L2(E, µt) by a
sequence of bounded regular cylindrical functions, (ŵt,n)n∈N . By possibly truncating with respect
to times t → ŵt,n so that |vt − ŵt,n|L2(E,µt) ≤ 1 for a.e. t ∈ (−T, T ) and all n ∈ N∗ , Lebesgue’s
Theorem implies

∫

E×ΓT

|γ(t)− x−
∫ t

0

vs(γ(s)) ds|2 dη̂(x, γ) = 0 ,
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which ends the proof. �

Below is a consequence of the above probabilistic interpretation when the Cauchy problem γ̇(t) =
vt(γ(t)) , γ(0) = x admits a unique solution for all x ∈ E . The fact that we have to pass by the
probabilistic representation is a real question. Contrary to the finite dimensional case, the well-
posedness of the Cauchy problem, even with the standard Picard’s contraction argument, defining
a flow on the whole space E , does not give a representation formula for observables. The point is
that the natural observables, or test functions, are cylindrical functions, a property which is not
generally preserved by the nonlinear flow.

Proposition C.4. Let µt : R → Prob2(E) be a W2-continuous solution to the continuity equation
(69)(70) for a suitable Borel velocity field v(t, x) = vt(x) such that |vt|L2(E,µt) ∈ L1([−T, T ]) for
all T > 0 . Assume additionally that the Cauchy problem

γ̇(t) = vt(γ(t)) , γ(s) = x

or

γ(t) = x+

∫ t

s

vs(γ(s)) ds ,

admits a unique global continuous solution on R for all s ∈ R and all x ∈ E , such that γ(t) =
Φ(t, s)γ(s) defines a Borel flow on E (i.e. Φ(t, s) : E → E is a Borel function for all t, s ∈ R).
Then the measure µt satisfies

∀t, s ∈ R, µt = Φ(t, s)∗µs .

Proof. It suffices to work with t ∈ [−T, T ] as in Proposition C.2. Since the evaluation map
et : E × (x, γ)ΓT → γ(t) ∈ E is a continuous, thus Borel, map. The relation µt = µη

t defined
according to (71) extends to any bounded Borel function ϕ on E:

∫

E

ϕ dµt =

∫

E×ΓT

ϕ(γ(t)) dη(x, γ) .

By using γ(t) = Φ(t, s)γ(s) , with Φ(t, s) Borel, we deduce

∫

E

ϕ dµt =

∫

E×ΓT

[ϕ ◦ Φ(t, s)](γ(s)) dη(x, γ) =
∫

E

[ϕ ◦ Φ(t, s)] dµs

which is nothing but µt = Φ(t, s)∗µs . �

C.2 Application to Hamiltonian fields

We finally specify how these results apply to our case, when the phase-space Z0 is a complex
Hilbert space and the velocity field is associated with a (singular) Hamiltonian vector field, only
defined on Z1 ⊂ Z0 .
Consider a complex Hilbert triple Z1 ⊂ Z0 ⊂ Z−1 , with Z1 densely continuously embedded in Z0

and Z−1 being the dual of Z1 for the duality bracket extending 〈z1 , z2〉Z0 . The dual of a complex
Hilbert space Z while keeping the C-bilinear duality bracket, written u . v in (68), is still denoted by
Z∗ . In the case treated in the article Z0 = L2(Rd, dx) , Z1 = H1(Rd) and Z−1 = H−1(Rd) . The
space Z0 is endowed with its scalar product 〈z1 , z2〉Z0 , real euclidean structure with Re 〈z1 , z2〉Z0

and its symplectic structure σ(z1, z2) = Im 〈z1 , z2〉Z0 . On Z1 we will use the hermitian 〈z1 , z2〉Z1

and euclidean scalar product
〈z1 , z2〉Z1,R = Re 〈z1 , z2〉Z1 .

For a cylindrical function f ∈ Scyl(Z0) , based on ℘Z0 , the differentials ∂zf(z) and ∂zf(z) are
defined

∂zf(z) =

∫

℘Z0

iπ〈ξ|e2iπRe 〈z , ξ〉F [f ](ξ) L℘(dξ)

∂zf(z) =

∫

℘Z0

iπ|ξ〉e2iπRe 〈z , ξ〉F [f ](ξ) L℘(dξ) .

42



Hence ∂zf(z) is a continuous C-linear form on Z0 while ∂zf(z) ∈ Z0 . This notation is coherent
with the definition of ∂zb(z) and ∂zb(z) when b is a Wick symbol in ⊕algp,qPp,q(Z) .
A function f ∈ Scyl(Z1) is given by

f(z) = ϕ(〈ξ1 , z〉Z1 , . . . , 〈ξN , z〉Z1) = ϕ(〈η1 , z〉, . . . , 〈ηN , z〉)

with ϕ(w1, . . . wN ) ∈ S(RN ) and ξ1, . . . , ξN ∈ Z1 and η1, . . . , ηN ∈ Z−1 , such that 〈ξj , z〉Z1 =
〈ηj , z〉 for all z ∈ Z1 . The derivatives ∂zf and ∂zf are thus given by

∀z ∈ Z1 , ∂zf(z) =

N∑

j=1

∂wjϕ(〈η1 , z〉, . . . , 〈ηN , z〉)〈ηj | ∈ Z∗
1 ,

∀z ∈ Z1, ∂zf(z) =
N∑

j=1

∂wj
ϕ(〈η1 , z〉, . . . , 〈ηN , z〉)|ηj〉 ∈ Z−1 .

When h(z) is an unbounded polynomial on Z0 but which happens to be a real-valued Fréchet
C1-function on Z1 , the derivatives ∂zh(z) and ∂zh(z) are defined only for z ∈ Z1 and we have

∀z ∈ Z1 , ∂zh(z) ∈ Z1 , ∂zh(z) ∈ Z∗
−1 .

When f ∈ Scyl(Z0) (resp. g ∈ Scyl(Z1) or h) is real valued differentiating f(z + te) at t = 0 ,
t ∈ R , for any e ∈ Z0 (resp. any e ∈ Z1) leads to

∂zf(z).u = 〈u , ∂zf(z)〉 , z ∈ Z0 , u ∈ Z0 (74)

∂zg(z).u = 〈u , ∂zg(z)〉 , z ∈ Z1 , u ∈ Z1 . (75)

∂zh(z).u = 〈u , ∂zh(z)〉 , z ∈ Z1, u ∈ Z−1 . (76)

Note that the Poisson bracket

i {h, b} (z) = i (∂zh.∂zb− ∂zb.∂zh) (z) , z ∈ Z1

is well defined for b ∈ Scyl(Z1;R) and our aim is to write it as the real scalar product

〈v(z) , (∇b)(z)〉Z1,R , z ∈ Z1 .

Definition C.5. For a cylindrical function on Z1 , f ∈ Scyl(Z1) , the gradients ∇z and ∇ are
defined by

∀z ∈ Z1, u ∈ Z1, 〈u , ∇zf(z)〉Z1 = 〈u , ∂zf(z)〉 ,
∇ = 2∇z .

Remark C.6. • Although it is not necessary, these definitions can be justified by introducing a
complex conjugation u→ ū on Z0 , which remains a conjugation on Z1 , that is an isometric
C-antilinear application such that 〈u, v〉Z0,1 = 〈u , v〉Z0,1 . When Z0 = L2(Rd;C) and Z1 =
H1(Rd) this is the usual pointwise complex conjugation.
For real valued functions, set

∇Rf = ∇zf +∇zf and ∇If =
1

i
(∇zf −∇zf) .

so that

∇zf =
1

2
(∇Rf + i∇If) .

Similarly, an element X of Z1 can be written X = XR+iXI with XR,I = XR,I or X =

(
XR

XI

)

and the real scalar product

〈X , Y 〉Z1,R = Re 〈X , Y 〉Z1 = 〈XR , YR〉Z1 + 〈XI , YI〉Z1 .

Then the definition of the gradient of a real cylindrical function f becomes

∇f =

(
∇Rf
∇If

)

.
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• It is important to notice that we do not use the Z1-gradient for the real valued function
h(z) , but keep the derivative, ∂zh(z) modeled on the duality bracket 〈 , 〉 . With a complex
conjugation and since h is real valued, it can be decomposed into ∂zh = 1

2 (∂Rh+ i∂Ih) and

−i∂zh =
1

2
∂Ih− i

2
∂Rh .

Lemma C.7. With the above notations and assumptions the equality

∀z ∈ Z1 , i {h, b} (z) = 2Re 〈−i∂zh(z) , ∇zb(z)〉Z1 = 〈v(z) , ∇b(z)〉Z1,R ,

holds for any b ∈ Scyl(Z1;R) with v(z) = −i∂zh(z) .
Proof. It suffices to compute

i {h , b} = i [∂zh.∂zb− ∂zb.∂zh]

= i
[

〈∂zb , ∂zh〉Z0 − 〈∂zh , ∂zb〉Z0

]

= −2Im 〈∂zh , ∂zb〉 = 2Re 〈−i∂zh , ∂zb〉 = 2Re 〈−i∂zh , ∇zb〉Z1

= 〈−i∂zh , ∇b〉Z1,R .

�

Proposition C.8. Let Z1 ⊂ Z0 ⊂ Z−1 be a Hilbert triple of separable complex Hilbert spaces.
Consider a time dependent real sesquilinear form z → h(z, t) on Z1 which is Fréchet-C1 and such
that Z1 × R ∋ (z, t) → (∂zh(z, t) , ∂zh(z, t)) ∈ Z1 × Z∗

−1 is strongly continuous. Assume also that
the time-dependent Hamilton equation

i∂tzt = ∂z̄h(zt, z̄t, t) , zt=s = z

admits a unique continuous solution zt = Φ(t, s)z for all t, s ∈ R and all z ∈ Z1 , with Φ(t, s) :
Z1 → Z1 Borel.
Consider a time dependent measure µ(t) ∈ Prob2(Z1) which satisfies

• t→ µt ∈ Prob2(Z1) is W2-continuous.

• For all T > 0 , |∂z̄h(t)|L2(Z,µt) ∈ L1([−T, T ]) .

• The time-dependent probability measure µt is a weak solution to

∂tµ+ i {h(t) , µ} = 0 ,

namely for all ϕ ∈ C∞
0,cyl(Z1 × R;R) ,
∫

R

∫

Z1

(∂tϕ(z, t) + i {h, ϕ} (z, t)) dµt(z)dt = 0 .

Then the measure µt satisfies
∀t, s ∈ R, µt = Φ(t, s)∗µs

and it is unique when µ0 is fixed.

Proof. We apply Proposition C.4 whileE = Z1 is endowed with its euclidean structure 〈z1 , z2〉Z1,R

= Re 〈z1 , z2〉Z1 . Lemma C.7 says that the weak Liouville equation is

∀ϕ ∈ C∞
0,cyl(Z1 × R) ,

∫

R

∫

Z1

(∂tϕ(z, t) + 〈v , ∇ϕ〉(t, z)) dµt(z)dt = 0 ,

with v(z, t) = −i∂zh(z, t) . The measure µt is a weak solution to

∂tµ+∇T (vµ) = 0

where ∇ and ∇T are defined according to the real structure on Z1 . Our hypothesis on µ and h
cover all the assumptions of Proposition C.4 �
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D Weak L
p conditions for the potential V

Let LRd be the Lebesgue measure on Rd . Let 0 < p < ∞ , a Lebesgue measurable function
f : Rd → C is said to belong to weak-Lp(Rd), or shortly in Lp,∞(Rd) , if there exists a constant
c > 0 such that for all t > 0

LRd{x : |f(x)| > t} ≤ cp/tp .

Two functions in Lp,∞(Rd) are equal if they are equal LRd-almost everywhere. The quantity

‖f‖p,∞ = inf{c : LRd{x : |f(x)| > t} ≤ cp/tp, ∀t > 0}
= sup

t>0
{tLRd{x : |f(x)| > t}1/p}

defines a complete quasi-norm on Lp,∞(Rd) with ‖f‖p,∞ ≤ ‖f‖p .
By combining Hunt and Marcinkiewicz interpolation theorems according to [34, 55, 11]), the Young
and Hölder inequalities can be extended to weak Lp spaces.

Proposition D.1 (generalized Young’s inequality). Let 1 < p, q, r <∞ such that 1
p +

1
q = 1+ 1

r .

There exists a constant cp,q > 0 such that for all f ∈ Lp(Rd) and g ∈ Lq,∞(Rd)

‖f ∗ g‖r ≤ cp,q ‖f‖p ‖g‖q,∞ .

Proposition D.2 (generalized Hölder inequality). Let 1 < p, q, r < ∞ satisfying 1
p + 1

q = 1
r .

There exists a constant cp,q such that for all f ∈ Lp,∞(Rd) and g ∈ Lq(Rd)

‖f.g‖r ≤ cp,q ‖f‖p,∞ ‖g‖q .

Proposition D.3 (Hardy inequality). Suppose that d ≥ 3 and V ∈ Ld,∞(Rd) . There exists a
constant c > 0 such that for all u ∈ H1(Rd)

‖V u‖2 ≤ c‖u‖H1(Rd) .

Proof. For u ∈ L2(Rd) , we can write (1 − ∆)−1/2u(x) = G ∗ u(x) with G the inverse Fourier

transform of (1 + |x|2)−1/2 . It is not difficult to prove that G ∈ L
d

d−1 ,∞ (see [55, Exercice 50]).
Hence, we conclude that

‖V (1−∆)−1/2u‖2 = ‖V G ∗ u‖2
Hölder
≤ C1 ‖V ‖d,∞ ‖G ∗ u‖ 2d

d−2

Young

≤ C2 ‖V ‖d,∞ ‖G‖ d
d−1 ,∞ ‖u‖2

�

The above proposition provides a class of potentials which are bounded multiplication operators
from H1(Rd) into L2(R) when the dimension d ≥ 3 . For lower dimension, the Sobolev embeddings
give at once:

• if d = 1 , V ∈ L2(R) + L∞(R) then V ∈ L(H1(R), L2(R)) .

• if d = 2 , V ∈ Lp(R2) + L∞(R2) for p > 2 , then V ∈ L(H1(R2), L2(R2)) .

We denote by Lp(Rd) +L∞
0 (Rd) the space of Lebesgue measurable functions f such that there

exists (fn)n∈N ∈ Lp(Rd)N satisfying limn→∞ ‖f − fn‖∞ = 0 .

Lemma D.4. For 0 < p < q ,

Lq,∞(Rd) ⊂ Lp(Rd) + L∞
0 (Rd)
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Proof. For ǫ > 0 , decompose each f ∈ Lq,∞(Rd) into a sum f = fǫ + f ǫ such that fǫ = f1|f |>ǫ
and f ǫ = f1|f |≤ǫ . Observe that for any ǫ > 0

‖fǫ‖pp = p

∫ ∞

0

tp−1LRd{x : |fǫ(x)| > t} dt

= p

∫ ∞

ǫ

tp−1LRd{x : |f(x)| > t} dt+ ǫpLRd{x : |f(x)| > ǫ}

≤ c

∫ ∞

ǫ

tp−1

tq
dt+ ǫpLRd{x : |f(x)| > ǫ} <∞

Moreover, when ǫ→ 0
‖f ǫ‖∞ = ‖f1|f |≤ǫ‖∞ ≤ ǫ→ 0 .

Therefore, each f ∈ Lq,∞(Rd) belongs to the space Lp(Rd) + L∞
0 (Rd) . �

Proposition D.5. For any V ∈ L2(Rd) + L∞
0 (Rd) such that V (1 − ∆)−1/2 ∈ L(L2(Rd)) the

operator (1−∆)−1/2V (1−∆)−1/2 is compact.

Proof. Let g(ξ) = (1 + |ξ|2)−1/2 and gm(ξ) = 1[0,m](|ξ|)g(ξ) . The following norm convergence
holds

lim
m→∞

gm(D)V gm(D) = g(D)V g(D) ,

using the fact that limm→∞ ‖gm(D)− g(D)‖L(L2(Rd)) = 0 and ‖V g(D)‖L(L2(Rd)) <∞ .

By Lemma D.4, there exist Vn ∈ L2(Rd) such that limn→∞ ‖V −Vn‖∞ = 0 . We observe now that
the Hilbert-Schmidt norm of gm(D)Vn(x)gm(D) is

‖gm(D)Vn gm(D)‖L2(L2(Rd)) ≤ ‖Vn‖2 ‖gm‖22 <∞.

Therefore by norm convergence, the operator g(D)V g(D) is compact. �

Corollary D.6. The potential V satisfies the assumptions (A2)-(A3) in the following cases:

• if d = 1 and V ∈ L2(R) + L∞
0 (R) ,

• if d = 2 and V ∈ Lp(R2) + L∞
0 (R2) with p > 2 ,

• if d ≥ 3 and V ∈ Ld,∞(Rd) .

Proof. Combine Proposition D.3, Lemma D.4 and Proposition D.5, with in dimension d = 2 the
observation

Lp(R2) + L∞
0 (R2) ⊂ L2(R2) + L∞

0 (R2) for p > 2 .

�

In particular, in dimension d = 3 the Coulomb potential V (x) = ± 1
|x| satisfies the assumptions

(A1), (A2) and (A3) because 1
|x| ∈ L3,∞(R3) .
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