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Mean field propagation of infinite dimensional Wigner
measures with a singular two-body interaction potential

7. Ammari* F. Nierf

November 25, 2011

Abstract

We consider the quantum dynamics of many bosons systems in the mean field limit with
a singular pair-interaction potential, including the attractive or repulsive Coulombic case in
three dimensions. By using a measure transportation technique developed in [3], we show that
Wigner measures propagate along the nonlinear Hartree flow. Such property was previously
proved only for bounded potentials in our works [5, 6] with a slightly different strategy.

Keywords: mean field limit, Bosons, Semiclassical analysis, Wigner measure, measure transporta-
tion. 2010 Mathematics subject classification: 81530, 81505, 81T10, 35Q55, 28A33

1 Introduction

The evolution of a system of many quantum non relativistic particles is described by an n-body
Schrodinger Hamiltonian. The mean field limit consists in replacing this problem by a non linear
1-particle problem, by considering that one generic particle interacts with the average field of all
particles, in the limit when the number of particles is large and the interaction potential is inversely
weak. Practically, it is common knowledge that this approximation starts to be very effective when
the number of particles exceeds a few tens. In the last decades, many works have been devoted
to justify this limit. Most of them considered the mean field dynamics of well prepared quantum
states, coherent states or Hermite states, by following and extending the phase-space approach,
also known as the Hepp method (see [25, 27, 32, 33, 39, 44, 57]) or by studying the BBGKY
hierarchy of reduced density matrices (see [8, 17, 19, 20, 42, 59]). Some of these results achieved
to include very singular pair interaction potentials in [9, 19, 20, 44] or considered the rate of
convergence (see [7, 57, 44]), sometimes motivated by the modelling of Bose-Einstein condensates
(see a.e.[21, 48, 1]). In this article, we continue our program, which consists in deriving the mean
field limit, for general initial data in the bosonic framework. Our strategy is inspired by older
attempts to give substance to the formal link between bosonic Quantum Field Theory and the
finite dimensional microlocal or phase-space analysis (see [10, 23, 24, 45, 47]). With this respect,
the small parameter € = % asymptotics is the infinite dimensional version of semiclassical analysis.
And it has been realized in the 90’s, that the Wigner (or semiclassical) measures provide a powerful
tool in order to obtain the leading term in the semiclassical limit (see [29, 30, 37, 49]), because
they flexibly and efficiently incorporate a priori estimates (see [13, 14, 22, 51, 53]).

In [4] Wigner measures were introduced in the infinite dimensional setting and their main
properties were studied. This presentation exploited and clarified the intimate relationship be-
tween pseudo-differential calculus, phase-space geometry and the probability approach, inherent
to bosonic QFT. In [5], the dynamics for well prepared data and bounded interaction potentials
was reconsidered within this approach. The general propagation result was obtained in [6] for
bounded interaction potentials. In particular, we showed that the BBGKY hierarchy dynamics is
a projected picture of the evolution of the Wigner measure, for which there is a closed equation.
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One difficulty which was solved in [6] is concerned with the integration of a weak Liouville equa-
tion valid after testing with cylindrical or polynomial observables: Such classes of observables are
not preserved by the nonlinear Hamiltonian mean field flow. For bounded interaction potentials,
the number conservation allows polynomial approximations of the nonlinear deformation in balls
of the phase-space. This done by following a truncated Dyson expansion approach presented in
[25, 26, 27]. In applications, an important case is the one of 2-body Coulombic interaction because
it models the general non relativistic motion of charged (or gravitational) particles. Again there
are results about the mean field problem for specific initial data (see [9, 44]), but the approach
that we followed in [6] essentially fails. With a singular pair interaction potential, a solution to
this problem is provided by measure transportation techniques developed for optimal transport
theory (see [3, 61]). Hence, the dynamical mean field limit relies even more on the fact that Wigner
measures are probability measures on the phase-space.

We now expose our main result. The Hamiltonian of an n-body quantum system, with a pair
interaction potential, is given by the Schrodinger operator

H™ = gz —A,, +¢° Z Vi(z; — xj),
i=1 1<i<j<n

where ¢ is a positive parameter and x;, 2; € R%. We assume that the particles obey Bose statistics.

So, we consider HE(") as an operator acting on the space L2(R9") of symmetric square integrable
functions. This means that

U c L2R™) iff Ue L2RY) and U(xy,---,2,) = U(T0,,...,T,,) ae
for any permutation ¢ on the symmetric group &,,. The mean field asymptotics is concerned with

the limit as € — 0 and ne — 1, where n = [%] represents the number of particles of the system.
Let H be the direct sum of Hilbert spaces of the form

H=ELrirm),
n=0
and consider the Hamiltonian of the many-bosons system (with arbitrary number of particles) as
H.=PH™M. (1)
n=0

An obvious feature of the operator H. is the conservation of the number of particles. Hence, it is
useful to define the number operator

N = @E?’L HL?(]R(ML).

n=0

The free Hamiltonian, corresponding to V = 0, will be denoted by H?:

H? = éHQ’(") , HOM = si A, .
n=0 i=1

Second quantization is a natural framework for the study of many-body problems and, even more,
it helps to understand the mean field limit and the structures behind it. However, the result can be
presented without using the language of quantum field theory. We just mention that the operator
H. can be formally rewritten as

Ho= [ V6 @-Val@) ot [ V=)@ Galealy) dods,



with the e-dependent canonical commutation relations [a(z), a*(y)] = ed(x — y) . It is interpreted
as the Wick quantization of the classical Hamiltonian

hed) = [ Ve@F ot g [ @RGPV @ - y) dody. )

In our analysis an operator, which violates the number of particles conservation, will play an
important role, namely the Weyl operator. Such operators are given for f € L%(R?) by

W(f) = evale”(N+a(f)]

where a*(f),a(f) are the creation-annihilation operators on H satisfying the e-canonical commu-
tation relations (CCR):

[a(f1),a”(f2)] = e(f1, fo) L2y U, [a”(f1), a7 (f2)] = 0 = [a(f1), a(f2)] -

Accurate definitions on second quantized operators can be found in Appendix B.

Our approach is based on Wigner measures which are Borel probability measures on the infinite
dimensional phase-space Zy := L?(R% C). The states of the many-bosons system are positive
trace-class operators on H of normalized trace equal to 1 (i.e.: normal states or density operators).
To every family of those states (0:)-c(0,z) We asymptotically assign, when ¢ — 0, at least one
Borel probability measure y on Zy := L?(R?, C), called Wigner measure, such that there exists a
sequence (€ )ken, limg e = 0 and

lim Tr[oe, W (V27€)] = F 1 (u)(€).

under the sole uniform estimate Tr [p.N°] < Cj for some § > 0. Here F~!(u) is the inverse
Fourier transform of u.

The problem of the mean field dynamics questions whether the asymptotic quantities, namely
Wigner measures, as € — 0 associated with

0:(t) = e ieHe Qgel%HE , teR

are transported by the flow ®(¢, s) generated by the classical Hamiltonian h(z, Z) and given, after
writing z; = ®(¢, s)(z5), by

i@tzt = (8211)(2:,5, 2,5) = —Azt + V o« |Zt|225t . (3)

After checking that the Hamiltonian (1) has a self-adjoint realization so that the quantum dynamic
is well defined on H and after checking that the mean field flow is well defined on Z; = H(R?),
our main result is stated below.

Throughout the paper we assume that the real valued potential V' satisfies the assumptions

V(—z)=V(z) eR, (A1)
V(1 —-A)TV2 e L(2), (A2)
and  (1-A)Y2V(1—A)"2 e £2(2). (A3)

Here we use the notation £(h) for the space of bounded operators on the Hilbert space h and
LP(h), 1 < p < 400, for the Schatten classes, £°°(h) being the space of compact operators for
p=—+00.

Theorem 1.1. Let (0:)-c(0,5) be a family of normal states on H with a single Wigner measure fio
such that the bound
Te[(N + H?)’0.] < C5 < +00, (4)

holds uniformly w.r.t € € (0,&) for some § > 0.

Then for all t € R, the family (e’iéHE gseiﬁHf)Ee(O,g) has a unique Wigner measure py which is a
Borel measure on Z; = HY(R?). This measure iy = ®(t,0).p0 is the push forward of the initial
measure o by the flow associated with (3), well defined on Z; .



In a formal level the proof of the latter theorem is rather simple. We first write an integral

formula
4

Trlo. ()W (€)] = Tr[oW(€)] +i / Telo- ()W (€)Y &10,] ds,

j=1
where o (t) = e~ "/eHzg_e/sH= and O; are some Wick quantized observables. Then we attempt
to take the limit as € — 0, where in the r.h.s only the term with 7 = 1 will contribute. We end up

in a formal level with a transport equation on the Wigner measures
Op+i{h, ut =0, {h,u}=0.h0:u—0.pu0:h
which we then solve by appealing to the results in [3].

Outline: In Section 2 we prove the self-adjointness of the Hamiltonian H. and the existence of
a global flow on Z; = H'(RY) for the Hartree equation (3). The derivation of the mean field
dynamics is done in Section 3 where we prove Theorem 1.1. Some additional properties are stated
in Section 4: in particular, we draw the link with former results on bounded potential and reduced
density matrices and provide non trivial examples elucidated by the Wigner measure approach. We
finish the article with several appendices dedicated to second quantization, absolutely continuous
curves in Probg(Z) as well as some weak LP conditions for the potential V' ensuring the fulfillment
of the assumptions (A2) and (A3).

2 Well defined dynamics

In this section we shall prove that:
e the quantum dynamics is well defined, namely H. has a natural self-adjoint realization;

e the mean field dynamics is well defined on Z; = H'(R?), with additional useful estimates.

2.1 Self-adjoint realization of H.

The Hamiltonian H. has a particular structure explained in a general framework in Appendix A.
Let V be a real-valued Lebesgue measurable function a.e. finite satisfying assumptions (A1) and
(A2). The multiplication operator

Vi =g Y Vi - )

1<i<j<n

with its natural domain D(VA™) = {¥ € L2(R) : VAT € L2(R9)} is self-adjoint on L2(R")
as well as the differential operator

HY™ =Y —A,,  with DHIM™)=L2R™)NH*R™M).
i=1

Therefore, according to Appendix A
V.=> VM, and H=) H>™
n=0 n=0

endowed with their natural domains are self-adjoint on H.

Proposition 2.1. Under the assumptions (A1) and (A2):
(i) The operator
HE(”) — ng(n) + Va(n)



is self-adjoint on D(Hg’(")) C D(Ve(n)).
(i) The operator

H.:=Y H™, DH.):={TeH,> [[HMI"|*< o0},
n=0

n=0

is self-adjoint and essentially self-adjoint on @fll:gODn where D, is any core of Hs(n).

Proof. (i) By assumption (A2), we see that v s infinitesimally small with respect to HY (),

So that, D(HS’(")) C D(Vs(n)) and the operator H™ = H>™ 4+ V") ig self-adjoint on the domain
of H>™ by Kato-Rellich theorem.

(ii) Applying Proposition A.1, we see that H. is self-adjoint and essentially self-adjoint on @ZEODH.
(Il

Later, it will be useful to use the reference operator

S.(\) = i HO™ 4 en 4 Aen)?. (5)

n=0

which is self-adjoint by Proposition A.1. Moreover, by functional calculus of strongly commuting
self-adjoint operators we observe that D(S.(\)) is invariant with respect to the parameter A > 0.

Proposition 2.2. Under the assumptions (A1) and (A2), for any A > 0, the operator V. is
Se(N)-bounded with

VU eD(S:(N), (IVelllae S AV = A) 72| ppagmayy 152l
Therefore H. is essentially self-adjoint on D(S: (X)) .

Proof. The multiplication operator by V(x1 — x2), at least defined as a symmetric operator from
S(R2) into S’'(R?4), satisfies

em?Dm V(SCl . 1,2)(1 . AII)—1/2e—ingm1 _ eingmlv(xl . 1,2)6—1'ng$1 (1 . Aml)_1/2

= V()1 - As) 7% € LILPR™M)). (6)

For U € H,® € D(S:())), taking advantage of the symmetry of those wave functions, we compute

(v, V.2) = Z<‘I’(n) ,n(n — 1)V (z1 — 22)™) 12 gany
n=2
= Z<\I/(n) s n(n - 1)€2V($1 — .Tg)(l — Aml)_l/Q(l — AI1)1/2¢(’”’)>L§(Rdn) .
n=2
By noticing that
()21 = 20)) 20 | agnay = (en)® (@ e (1= Ay,)2™) 12 (gany
i=1

= |IN*2(N+H)Y2eM|3,,
the Cauchy-Schwarz inequality leads to
(W, Ve@)| < [[V(L—A)7 2 [[@l5 N2 (N + HO)V2® |3 (7)
Now with the inequality ab < (Aa)? + (b/))?, we see that

IN*2(N + H2)' 203, = (2,N*(N+ H?)®)
(®, AN 4 A\*(N + H?)?®)
NS-(A)@ll3, - (8)



Putting together (7) and (8) yields the estimate. O

We end this section with some invariance properties of the domain D(S.()\)) with respect to
the Hamiltonian H. and the Weyl operators.

Proposition 2.3. For any A >0 andt € R
e 'S HD(S.(\) € D(S-(N)).
Moreover there exists C'y > 0 such that
I1Sc (Ve =1 (Sc(A) + 1) My < Cx - for all t € R.

Proof. For any U € D(S.(\)) C D(H.), we observe that e~ 7= belongs to D(N3)ND(H.) since
D(S:(N\)) € D(N3) and H. strongly commute with N . Proposition 2.2 implies D(S.(8) + V:) =
D(S:(B)) = D(Sc(N\)) when 5 > 0 is large enough, so that for any ® € D(S.()))

(S(8) + V) @, M)y = ((He + N+ BN°) @, e~ =10y,

= (®,(H. + N+ SN 20y,
and hence e~"< =¥ belongs to D((S.(8) 4+ V.)*) = D(S-(8)) = D(S-(\)).
Again for 8 large enough, we know that
L+ Se(B) + Ve = (14 Va(Se(8) + 1)7)(S=(8) + 1),

and
(1 +N+BN? + Ho) ™ = (Se(8) + 1) 711+ Ve(Se(8) +1)7H) 7.
Therefore the operators (1 + S.(8))(1 + N+ N3+ H.)~! and (1 + N+ N3+ H.)(S.(8) +1)7!
are bounded. We conclude with
Se(N)e T EH (14 8.(0) 7 = Sc (W1 + S-(8) 1L + S<(8))(1 + N + BN® + H.) ™!
o e EHe (14 N 4 BN® + H.)(1+ S:(8)) (1 + S=(8)(1 + S-(A) 7.
O

Proposition 2.4. For any ¢ € H*(RY) and A\ > 0 the domain D(S-()\)) is invariant with respect
to Weyl operators W (&) with

1(S=(N) + D)W ()S-(Nlcmy < Oxes
uniformly w.r.t € € (0,&) for some constant Cy ¢ > 0.
Proof. For all @, ¥ € D(S.()\)), we write

(@, W()*Sc (MW ()W) = (P, (S-(A) + QL") W),

where @) is the following polynomial

Qule) = {5+ 6 A+ 20)z, — (2~ D2z, + P + =€) — P.(2)

V2 V2
and P.(z) = |2|%, + 3elz|3, + €%|z|%, is the complete Wick symbol of N?, according to Propo-

sition B.2 or by direct computation. The assumption & € H?(R?) ensures that Q. is uniformly
3

bounded in ®,+4<3Pp.(Z0) and the number estimate of Proposition B.3 says that QYVk (N)~2
is a bounded operator and therefore

QUER(5.(3) + 1)) € £0).
Hence for ¥ € D(S:())),

SLONW(OW = W(E) | T + QU™ (5.00 + 1) | (8.0 + 1)
and W (&) belongs to D(S:(N)), with ||Sc(MW ()| < Cxell(S:(A) +1)¥] . O



Proposition 2.5. For any function x € C°(R?) and A > 0, the operator x(N, H.) satisfies
vk eN, [NES.()X(N, He)ll ooy < O
for some Cy > 0.

Proof. The operators N, H. (like N and (N + H?) are strongly commuting self-adjoint operators
so that the functional calculus is well defined for the pair (N, H.). With a cut-off function x; €
Cs°(R) such that xi(z) = 1 on a neighborhood of supp ¥, the operator N*¥(1 + N + N3 +
H.)x1(N)x(H.,N) is bounded with

11+ N+ BN + HO)N xa (N)x(H, N[ 20y < CoCYF
For sufficiently large 3, Proposition 2.2 says
1S-(8)(1 + N + BN + H.) ™ o0y < .-
This is done with
NS ()X (N, He) = Sc(A)(1+ 5:(8)) 7 (1 + S=(8)(1 + N + BN° + Ho)~'x(N, He),

and O, = max {Cy., CoCHIS-(N(1+ 5:(8)) 711} O

2.1.1 Mean field dynamics

We shall use another more convenient writing of the Cauchy problem

10z = =Dz + Vo |2¢? 2 )
Zt=0 — 20 -
After setting 2; = e™(=2)z, = ¢4 2, it becomes
107 = e A [V x [etA 5,2 (e 7)) (10)
2t=0 = 20 -

Proposition 2.6. Assume (A1) and (A2). For any zy € Z; = H*(R?) the Cauchy problem (9)
admits a unique solution (t — z;) € CO(R; HY(RY)) NCL(R; H~Y(R%)) . More precisely, the Cauchy
problem (10) which is equivalent to (9) admits a unique solution in C*(R; H'(RY)) . Moreover these
solutions verify

|2t|> = |Zt|> = |20lL2 (11)
and h(zt,z) = h(z0,%0), (12)

for  h(z,%) / |Vz|2(z) do + = / V(z —y)|z(x)?|2(y)|* dody .
Finally, the time-dependent velocity field defined on R x Z1 by
’U(t, Z) _ efitA([V % |eitAZ|2]eitAZ)
satisfies the estimates

[o(t,2)|z < V(L= 2)712)|2[%, |2l 2, (13)
[o(t,2)|z, S V(L —2)"2)|2[%, 2]z, - (14)

and

Proof. The first results are standard (see a.e. [16, 31]) in the analysis on nonlinear evolution
equation. Nevertheless, we recall the details of the proof be cause it also contains (13)(14), which
is crucial in our analysis.



By considering the second formulation (10), it suffices to prove that the mapping z — (V * |2]?)2
is locally Lipschitz in H'(R9). After noticing that the distributional derivative of (V * |2|?)z is

0 [(V % Z122)23) =V % (02122 + Z10,22) 23 + (V * Z122) (02 23) , (15)

it is reduced to the estimate of V * (Z722)23 in L? in terms of the L? and H'- norms of z1, 29, 23 .
For ¢ € L2(R?), write

(€, V* (Z1z2)23) 2 (rey = (21 ® &, V(21 — 72)22 ® 23) [2(R20) -

When b is the multiplication operator by V(z; — ), the estimate (6) says that b(1 — A,, )~/ is
bounded, with

(@21, V(w1 — @2)22 ® 23) paqraay| < V(L= A) V2| [€] 2|21 12 |22 ] i |23l 2 -
A symmetric argument of (6) says b(1 — A,,)~'/2 is bounded, with

(@21, Viwr —w2)20 ® 23) r2ggen)| < V(1= A)7V2| [€] 2 |21] L2 |2a] 2|25 o -
Finally the symmetry of the expression V * (Z122)z3 w.r.t exchanging z7 and zo gives

(@21, Viwr —22)20 ® 23) paggen)| < V(1= A)7V2| [€] 2 |21] |22 2|2 2
We have proved, owing to (15),

[V % (Z122) 23] 2 < V(1= A)72) feﬂéld |20(1) |1 20(2) | 22| 20(3) | L2 (16)

from which we deduce

|V * (2_122)23|H1 < HV(1 - A)71/2H UHEHGHS |Za(1)|H1 |Za(2)|H1 |Za(3)|L2 . (17>

Since z — €™z preserve the L? and H' norms, the velocity field estimates (13) and (14) are
consequences of (16) and (17).

For the sake of completeness, let us finish the proof of the global well-posedness of the Cauchy prob-
lem. The estimate (17) provides the Lipschitz property of z — V * |2|2z in H'(R?). This implies
the local in time existence and uniqueness of a solution to (10) in C'((—T%,,T%,); H*(R?)), and
therefore the local in time existence and uniqueness of a solution to (9) C°((—=T%,, T%,); HY(R?)) N
CYH([~Tsy, Tsp); H-1(RY)) . The global in time existence then comes as usual from the control of
|z¢| 1 = |Z¢|sn deduced from the conservations of (11) and (12). For (11), take the real part of
the scalar product of each member of (9) with Z; . This implies 9|z, = 0.

For (12) take the scalar product with x(—R™!A)d;2; where x € CS°(R) satisfies 0 < y < 1 and
x =1 in a neighborhood of 0, with R > 0:

0 = 2Re <at2t, X(*RilA)’LatZ,»
= Oz, —AX(—R'A)z) 4 2Re (Drze, X(—RTTAN(V *[2e]?)2])

Integrating this identity from 0 to ¢ and taking the limit as R — oo with the help of (17) gives
t
/ |V 2|2 d —/ |V20|? dx + 2/ Re (9525, (V * |25]*)zs) ds = 0.
Rd Rd 0

Due to the symmetry of V(x) = V(—z), the last integrand equals

Re @he, (Vxlaf)z) = [ 0.(5@BV (- )l dedy

1
30 [ 1 @PV (@~ () dody.
R2d

The conserved quantities (11) and (12) combined with (16) imply |z¢|g:1 < Clzo|g1 for some con-
stant independent of ¢ € (=T, T%,), and hence T, = 4+00. O

0



3 Derivation of the mean field dynamics

This section contains the proof of our main Theorem 1.1. Below, we recall from our previous work
[4] the notion of infinite dimensional Wigner measures and collect some of their properties. We
will often make use of Weyl and Wick quantization throughout this section. So, we suggest first
the reading of Appendix B.

Two phase-spaces will be necessary for this analysis: Zy = L?(R% C) (resp. 21 = H'(R% C))
endowed with its scalar product ( , ) (resp. (z1,22)z, = (z1, (1 — A)zy)), its norm |23, =
(z, z) = |z|7. (resp. |z|%, = |2]3), its real scalar product Re (z, z) (resp. Re (z1, 22)z,). Only
on Zy, we will use the symplectic structure with o(z1,22) = Im (21, 22). Meanwhile, the real
euclidean structure on Z; is important especially when referring to Appendix C.

3.1 Wigner measures

The Wigner measures are defined after the next result proved in [4, Theorem 6.2].

Theorem 3.1. Let (gg)ae(o 9 be a family of normal states on H parametrized by €. Assume
Tr[0-N°] < Cs uniformly w.r.t. € € (0,) for some fivzed § > 0 and Cs € (0,+00). Then for every
sequence (€n)nen with lim,_,o £, = 0, there exist a subsequence (n, )ken and a Borel probability
measure p on Zq, such that

lim Tr[o. bWev] — / b(z) du(z)
k—o0 k

Zo
for all b € Seyi(20).

Moreover this probability measure p satisfies / |z|§i du(z) < oo.
Z0
Definition 3.2.
The set of Wigner measures associated with a family (0:)cc(0,z) (resp. a sequence (0c, )nen) which
satisfies the assumptions of Theorem 3.1 is denoted by

M(ge,e €(0,8)), (resp. M(pe, ,n € N)).
Moreover this definition can be extended to any family (oc)ec(0,) such that
(1 +N)?0:(1 + N)°|| z130) < Cs

for some & > 0 with the decomposition g. = N\E+olit — M= plt= 4 A\t plit i \L=pl=

Wigner measures are in practice identified via their characteristic functions according to the
relation

M(oe,e € (0,8) = {u} & lim Trfo- W(V2r)] = F ()(§)

& lim Tr[p. W(€)] = / VIR (62) () |
e—0 Zo

The expression M(oc,¢ € (0,€)) = {u} simply means that the family (o:)-¢(0,z) is "pure” in the
sense

ii_}r% Tr [gsbweyl} = /Zb(z) du,
for all cylindrical symbol b without extracting a subsequence. Actually the general case can be
reduced to this one, after reducing the range of parameters to ¢ € {ey,,k € N}. For checking
properties of the elements of M(g.,e € (0,8)), extracting a subsequence in this way allows to
suppose without loss of generality M(g.,e € (0,8)) = {u}.
A simple a priori estimate argument allows to extend the convergence to symbols which have
a polynomial growth and to test to Wick quantized symbols with compact kernels belonging to
P (Z9) = @™ P (Z) (see [4, Corollary 6.14]).

alg p,q€N""p,q



Proposition 3.3. Let (Qa)se(o,é) be a family of normal states on L(H) parametrized by € such
that Tr[ocN®] < C, holds uniformly with respect to ¢ € (0,&), for all « € N,and such that
M(ge,e € (0,8)) = {u}. Then the convergence

lim Trfo.b" 4] = /Z ) di(2). (18)

holds for any b € P, (Zy).

alg

Wigner measures are completely identified via Weyl-quantized observable. One may question
whether testing on all the b"** with b € Paiy (Zp) also identifies the Wigner measures. Indeed,
this is the case according to the result proved in [4, Theorem 6.13].

Proposition 3.4. Assume that the family of operators (0%).c(0,z) satisfies
[(T4+N)%0* (1 + N)*| 213 < Ca

uniformly w.r.t € € (0,2) for all « € N. For any fized B belonging to fl’?g(Zo) the family
(pWick 0%)ee(0,7) satisfies the assumptions of Definition 3.2 and

M(BYVF o) = {Bu, pe M(c)} . (19)

3.2 Weak mean field limit of the dynamics in terms of the characteristic
function

After some extraction process and for some specific initial data (o:)ce(0,5), a family (p¢)ier of
measures can be defined and solves weakly a transport equation. We consider on L2(R?¢) the
(unbounded) multiplication operators

~ 1 . ) . )
V = EV(xl _ x2) and ‘/; _ (e—zsAml ® e—zsAmz)V(ezsAml ® ezsAmQ)’

and respectively associate with them the polynomials, well defined on Z; = H'(R%),

1 -
V(Z) = §<Z®2, V(:C — y)z®2>L§(R2d) and VS(Z) = <Z®2, Vs Z®2>L§(R2d) , Z€E€Z.

Instead of considering , ,
0c(t) = e7e e g ete e

we will rather work with
it

ée(t) _ eiéngfiéHa QsezaHaefzéHg ) (20)

Our assumptions will be made in terms of the operator S¢(1) already introduced in (5) and which
can be rewritten with Wick observables.

Definition 3.5. The operator Se is defined by

Se=> H*™ ten+(en)® =dl(1 - A) + N?,

n=0

with domain D(S.) = {¥ € H, Yo I(H™ +en+ () W2, o) < 00} and HI™ =

AL (1= A)|n z, -

Remember that it is self-adjoint with this domain (see (5)). Moreover it can be written S, =
Wick 3
Sg with
se(2) = (2, (1= A)z) + [|2l%, + 3elel%, +€%l213, ] -
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Proposition 3.6. Let (Qa)se(o,é) be a family of normal states on H satisfying for some constant
C > 0 the estimate

Tr[(1 4+ Se)o:(1+ S:)] < C  uniformly w.r.t € € (0,&) .

The operator S is the one given in Definition 3.5 and 0.(t) is the operator given by (20). Then
for any sequence (ep)nen in (0,&) such that lim, o e, = 0 there exist a subsequence (ey, )ren and
a family (fit)ter of Borel probability measures on Zy satisfying for any t € R

M(¢e,, (t),k € N) = {ju},
with the Liouville equation
t
(Ve (6D) = fig(eVEReE)) — 91/2 / is (V2R €2 I (22, V£ @ 2)) ds,

0

t

= fio(e"P ) i / As({Vi(); V2R €Yy ds,  forall € € 21 (21)
0

Proof. The proof uses several preliminary lemmas which we defer below. The first step is to prove
the existence of Wigner measures defined for all times ¢ € R. This is done in Proposition 3.9. Let
us now prove the Liouville equation.

By Lemma 3.8 we have

Tr[o= ()W (£)] = Tr[ee W (£)] +i/0 Tr[oe(s)W (£) ZEjflbj(S,é)W“k] ds, (22)

where b; are the following polynomials
b1(57§> = 72\/5 Im <Z®2a ‘75 g & Z> bQ(Sag) = —Re <Z®2a ‘75 §®2> + 2<§ \ 2 ‘755 \ Z>
- 1 -
ba(s,§) = V2Im (€97, Vo€ @2)  bals,€) = (€%, V. €97).

With the number estimate in Proposition B.1, Lemma 3.7 below will ensure that the sum in the
r.h.s over j = 2,--- .4 converges to 0 when € — 0. On the other hand, the term with j =1 has a
limit according to Lemma 3.10 applied with g, (¢) after noticing that Tr [(1 + S¢)g.(t)(1 + Se)] < C’
owing to ||(1 + So)FleieHoe=ieHe(1 4 §.)F|| < ¢ due to Proposition 2.3. O

The above proof is completed in essentially three steps: 1) The relation (22) is first established
by extending Wick-calculus arguments to the case when V' is unbounded, and rough estimates for
bi(s,&)Wick j=1,...,4, are given; 2) An Ascoli type argument, relying on these rough estimates
allows to make the subsequence extraction (e, )reny uniform for all ¢ € R; 3) An additional
compactness argument is given in order to ensure the convergence of the term with j =1 in (22).

3.2.1 Wick calculus with unbounded kernels

The results presented in this paragraph would be direct applications of the Wick calculus given in
Proposition B.2 for a bounded potential V € L>(R?). Although the algebra is the same as in the
bounded case, justifying the formulas for unbounded potentials fulfilling (A1)(A2)(A3) requires
some analysis.

Lemma 3.7. The identity

j=1
holds for any ¢ € H?(R?) and ¥ € D(S.), with S. given by Definition 3.5. Additionally, for all
U eD(S:) C D(Sgl/2) C D(N2), the estimates
Ib; (s, )™ W < C(L+ [E[£) (1 +N)2 W) < C'(1+[€15,)II(1 + S2) /20|
SO A+ [EZ)I+ 5P|, (24)
hold uniformly w.r.t j € {1,...,4}, s € R, when £ € H'(R?) and therefore when ¢ € H?(R?).
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Proof. We first remark that, owing to the assumption (A2) and the estimate (16), the polynomials
bj(s,€), j=1,---,4 belong to the set &, 4<3Pp ¢(Z0), with

|bj|®p+q§373p,q(20) < C(l + |§|421) .

Hence, Proposition B.1 and Proposition 2.2 prove (24) with
D(S.) € D(N*2) c D(bj(s,&)V**), j=1,...,4, and D(S.)c D(VIVicky, (25)

By Proposition 2.4 the domain D(S.) is invariant with respect to W (¢) for all ¢ € H?(RY). A
Taylor expansion yields, for all z € 21, the equality

. 4
Vi(z + %o = Vi(2) + ;sjbﬂs,&)[z] .

The formula (23) is standard for bounded V due to W*(&)bWikW (€) = b(. + %5)‘%0’“ when
b € Puy(2o) = @ngeNPp,q(Zo) . Let us reconsider the proof of this result for our unbounded V.
With the previous estimates, the quantity A(t) = (&, W(t§)Vs(. + %tf)WiCkW(t«E)*\I/> is well

defined for all ®, ¥ € D(S,) with

A(t) =Y (@, W (16)b; (5, &)W FW (16)7 W) + (@, W (1) V"W ()" W)

j=1

We first establish in a weak sense the equality (23): Differentiate A(¢) for any ¥, ® € D(S,),

> (@, W(tE) {[ip(&), bj(5, €)W H + jt7 " b;(s,€)" R} W(t€)* W)

j=1

H@,W(tE)[ig (&), VIV MW (86)" )

d
EA(t)

3
= > (@, W) {[i6(£), bi(s, )™M + (5 + D)bjpa (s, )W F} W(t€)*w)

=0

where by(z) = Vi(2). Now, a direct calculation with ¢(&) = —==(a(&) + a*(€)) gives

S

[i¢(§),bj(s,§)WiCk] =—(j+ 1>bj+1(57§>Wick

for j =0,---,3. Therefore A(1) = A(0) and, knowing (25), we conclude that
. 4 . . .
W(E) | VR 4D i, | W(E)w = VR (26)
j=1
for any ¥ € D(S.). Now taking ¥ = W (£)¥ in (26) for any ¥ € D(S.), while ¥ € D(S.) owing to
¢ € H?(RY), we obtain the claimed equality.

O

Lemma 3.8. Let (0:)cc(0,5) @ family of normal states on H. Assume that o.(S: +1) € LY(H) for
all € € (0,8), with S. given by Definition 3.5 and o-(t) by (20). Then for any & € H*(RY), the
map s+ Tr[g.(s) W(€)] belongs to C*(R) and the following integral formula holds true

T2 W (O] = TloW O]+ £ [ Ta(W(©) 30 b5, ds.
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Proof. We write

Tr[(0=(s) — 2e(s))W(&)]
=Tr [QE(SE +1)(S. + 1)t (eiﬁHEe_i%Hg - eigHEe_igHg) W(E)eiﬁng_i%Hf}

+Tr {ggeigHse_igHgW(f)(Sg +1)(S.+ 1)t (ei%ng_i%Hf - ei?ng_ing)} .

The following limits hold true on D(S;)

1 . ¢ 170 s s 170 7 ) "t 210
lim ——(S. + 1)7" (eHEHr T I e I ) = 2(g, 1) A (H, - HO)e T
1 g0 s p0 _is 0 ) t 770 -
limy —— (8- + 1)~ (el%HEe—l%HE - elEer_Z?Hf) = Z(Se + )TN D — Hoe ' e
by Stone’s theorem and the invariance of D(S.) w.r.t e and ¢i*f: . By using the estimate

in Proposition 2.3 we see that the latter limits are limits in £(#H) w.r.t the strong convergence
topology. After noticing that o.e'sH=e = EHIW (¢)(S. + 1) is trace class when & € H2(R) owing to
Proposition 2.4 and Proposition 2.3, we are done by taking the trace and letting s — ¢.

Now it suffices to take the integral to get

T2 OW(O) = TrloaWe)] + £ [ T [2.(s) (V74w () - WV ™™)] ds.

When ¢ € H2(RY) | the equality
4
T (14 52)22(s) (VW (&) = WOV) (14 5) 7] = Trla: ()W (€) 3 &by (5, """,

makes sense, since (1 + S:)d.(s) € L}(H) and

4
(VIViekW (&) = W(QVIVR) (14 o)™ = W(E) | D ebi(s, " | (14 5)7 in L(H).

Jj=1

by Lemma 3.7. O

3.2.2 Subsequence extraction for all times

The first step in the proof of Proposition 3.6 is to show the existence of Wigner measures for all
times. This is accomplished below following merely the same lines as [6, Proposition 3.3].

Proposition 3.9. Let (o)
C > 0 the estimate

c€(0,5) be a family of normal states on H satisfying for some constant

Trloe(1+S:)] < C  uniformly w.r.t € € (0,8) .

The operator S: and g (t) are respectively given by Definition 3.5 and (20). Then for any sequence
(n)nen in (0,&) such that limy, o0 e, = 0 there exists a subsequence (e, )ken and a family of
Borel probability measures on 2y, (fit)ter , satisfying

M(2e,, (t), k €N) = {fie},
for anyt e R.

Proof. We only sketch the proof and essentially indicate the points which differ from [6, Propo-
sition 3.3]. Let us write

Ge(t,€) = Trlo ()W (E)] -
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By using Proposition B.1 and (1 + N) < 2(1 4+ N3) < 2(1 + S.), we can prove like in [6] that

1G=(5,€) — Ga(s,m)| < Cl = lZ, (1%, + Il + 1) (27)

for some constant C' > 0. We have

|G (t,n) — Ge(s, )| < [Tr[(2=(t) — 0<(s)) W] + [G=(s,8) — G=(s.7)] -

On the other hand, by making use of Lemma 3.8 we know

ITr[0:(t) — 0:(s)]W (]| < /tTr[éa(w)iej1bj(w,£)“”°’“]dw
] =
< Colt = s|l|(1+82) 2 0-(1 + Se) 2| 21wy
st3551|\(1+5€)—1/2 ésj‘lbj(w,ﬁ)w“’“ (14 8) "2l )
< Cilt=s|(1+¢]z,)",

when ¢ € H?(R?) . Taking an approximation &, € H?(R), n € N, such that lim,, o [|€—&,]/ 2, = 0,
Zy = H'(R"), and taking the limit as n — oo of the left-hand side with the help of (27), allows
first to extend the previous inequality to any & € Z; .

Thus, we conclude that

Ge(t,m) = Ge(5,€) < C (It = sl(€lz + 1) + In— €]z \/Inl2, +1€1%, ) (28)

holds for all (s, &), (t,m) € Rx Z; , uniformly w.r.t. € € (0,€). Remember also the uniform estimate
Ge(5,6) < 1.

Now, we apply the same Ascoli type argument used in [6, Proposition 3.3] in order to prove the
existence of a subsequence (e, ); and a continuous function G(.,.) : Rx Z; — C such that G, (¢, &)
converges to G(t,€) for any t € R and ¢ € Z;. Further from (27) we can extend G(.,.) to a contin-
uous function on Rx Z5. An “4/3”-argument shows that for any (¢,&) € R x 2, limy, o0 G, (t,§)
exists and equals G(t,&), so that G(¢,.) is a norm continuous normalized function of positive
type. Therefore, for any t € R, G(t,.) is a characteristic function of weak distribution (or projec-
tive family of probability measures) fi; on Zy . Finally we end the proof as in [6, Proposition 3.3]. O

3.2.3 An additional compactness argument

Here, the compactness assumptions (A3) is translated into some compactness property of the Wick
symbol by . It allows to refer indirectly to Proposition 3.3 and to take the limit as € — 0 in the
term with j = 1 in (22). With the rough estimates used in Proposition 3.9, the terms in (22)
corresponding to j > 1 with a factor /~! will vanish as ¢ — 0. The next Lemma applied with
0:(s) in the integral term of (22), will end the proof of Proposition 3.6.

Lemma 3.10. Let g. be a family of normal states on H satisfying for some constant C > 0 the
estimate
Tr[(14S:)0:(14+52)] <C  uniformly w.r.t e € (0,8).

Here S; is given by Definition 3.5. Assume that M(o:) = {pu}, then for any & € 21,

lim Trlo. W (§)bi (5, )" ] = [ V2R €y (s,€)[2] dp(z)
e— 2

Proof. The polynomial b1(s,&) € P12 + P21 splits into two similar terms, namely

Bi(z) = (£®2,Vsz®%)  and  Ba(2) = (:*,Vi(2 ®¢)).
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with their associated operators
By = ({l@ M)V, € LILIR™), L2RT))  and By =SV, (1@ ¢)) € L(L*(RY), L2(R*)).
Let x € C§°(R) with x(x) =1 if |2| <1, x(z) =0 if || > 2 and 0 < x < 1. For m € N* we put
Xm(2) = x(;%) and define
Bin = Xm(I1Da) Bt (1@ X (IDx]))S2 and  Bam = S2(1@ x| Dal)) Baxm (1Ds])
as bounded operators in £(L2(R??), L?(R%)) and £(L*(R?), LZ(R*%)) respectively. We claim that

both operators By ,, and B3 ,, are compact. Actually, B, = Bim and

B,

m= %(ﬂ ® e~ %2 ) (e8¢ @ 1) (e P2 X (| Dy )V (@2) X (| Dy | )71 P2 ) (€751 @ €79822). S, .
Moreover, the linear norm continuous application
Ae L(L*(RY) — ((e"2¢ @ Me ™ P=2(1® A) € L(LZ(R*?), L*(RY))
maps Hilbert-Schmidt operators into Hilbert-Schmidt since
I({e™2¢] @ We ™™ P2 (1.® A)| c2 (2 raa), 2 (ra)) = €20 All 22(20)

comes by computing the Schwartz kernel with ||K||Z2(12(,y) = [ [K(z,y)|* dv(z)dv(y) . Hence it
maps compact operators into compact operators, because the space of compact operators, £, is
the norm closure of £? in £. Therefore, by taking A = xm(|Dz|) V(2) xm (| D) which is compact
by assumption (A3), we conclude that B; ,,, and Bz ., are compact.
Now, we write for j = 1,2
| Telo- W (§) B}V %] — pue¥?e (&2 B (2))] < [Tr[o- W (€)(B}Y** — B ieh]| (29)
HTelo-W () BYiH] — pleV*™ ©9B; ()] (30)
Hi(eV? M € B; 1 (2)) - p(eV M €A B;(2)], (31)
with Bjm € Pgr,(Z0). The right hand side (30) converges to 0 owing to Proposition 3.4. Since
s —limp— 00 Xm(|Dz|) = 1, the polynomials B;,,(z) converge to B;(z) for any z € Z,, while the

estimate

|Bjm(2)] < clélz, (1= 8)72V] |21,
holds true uniformly in m for some constant c. In addition Tr[p.IN3/2] < C' implies that
| ansc.
Zy

Therefore by dominated convergence theorem the right hand side (31) tends to 0 when m — .
It still remains to prove the convergence of the r.h.s of (29). Indeed, writing

Trlo=W (§)(B]" " — BILM)] = Trl(Se + 1)e=(S: + 1)(S= + 1) 7' W(€)(S: + 1)
x(Se + 1)~ (B — BIVIER) (S, + 1)71]
and then by using Proposition 2.4, we obtain the estimate
I Tefo-W (€)(B}V** — B < el (Se + )7 1B} = B*)(Se + 1) 2oy -
By functional calculus of strongly commuting self-adjoint operators we see that (Se +1)~1(v/N +

dT'(1 — A) + 1) is uniformly bounded with respect to € € (0,&). Now, applying Lemma B.4 (with
A =1-A), we conclude that
I Tx[o=W (€)(B]""* — B )]l 11 = 20y)™2(Bj = Bjm) (1 = Auy) 2|

€120 11 = )72V £(20) (1 = 20) 721 = xin (1D2])  £(20)

Since by functional calculus ||[(1 — Az)712(1 = x;m(|D2]))|| S L, the r.hus of (29) goes to 0 when
m — oo uniformly in & € (0,&). Finally, a ”§/3-argument” with the established convergence of
(29), (30) and (31) yields the result. O

S
S
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3.3 Asymptotic a priori estimates

In this section, a priori information on Wigner measures are derived from a priori estimates on the
state o . In particular, we shall prove the next result.

Proposition 3.11. Let S be the operator given by Definition 3.5 and assume that the family of
normal states (0c).¢(o.z) Satisfies

Va € N,3C, > 0,Ve € (0,&), Tr[(1+ Se)o-(14 So)(1+N)¥] < Cy,

and M(oc, e € (0,€)) = {u}. Then the measure p is carried by 21, its restriction to Z1 is a Borel
probability measure on Z1 and

|22, |21%, du(z) = | |21%,|21%, du(z) < +oo. (32)
s Z
0 1

We will need the two next Lemmas.

Lemma 3.12. Let b be a non negative (self-adjoint) operator on \/¥ Zy and assume that the family
of mormal states (0c:)ec(0,z), with Tr[0:N®] < Cy, for all o € N, satisfies

Tr (00" *] <O and M(o-, € € (0,8)) = {u} .
Then 2 3 z — b(z) = (227, b2®P) € [0, +00] is a Borel function on Zy and Jz, b(2) du(z) < C.

Proof. When b € P5,(2o) has a compact kernel b we know after Proposition 3.3 (see [4, Corollary
6.14] for a complete proof) that

: Wick
C> ;1_}1% Tr [0:b | = /zo b(z) du(z) .

We use the fact that b — bWick ig ‘operator monotone, in the following sense: if the (possibly
unbounded) non negative operators by, bo in \/? Z, satisfy by > by > 0, then biVick > piWick > ( in
H.

By taking b € L(\/* Z), for b € P, ,(Z), as the supremum of b,, with b,, compact, we obtain firstly
foralln € N

C > liminf Tr {Q;/2bWiCkQ;/2} > lim Tr {Q;/Qbyi‘:’cg;/ﬂ :/ bn(z) du(z).
e—0 e—0 Zo
Secondly, the monotone convergence yields

c> sup/Z (287 bp2®P) du(z) = /z b(z) du(z) .

neN

When b is unbounded, it can be approximated by b,, = H% € L(\? 2y), for n > 1. Set b,(2) =

(2®P | b, 2®P) . The function b(z) = (2@, b2®P) = sup,,cy bn(2) is a Borel function on Z; as a
supremum of a sequence of continuous functions. The uniform estimate

Tr [gsb’z{/zck] < Tr [stwmk} < C

with the result for b, € L(\/? Zo) gives [z, bn(2) du(z) < C, for all n € N*. Again by monotone
convergence, we get

/zo b(z) du(z) = sup /Z0 bo(2) du(z) < C.

neN*
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Lemma 3.13. Let A be a non negative, self-adjoint with domain D(A), operator in Zy. Assume
that the family (0c)ec(o,5) satisfies the uniform estimate Tr[p.N®] < Cq, for all o € N, and
M(ge, € € (0,8)) = {u}. Then the following implication hold:

(Ve € (0,2), Tr[e.dD(A)] <€) = (/Z (2, A2) du(z) < c)

0

(Ve € (0,2), Tr [p.dT(A)2] <C) = < /Z (2, Az)? )
<

(Ve € (0,8), Tr [0-d['(A)’N] < C) = </z (z, Az)?|2|%, du(z) C’> .

0
In all the three cases, the measure p is carried by the form domain Q(A) of A.
Proof. The first implication is a direct application of Lemma 3.12 applied with
b(z)=(z,Az) , b=A , bV =dr(4).
For the second one we use
dr(A)? = ({222, (A®A)Z®2>)Wick +edl(A2) > ({52, (A®A)Z®2>)Wick .

We apply Lemma 3.12 with

b(z) = (z, Az)?> and b=A®A.
For the last one we notice that N = dI'(1) and dI'(A) commute so that

dT(A)?N > N (222, (A® 4)292))""" .

With N = (|z|%,)"*, the composition formula of Proposition B.2 (extended to an unbounded A)
says that N ((2%2, (A® A)z®2>)WiCk = bWVick with

be(2) = |2|%, (2, A2)® +2e(z, Az)?.

Hence we get _
AT (AN > (|2/%, (2, A2)2)"" "

and we apply Lemma 3.12 with

1
b(2) = |23, (2, 42)° . b=c(1@A®A+AQI@A+ARA]).
For the last statement it suffices to notice that the integrand is infinite in the Borel subset of Zj,

Zo\Q(A) ={z € Zy,{(z,Az) = +o0}. O

Proof of Proposition 3.11: With S. = dI'(1 — A) + N3, while d['(1 — A) and N commute, we
know
(14+S5)1+N)>dl'(1-A).

Hence Lemma 3.13 says that the measure p is carried by Q(1 — A) = Z; with

e du) = [ el dutz) <€
Zo Z

Let us check that u is a Borel measure on (21, |z,) . The tightness property is given by the above
inequality. According to [4][54][58], it suffices to check that

Gile) = [ e €95 du(e)
Z1
with (u,v)z, = (u, (1—Au)z,,
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is a positive type function which is continuous w.r.t £ restricted to any finite dimensional subspace
of Zl .
Consider the regularized version

—2imR A ,Z —2inRe (—A_ 2
z 20

with A = (1 — A). For all £ € Z; the pointwise convergence

VZGZl, hm< A

n— 00 1+A§7Z>Zo =(£, 2)z,

and the uniform bound

—2itRe (—25€,2)z
|e 144 °|§1

imply the pointwise convergence of the integrals
VEE Z1,  lim Gin(€) = Gi(E).

But Gy,,(€) equals G((1+ 2)71Ag), where G is the characteristic function of p in Zj:

Gln) = [ e 00050 ).
Z0

Hence for every n € N, the function Gy ,(§) is a positive type function. As a pointwise limit of
G, the function G is also a positive type function.
For the continuity, the equality

Gi(e) - Gr(€) = [

(e—iﬂ'Re <£—f',z>zl _ eiTrRe <f—f/72>2’1) e_iﬂ'Re <f+£/7z>21 du(z) .
Z

implies
1G1(§) — G1(§)] < 2m¢ — é’lzl/ 2]z, dp(z) <2 </ 1+ |2[%, du(2)> 1€ =€z,
Zy

Zy

and the function G; is a Lipschitz function on Z;. This finishes the proof that p is a Borel
probability measure on Z; .
For the inequality (32), it suffices to notice the inequality of (commuting) operators

(1+5:)*(1+N) > (dI'(1 — A)*)N.

Applying Lemma 3.13 yields
[ AL e, dut) < €

3.4 Uniqueness of the mean field dynamics via measure transportation
technique

Now we are in position to prove Theorem 1.1. This will be done in three steps: 1) Writing a
transport equation, in a weak sense in Z; for p; ; 2) Solving this equation as p; = ®(¢,0).po when
the initial state g. fulfills strong decay estimates; 3) Relaxing the strong decay estimates.

18



3.5 The transport equation on Z;

We shall need similar notions about cylindrical functions, as the one used in Zy and recalled in
Appendix B.1. Let IP; denote the set of all finite rank orthogonal projections on Z; and for a given
o € Py let L, 1(dz) denote the Lebesgue measure on the finite dimensional subspace pZ;, with
volume 1 for a Z;-orthonormal hypercube. A function f : Z; — C is said cylindrical if there exists
p € Py and a function g on pZ; such that f(z) = g(pz), for all z € Z;. In this case we say that
f is based on the subspace pZ;. The set of C§° (resp. S) cylindrical functions on Zi, is denoted

by C5%.,1(21) (resp. Seyi(21)). We shall also need C§%,,,(21 x R), in which the algebraic tensor

al
product Cg%.,;(21) ® C§°(R) is dense. Finally the Fourier transform of elements of S.y(21) is

given by

ALE = / f(6) e 2miRe Oz [ (d2),

pZ1

f)= |  FlflE) ™R &8 L, (de).

pZ1

According to the notations of [3] and Appendix C, we consider the space Probs(Z;) of Borel
probability measures p such that

[ e, dutz) < 4o,

1

On this space, we introduce the Wasserstein distance

Won) = ot = 2l duten, ) (33)

where T'(u1, p2) is the set of Borel probability measures p on Z; X Z; such that the marginals
(M1)sp = pa and (Tla)up = pa .

Proposition 3.14. Let S. and g-(t) be the operators given by Definition 3.5 and (20). Assume
that the family of normal states (96)56(0,5) satisfies

Va €N, 30, >0, Ve € (0,8), Tr[(1+S)o-(1+S)(1+N)<Ch,

and consider a subsequence (€)keN, €k K200 such that
M(0e,, (1), k €N) = {fu}

according to Proposition 3.6. Then the measure iy is a Borel probability measure on Z1 which
satisfies

° [ |2|%,|21%, die(z) < C" for some C' independent of t € R.
e [t is a Lipschitz function of t € R in Proba(Z1) endowed with the Wasserstein distance (33).
e [t is a weak solution to the Liouville equation

Ot +i{Vs,ju} =0,

in the sense that for f € Cop (21 x R)

| [ @ity auwa—o (34)

Proof. The Proposition 2.3 as well as the commutations [¢i*e N] = [¢?'H# N ensure

Va e N,3C,, > 0,Vt e R,Ve € (0,8), Tr[(1+4 S:)oe(t)(1+ S:)(1+N)*] <.
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The Proposition 3.11 for any ¢ € R, provides the first results, which also contain fi(t) € Probs(Z;).
It remains to check the continuity with respect to the Wasserstein distance W?2 and the Liouville
equation. Replace £ € Zy, by v/27¢ in the equation (21) in Proposition 3.6 and integrate with
FIUE) dLy(z) with

fG) = [ FUfEST 0 L)
0Zo
when f € S.1(2) based on pZy. This gives for any ¢,¢ € R and all f € S.i(2o):
t/
(@) diw) = [ 1) )i [ [ (Vi) @) i) ds.
2o Zy t )

With the uniform estimate
[ el dnete) < [ 1l ol die(a) < o,
Zg ZO

while Vy is quartic, it can be extended by dominated convergence to any cylindrical polynomial f
of total degree less than 4.
Consider now an increasing sequence of finite rank positive operators A,, on Zy such that

sup A, = (1 —A).
neN

Since fi; and fipr belong to Probs(Z7) and are Borel measures on 2, carried by Z; , we have

W2 (fip, fie) S/

[l dpendin () = / 21— zal%, djie(z)din (22)
1XZ1

ZoX 2o

and the monotone convergence ensures

W2 (s, fir) < SUP/ (21 = 22, An(21 — 22)) djue(21)dfie (22) -
neNJ Zyx 2o

For a given n € N, and a fixed z1 € 2y, the function zo — f,(21,22) = (21 — 22, An(21 — 22)) is a
cylindrical polynomial of total degree 2. Hence we get

/ (21 — 22, An(z1 — 22)) djie(z1)dfiy (22) < / ds/ H{ Vs, fn(z1, )} diis(z2)dfie(21) -
Zox 2o [t,t’] ZoX 2o

We compute
{Ve, falz1,.)} (22) = 4i Im (2572, Vi(z2 @ (An22))) —4i Im (257, Vi(22 ® (An21)))
From (17) and with |A711/2u|30 < |ulz,, we deduce
{Vis falz1, )} (22)] < CIAY 20l 20 + 14 221 2,) 222, |22] 20 < C ([22]2, + |21]2,) |22/, |22] 2, -
The uniform estimate [ |2|%, |2]%, dfir(2) < Cp valid for all times, thus leads to
W2 (e, ) < C't" — 4.
In order to prove the last point, let us come back to the equation (21). Again the estimate (17)
implies ~
Im (2%, Vi(§ ® 2))| < Clal%, |21z, €] -1 (o) -

Since the measure fi; is carried by Z; for all times with moment estimates, the first line of (21)
shows that it still makes sense for ¢ € H~'(R?). By taking & = v2r(1 — A)y with € 21, we
obtain

t
e 1:121) — po(2ee :92) i [ {vi), e a ) ds.
0
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By integrating with F1(g)(n) dLy,1(2) for a cylindrical function g € Scyi(Z21) based on pZi, we
get

/Zlg(z) dfiy(z) = /Z1 9(2) d/lo(z)+z‘/0t Vi, 9} (2) dfis(2) ds.

Zy
Hence for any f € S¢yi(21), the function I : ¢ — le g(2) djiz(z) belongs to C*(R) with

Oply(t) =i i {Vi, g} (2) dpiu(z) -

By multiplying the above relation by ¢(t), with ¢ € C§°(R), and integrating by part proves (34)
al
when f(t,z) = ¢(t)g(z) . We conclude by the density of Cg°. ,(Z1) ® CPR)in €, (21 xR). O

0,cyl 0,cyl

3.6 Uniqueness of the measure for regular initial data

Proposition 3.15. Let S. and g.(t) be the operators given by Definition 3.5 and (20). Assume

that the family of normal states (96)86(0 5 satisfies

Va € N,3C, > 0,Ve € (0,8), Tr[(1+S:)o-(14 S)(1+N)¥] <,
and  M(ge,e € (0,8)) = {uo} -
Then for any time t € R, the family (o-(t) = e‘iﬁHEQEeiﬁHf)se(oﬁg) admits a unique Wigner
measure jy = P(t,0). 1o, where ® is the Hartree flow defined by (3) on Zy. It is a Borel proba-

bility measure on Z1 which belongs to Proba(Z1), which is Lipschitz continuous w.r.t time for the
Wasserstein distance W2 and which satisfies

ek, [ el bl dinla) <C.
Z1

Proof. We still start with the state g.(t) defined in (20). Proposition 2.6 says that the group ®
associated with (3) and the dynamical system ® associated with

iz =v(t,z) , w(t,z) =e TB(V x [eP 2] 2)
are well defined on Z; . Further it gives the estimate for the velocity field
[o(t, 2)|z, < IV = 2)7 2|23, |2l -

When fi; is the Wigner measure defined for all times and associated with a subsequence (&, )ren,
we obtain

veeR [ o), din) <O [ eIk, di) <0,
Z1

Z1

With Proposition 3.14, this means that (fi;) fulfills all the conditions of Proposition C.8 and we

deduce that i = ®(¢,0). 0 . But this uniqueness implies M (g, (t),e € (0,&)) = {fi+} for the whole
family (0:(t))ec(0,s) and all times ¢ € R.

Going back to oc(t) = et He 5 (¢)e L He it gives py = ®(t,0)4 0 -
The additional properties are the ones coming from Proposition 3.14. 0

3.7 Evolution of the Wigner measure for general data

We follow the truncation scheme used in [6]. When the initial data satisfies only
I(N + H2)*20.(N + H2)*?|| < C

for some 0 > 0, we approximate g. by

xr(N, H)o-xr(N, HY)

e,k = Tr [xr(N, H?)o-xr(N, H?)]
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with xgr(n,h) = x(% , %) with R — +oo and 0 < y < 1, xy € C§°(R?) and x = 1 in a neighborhood
of 0. The time evolved state is defined by

it it
Qs,R(t) =e€ ZEHEQE,R elete

The assumptions ensure that for all times
llo=(t) = 0e.r(t)] 21 < V(R)
with v independent of (¢,¢) and limp_,oo ¥(R) = 0. We recall the Proposition 2.10 of [6].

Proposition 3.16. Let (gg)ge(o,g), Jj=1,2, be two families (or sequences) of normal states on H
such that Tr [gg Nq < Cs uniformly w.r.t. € € (0,&) for some § > 0 and Cs € (0,+00). Assume
further M(ol,e € (0,€)) = {p;} for j =1,2. Then

/Im — 2| <Timinf [l — o2l 1z

Proof of Proposition 3.16, end of the proof of Theorem 1.1: For R € (0,+00), the state
0¢, r fulfills the conditions of Proposition 3.15 except the uniqueness of the Wigner measure at time
t =0. Out of any sequence (&, )nen, a subsequence (g, Jken can be extracted in order to ensure

M(¢e,, .r, k € N) = {po,r} .
Thus after this extraction we obtain
VteR, M(ee,, r(t),k €N)={2(t,0).p0,r} -
Take ¢ € R and let p belong to M(o.(t),e € (0,8)). There exists a sequence (e,)nen such that
M(ee, (t),n € N) = {u} .

After extracting a subsequence like above and by using Proposition 3.16, we obtain

[ 0= 0.0)p0] < [ 1= (6. 00pionl + [l o] < 20(80).
Taking the limit as R — oo implies p = ®(¢,0). 10 and therefore

M(ee e € (0,8)) = {2(2,0)xp0} -

This also proves that limp_, . on |e — ®(t,0)4p0,r] = 0, while all the measures ®(¢,0). 10,z are
Borel probability measures carried by, and on, Z;. This implies that u; is carried by Z; and is
also a Borel measure on Z; . This ends the proof of Theorem 1.1 O

4 Complements

Additional results are given in the three first paragraphs, concerned with the BBGKY hierarchy
or the propagation of energy. The fourth one shows some examples and the last one is an informal
discussion about the classical mean field problem.

4.1 BBGKY hierarchy

Although the analysis here is different from our previous work [6] it is possible to combine them,
in order to strengthen the result of Theorem 1.1. It is also interesting to reformulate our result in
terms of reduced density matrices since, in the literature, several mathematical results on mean
field limit use the BBGKY hierarchy method ([8, 9, 42] for example). For a family of normal states

0c)ec(o.z) on H and r € N the reduced density matrices %Ep ) € LY(L2(R)) is defined according
(0, s

to
~ Tr o] - ~
(p) — Wick 2 (mdp
Tr [% b} T o (122 7] Tr [0:b""%] , Vb e L(LZ(R™)), (35)

with the convention that the right-hand side is 0 when Tr [o.(|z[*?)"Vie*] = 0.
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Proposition 4.1. Let (0:)cc(0,5) be a family of normal states on H, satisfying the hypothesis of
Theorem 1.1, with a single Wigner measure jo such that

Va e N, lim Tr[p.N%] = / |22 dpuo(2) < +o0. (36)
e—0 Zo
Then for all t € R, the convergence

Ehi% Tr [Qs (t)bWick] —_ /

Z0

HB(E0)2) dio(2) = [ b(e) d(2)

holds for any b € Pyie(2o) = @ngeNPp,q(Zo) , with py = ®(¢,0). 10

Finally, the convergence of the reduced density matrices

1
™) = - ®p\ (,®p
gn%'ya (t) f U ) /0 [29P) (2P| dp(2)

holds in the LY(L?(R))-norm for all p € N.

Proof. We know from Theorem 1.1 that the the family of normal states (0:(t))ce(0,s) admits
a single Wigner measure p; equal to ®(¢,0), 4. Since the quantum and classical flows preserve
the total number, the state o.(t) satisfies as well the condition (36) for any time ¢t € R. The [6,
Proposition 2.11, 2.13] provides the claimed results. O

4.2 Moment upper bounds

In [4], it was proved that the sole a priori estimate Tr [o-N°] < Cj for a given 6 > 0 (possibly
small), with M(oc,e € (0,¢)) = {u} leads to

/ 12)%° du(z) < +oo.
Zy

The a priori estimate, assumed in Theorem 1.1 at time ¢ = 0, leads to
/ |Z|2351 du(z) < 400,
21

according to the following result which is a variation of Lemma 3.12.

Proposition 4.2. Let (A, D(A)) be a self-adjoint operator on Zy such that A > 1. If the family
of normal states (0z)c(0,z) satisfies Tr [0<(dT'(A))°] < Cs for some § > 0 and M {o.,e € (0,8)} =
{u}, then

/z (z, A2)° du(z) < +oo.

Proof. By Wick calculus (see Proposition B.2 when A is bounded), one gets

dD(A)F > ((z, A2)")""* Wk eN.
Let (e;)jen be an orthonormal basis of Zy such that e; € D(A) for all j € N, and set
J J
1= AV2es)(ef| AP =Y T |AVRe;) (A Pey.
=0 =0

The inequality A®F > A‘?k holds for all J € N, while b — bW is operator monotone when
restricted to operators b acting in \/2]C Zy . Therefore, we obtain

n

(14+d0(A)" = chdr <ZC )

n Wick
(ZCS AJz> =[(1+ (=, Ag2)""* (37)

Y
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We now use the same argument as the one used in [4] when A = Id, relying on the semiclassical
calculus in finite dimension (see [12][40][50][52][56]).
Let @ be the orthogonal projection from Z, onto @}]:oAl/er- The symbol 1 + (z, A;z) is a

cylindrical symbol based on p;Z,. Since ker A2 = {0} and eg,...,e; are linearly independent,
the symbol
J
(L4, Asz)) = 1+ 3 (A2, 2) 2
§=0

. - . .. dz|?
is an elliptic symbol on p;Zy ~ C/*! in the Hormander class S(1 + |z[2,.,, Lrlzzl%) The
cJ+1

functional calculus of Weyl e-quantized elliptic operators in finite dimensions gives
Vs € R, [(1+ (2, Arz2)V¥])" > (1= Cree) [(1 4 (2, Ayz))*]V Y. (38)
The finite dimensional comparison of Wick and Weyl quantization, also gives
Vn e N, [(1+ (2, Ar2)""V" > (1 — Cyne) [1+ (2, Agz))Vev!]" (39)
From (37)(39) and the operator monotonicity of B — B for t € (0,1], we deduce
Vs€R, (1+dD(A)° > (1—Che) [(1+ (2, Asz))V ],
and (38) gives
VseR, (1+dD(4)°>(1—C.e)[(1+ (2, As2)) ]V . (40)

The definition of Wigner measures, recalled in Theorem 3.1, says

. Weyll __
&11_% Tr [0:b ] 7/ b(z) du(z),

Zo

for all b € S¢y1(2y), in particular the b’s based on p;2Zp. Take now s = § in (40). The a priori
estimate

Tr [gg [(1 + (z, AJZ>)6} Weyl}

< (1+Cyse)Tr [0-(1+dT(A))°] < Cs5(1+ Cyse),

and the ellipticity of (1 + (z, A;z))? allows to extend the above convergence to any cylindrical

b= fop;with f e S((1+ |z|(2c‘,+1)5 M) . In particular, this leads to

s
) 1+‘Z‘CI,+1

Cj = limsup Tr [o- (1 + dD(4))°] > Tim Tr o [(1+ (=, 4,2))7]"7 ] = /Z (14+(z, As2)) du(z).

e—0

Since A =sup; Ay with Ay > Ay for J' > J, the monotone convergence implies

Cs > /Z (1+ (z, Az))® du(z) > / (z, Az)° du(=z).

Zy

O

Proposition 4.3. Within the framework of Theorem 1.1 with the assumption Tr[(N + H?)%o.] <
Cs for § <6, the measure u; satisfies the additional estimate

25
| E dut) < G
Zy

for all timest € R.
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Proof. The functional calculus of commuting operators implies

es(1+ 8.3 < (1+ N+ H®) < (1+8.)°.
Thus the initial state o, , satisfies

Tr |o-(1+ S.)°?| < Cj.
From Proposition 2.3, we deduce
el te (14 S.)%e7ie e < C(1+ S.)2.

Since B — B* is operator monotone for s € (0, 1], this implies

eigHE(l + SE)J/BefiﬁHE < 06/6(1 + 55)5/3
as soon as % < 2. The inequality

Tr [o-(H(AT(1 = A)P3] < T [o.(1)(1 + $.)7%] < G

and the previous Proposition 4.2 applied with A = (1 — A), yields the result. O
A more accurate version of this last result is given below by making use of the conservation of
energy.

4.3 Convergence of moments and energy conservation

For a family (0c).e(0,z) of normal states with a single Wigner measure po the condition (36) is an
important and non trivial assumption. Indeed, we proved in [6] the following equivalence

(\m €N, lim Tr[p.N?] :/ Bl duo(z)> & (% € Paig(20), lim Tr [.b" ] :/ b(z) du0> :
e—0 =z e—0 =z

Hence the condition (36), although it involves only the number operator, is exactly the one which
leads to a good asymptotic behaviour of the reduced density matrices.

Proposition 4.4. Let (0:)cc(0,5) be a family of normal states on H, satisfying the hypothesis of
Theorem 1.1, with a single Wigner measure pg. Assume Trlo. N%] < C,, uniformly in € € (0,¢),
foralla e N.

Then for every a € N, the quantity

. . o 2
it Trlox(6)N] — | el (),

does not depend on time when o (t) = e~ "¢ He g et = and M(o.(t),e € (0,8)) = {u} -
The condition (36) is satisfied by (0-(t))ec(0,5) and pt, for all times t € R, as soon as it is true
for onetop € R.

Proof. According to Theorem 1.1, we know that M(g.(t),e € (0,&)) = {p+} with pur = ®(¢,0).p0 -
The conservation of the |.|z,-norm by the nonlinear flow ®(¢,0) yields

[ e ) = [ 11 duot)
2o Zo

for any ¢t € R. On the other hand, H. and N are strongly commuting self-adjoint operators and
therefore Tr[p. (t) N*] = Tr[p-.N¢] for every a € N. O
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Proposition 4.5. Let (0:).c(0,5) be a family of normal states on H with a single Wigner measure
Lo satisfying the hypothesis of Theorem 1.1 with § =2 and condition (36). Then for any t € R

e—0

lim Tr[g.(t) H:] = /z h(z,Zz) dui(z) € (—o0,00) (42)

where 0:(t) = e o-cteHe = D(t,0).p0 and h(z, z) is the classical energy given in (2), and

both sides of the identity do not depend on time.

St
—izHe

Proof. With the energy conservation, it suffices to prove (42) for t = 0. Let x € C§°(R) such that
0<x <1, x(s)=1if [s|] <1and x(s) = 0if [s| > 2. For m € N*, set xm(x) = x(). Let B1(2)
and Bs(z) be respectively the polynomial (z, —Az) and By(z) = V(2) = 1(2%%, V(2 — 3)2%?) well
defined for z € Z;. Remember that although the kernels of By and Bs are unbounded operators
their Wick quantization still have a meaning as densely defined operators on H (see Appendix B).

We write for j = 1,2

Trle. B4 = | Bi)du)| < [rle. (B~ B (43)
4| Tx(o. BYicH] / Bjom(2) dpio(2)| (44)
Zo

A [ B2 dpolz) - /Z Bj(z)duo(z)|,  (45)

Z1
where Bi o (2) = (2, —Axm(—A)z) and Bon(2) = 3(z%2, V(2 — y)xm(—As)2%%). We observe
that Lemma B.6 leads to

[(d0(=A)+N+1) 7 dD(A(L—xm ) (—A)) (dD(=A)+N+1) 7 < | = 5 (1=xm) (=A)[| "= 0

-2
and
[(dT(—A) + N? +1)71/2 (BYViek — BIVick) (dD(—A) + N2 + 1)~ /2|
< Ovl1 - 81— ) ()] " 0.
Therefore the r.h.s (43) tends to 0 when m — oo thanks to the regularity of . and by noticing
that (dT'(=A) + N2 4 1)1/2(dl'(~A) + N + 1)~ ! is bounded. Now, since Bj,,,j = 1,2 belong to
Paig(Zo) then by the statement (41), proved in [6, Proposition 2.12], the r.h.s (44) converges to 0

when € — 0. Further, by the dominated convergence theorem and with the help of Lemma 3.13,
we see that the r.h.s (45) vanishes too as m — oco. Hence an §/3-argument gives

: Wicky _ N
&11_% Trlee B "] = /31 Bj(z)duo(z) for j=1,2.

Thus we have proved (42). O

4.4 Examples

We give here two examples, other can be seen in our previous articles [4][5][6]. The first one recalls
that the transport of the Wigner measure takes into account some correlations. The second one is
about the mean field dynamics of states, which do not satisfy (36) and makes a connection with
Bose-Einstein condensation.

4.5 Deformed torii

For two elements 11,42 € Z1 C Zy such that [|11]| = ||¢2|| = 1 and (1, ¥2) = 0, the space Z
can be decomposed into

€1 1 n
Zy=Cuy & Cypy § .

26



This decomposition is second-quantized into the Hilbert tensor product
H =T4(20) = Is(Cypr) @ T(Ceho) @ Ts(4)
which allows an analysis by separating the variables. The number observable is now
N=MN;elel)o(leN,21)o (e leN'),

simply written as N = N; + Ny + N’ and where N, N3 and N’ are respectively the number
operators on I's(Ct1), I's(Ctpz) and T's(p1) . Consider in this decomposition, the state

0- = 0z ® 02 ® (JU')(])
where [Q') is the vacuum state of I's(¢)1) and

oc = WMWY e =g,

with lim enq = lim eng =
e—0 e—0

|~

In H =Ts(2y), this state is explicitly written (see [6]) as

0 = ¥ () (v e (46)
n1 times no times
with V(") — " (¢h1) . a" (1) @ (¢2) . " (12) ) (47)
vemtnan,ing!
The state satisfies L1
. k LAY
lim Tr [N*oc] = (5 +5)" = 1,

owing to N = Ny + Ny + N’. Moreover, with (46)(47), N+ H? = dI'(1 — A) and the help of Wick
calculus, it also fulfills

%, el

D —

Meanwhile the separation of variables allows to compute explicitly the (it is unique) Wigner mea-
sure of (Qs)ae(o,é)

lim Tr [(N -+ H?) o |

[y = 5%% ® 55_;% ®0 on 2= (Cihy) x (Cioa) x v,
1 1 27
with 65 = — / Bpioy, dO.
21 Jo
We get

k .
/ |2|%* dpo(2) = / (|2’1|2 + |2z)® + |z/|2) dup(z) =1= lim Tr [ngg] )
z z £—00
Hence all the assumptions of Theorem 1.1 and Proposition 4.1 are fulfilled.
This measure is carried by a torus in Z; better described by using an other orthonormal basis of

Cip1 @ Copa:

lﬂozg(wﬁ-%) ; lﬂg:i@(%—%),

2
Yy = cos(p)tho + sin(p)hx

V2

0+6"

7(6%1 +€i9/1/12) =e"2 tho g,
2
1 27 5t
Ho = Gy o Yo do.
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Two elements ewww and ei‘glz/@,/ in the support of uo are equal when
(0 =0and ¢’ =¢) or (0 =0+mandy =p+m).

Hence a one to one parametrization of the torus can be done by ¢ € [0,27) and 0 € [, + 7).
Let ¢, (t) = ®(t,0)1), be the solution to the Hartree equation

{ 10y (t) = =Dty (t) + (V % [y (1)[*)1hy (1)
Yo (t=0) = 7,/) = €' cos(p)Yy + eV sin(p)y

The gauge invariance of the equation says that for any 6 € [0, 27], €4, (t) = ®(t,0) [¢?4,] . B
applying the result of Theorem 1.1 and Proposition 4.1 we get

1 2 - 2w 27
Mt = %/0 5 o (1) ng e 2/ / elew (t) dgpd@

. 1 ®
vpEN, limy®() = %/ [ (D16 ()] dip.
Since the Hartree flow is non linear, the complete hierarchy of reduced density matrices have to
be taken into account if one wants to write evolution equation for them. More simply, they can
be computed after solving an autonomous equation for the Wigner measure. Due to the nonlinear
term the dynamics of correlations is by far nontrivial. This can also be thought geometrically:
The initial measure is initially supported by a torus which lies in a 2-dimensional complex vector
space (think of the circle in the plane Ry @ Rypz ); along the time evolution, the measure p; is still
carried by a torus in Z;, which nevertheless, is a priori not embedded in any finite dimensional
subspace .

wL

Ry= Ryx

O wo — /(; Z0NS

& / o /// / e
\_‘ ‘
]
/

~

Fig.1: Evolution of the measure initially carried by a torus in C¢y ® Cyz .

The complex gauge parameter e’ is represented by the small circle.

In Figure 1, the deformed torus for time ¢ # 0, has to be imagined in the infinite-dimensional
phase-space Z1 C Z;. Contrary to the picture, there might be no intersection with the real plane
Rypo & Rz .

This discussion can also be extended to higher dimensional torii after taking a finite (or countable)
orthornormal family (¢,,)1<n<n for building the initial states g. with a measure H 55 0 (see

[6]) -

4.6 Propagation without the convergence of moments

In [4] we considered the thermodynamic limit of a free Bose gas on a torus with the one particle
energy given by —A. We showed that when there is Bose condensation the condition (36) fails
and illustrates what we called a dimensional defect of compactness, in opposition to the phase
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space or microlocal defect of compactness (see [28][60]). Others examples were given. In [6] the
propagation result for bounded interactions but without any compactness condition, cannot be
applied for such initial states. With Theorem 1.1 the propagation holds for these kind of initial
states. Since our analysis is valid on R? the analysis for the torus does not apply directly and we
adapt the presentation of the Bose-Einstein condensation.

Moreover the dimensional defect of compactness which plays with all the directions of the phase-
space Zp = L?(R%), can be geometrically thought in the one particle phase-space T*R?. The
condition (4), which leads to estimates of |’ Z |z|§f1 dp, suggests that the dimensional defect of
compactness is due to mass going to co in the position variable rather than in the momentum vari-
able, in T*R?. The mean field limit that we consider here, can be tested by using the harmonic
oscillator Hamiltonian A = —92 + % — % . The motivated reader will then see that the dimensional
defect of compactness o, is incompatible with the condition (4).

We work in dimension d > 2. Let ep be an L?-normalized Cg°(R?) supported in the hypercube
(=1, )4 and set
Vk e N, ep(z) = eo(x — k).
The family (ex)ren is orthonormal in Z; = L?(R?). The spanned Hilbert subspace and the
corresponding orthogonal projection are respectively denoted by Z. and Il., RanIl. = Z.. Note

that
I, (—A)IIL, = (/ |Veo|2) II, .
R

Consider now the self-adjoint operator defined on Z, = L?(R%) by

d
A= |klle)(exl, Bl =k,
=1

keNd

which restricted to Z. is unitarily equivalent to the harmonic oscillator Hamiltonian A = —92 +

2 oy .
T - % on R%. We use the tensor decomposition

Zo= 2,8 ZE L H=T4(2) =T4(2.)0T(2}),
N=N.@I+1®N; =N.+N , [ =[Q)®[Q),

VBe € L(Z.),||Be| <1, T(Be) @ (12){(Q]) = T(IeBell)

VB € L(Z), |B] <1, T(ILBIL) =TIl o Blz,) ® (1 (2 ).

In particular the last relation with B = e** differentiated at time t = 0 gives

r()ar(-A)r) = ( [ Vel ) ..

Consider on H, the e-dependent gauge invariant (tensorized) quasi-free state

1
— _ﬂs(A_HE)
O¢ Tr [F(Hee—BE(A—ME)He)] F(Hee He) (48)

1
= (. Z.e P11,
T (T Ze— AT (e Zee )
1
= —BeAlz.np(A)
Tt [[(Ze PAzenot )] P(IL)T(Zee JT(IL) .

1-1/d

The chemical potential p. is negative of order and the temperature is large according to

Z. = ePete :1—i , 65:51/‘1.
Ve
With the e-dependent definition of a(f), a*(f), [a(g),a*(f)] = (g, f), and W (f), this quasi-free
state is characterized by the two-point function
Tr[0-a*(f)a(g))] =€ <Heg , Zee PeAe(1 — de_BEAE)_IHef> ) (49)

or  Trlo-W(f)] =exp[—e(llef, (14 Zee Pete)(1 — Zee PeAe) T L £) /4] . (50)
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In particular the total number (multiplied by ¢) is given by

Tr[o:N] = Tr[o-N] Y Tr[o.a*(ex)aer)]
keNd
= vo+v+r(e) with hm r(e) = (51)
—|ul +oo 7t
and 1/:/ du = S 1|/ td Lat, (d>2). (52)
Rd 1—e— |u\
We deduce

lim Tr [o-N] =ve +v
e—0

tiy T [o.12) =l Tr o (1)A0(-A)01)] = ([ 192 (e 0).

and the condition (4) of Theorem 1.1 is satisfied.
Actually ve > 0 corresponds, in the analysis of the free Bose gas (see [4]), to the density associated
with the condensate phase. In the scaling that we consider, it is the other part which produces

the dimensional defect of compactness. Let us compute the Wigner measure, by considering the
limit of Tr [0-W (V27 f)] as € — 0. With

F= fre+fr 1P = D0 1P+ P = e f P+ 1P
keNd keNd

the expression (50) gives

_el/dk
Z.e ¢ Ikl e—0

—( Zoc— 7 e—mvelfol? (53)

Tr {QEW(\/ﬁﬂf)} oo™ MefI*/2  exp | —en? Z | fxl?
keNd
The family (0:)-¢(0,z) admits the unique Wigner measure
[EN

e vc

& 50 on ZO = (Ceo) X 68‘,

Mo =
Vo

which is carried by Cey C Z; and which can also be written

2
|=]

+o00
e Yo 6 "C 1
=  Sseq Lee,(dz) = 65 du.
Ho /(Ceg VG =eo (CeO( Z) /0 Vo Ve, @Y

In particular, we get

/ |Z|220d,u0(2) =vo < veo + v = lim Tr [p.N]
24 e—0

and / 2|2, dpo(z) = ve </ |Veo|2> < (ve +v) (/ |Veo|2) = lim Tr [p.d(1 — A)]
Z1 R R e—0

and the condition (36) does not hold. Even at time ¢ = 0, no formula is available for the reduced
density matrices in terms of the Wigner measure. Nevertheless the time-dependent Wigner measure
of p-(t) = e‘léHEQ et He ig given by Theorem 1.1, since the condition (4) is verified. Consider the

solutions to the Hartree initial value problems

10sthy = —Atby + (V % |wu| Yu
T/Ju(t = 0) = ﬁ607 (0 +oo).

Then the Wigner measure of o.(t) = e~ *sHep_e' = is given by

+oo [ —o5
e Yo gl
Ht /0 Vo 5’¢u(t) du .

Again like in the example of the previous section, the measure u; is carried by surface containing
0 and topologically equivalent to C, but this 2-dimensional surface does not remain a priori in any
finite dimensional subspace of Z; for ¢ # 0.
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4.7 About the classical mean field problem

The classical analogue of our analysis is the derivation of the Vlasov equation

Orf +v.0,f — #(ame(x,t))ﬁvf =0

f(t,x,v) = fO('T’U)

Vi(z,t) =Vsop(x,t) , of(x,t) = [z f(z,0,t) dv
2d

xT,v 0

where f(x,v,t) represents the particle density in the 1-particle phase space R from the classical

Hamilton many body system

i"i:viv .
. N , 1=1,...,N,
{ i = =y (=1 9 V(i — 25))

in the limit N — oo. This problems is still open for singular potential and C. Villani, in a recent
survey article about the Landau damping [62] quotes the work of Hauray-Jabin [36] as the most
advanced one in this direction. It works for a potential such that [VV| = O(|z|~*), s € (0,1), and
does not include the Coulomb interaction.

Indirectly our result, justifies the mean field model up to Coulomb interaction in dimension d = 3.
In [49] and more recently [2], the Vlasov equation is proved to be the semiclassical limit of the semi-
classical Hartree equation. This means that there are two “semiclassical” limits, one in the phase-
space L?(R%;C) with the small parameter 1/N, another one on the phase-space T*R¢ ~ R?¢ for
the one particle nonlinear problem. This double asymptotic regime is well presented in [25, 27, 35].

A possible strategy, for deriving directly the classical mean field limit from the classical many
body problem, consists in adapting our approach by, as usual, replacing traces by integrals. For
information, we refer the reader to the presentation [18] by J. Derezinski of the classical analogue
of second quantization. Of course classical mechanics, although living in the commutative world, is
often more singular than quantum mechanics, from the analysis point of view. With the Coulomb
interaction, the Kustaanheimo-Stiefel desingularization of the hamiltonian flow may be useful (see
a.e. [15, 38, 41, 43, 46)).

Appendix

A Commuting self-adjoint operators on a graded Hilbert
space

We briefly study the general structure of self-adjoint operators on a graded Hilbert space. Prop-
erties collected in this section are useful for the analysis of the quantum Hamiltonian (1). In this
appendix, the small parameter is not required and we work with e = 1.

Remember that a graded Hilbert space H is a direct sum of Hilbert spaces H,,,n € N, of the form

i G
n=0

Let (An)nen be a sequence of self-adjoint operators where each A, acts on H,. We define the
operator

DA) ={TeH: Y A T3, <oo}, AT =) A, U™ forall ¥ e D(A). (54)
n=0 n=0

Taking in particular A,, = nlly,, for n € N, we obtain the number operator
N =Y nly,. (55)
n=0
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We say that two self-adjoint operators B and C on a Hilbert space strongly commute if their
spectral projections mutually commute. This is equivalent to the commutation of their resolvents
for some z € C\R and also to the commutation of their associated unitary groups. More precisely,
B and C strongly commute if and only if for all t,s € R

ethesz _ eszeth )

Proposition A.1. Let A and N be the operators given by (54)-(55). The following assertions
hold:

(i) A and N are self-adjoint.

(i) For any bounded Borel function on R,

(iii) The operators A and N strongly commute.
(i) If Dy, is a core for A, for each n € N then @ZEODH s a core for A.
(v) For any real polynomial p the operator A+ p(N)p(a)npp(n)) I8 essentially self-adjoint and

A+ p(N)payppoy) = Y A +p(n)lly, .
n=0

Proof. (i) Clearly, A is a densely defined operator. It is also symmetric, since for any ¥, ® € D(A)

(@, AT)p =Y (B, A, WM )y = (4,00, W)y = (4D, T)y, .
n=0 n=0

For any ¥ € D(A) and ® € D(A*),

(A"D, W) = > (&) A, W)y,
n=0
Hence the inequality holds
S @, 4,0, | < (A D W]
n=0

By taking any () € D(A,,), this means & € D(A*) = D(A%) = D(A,). The extension to any
U € H gives & € D(A). This proves that A and N are self-adjoint.

(ii) For each n € N, the map t + e®*4e~*4n (") is of class C! for any U™ € D(A,,) by the Stone’s
theorem with the derivative

%eitAefitAnlI/(n) — Z»eitA(A _ An)efitAn\I/(n) =0.

Hence, for any ¥ € %9 D(A,) (and then for any ¥ € H since & D(A,,) is dense in H) we see
that for all £ € R

eitA U = Z eitAn\IJ(n) . (56)

n=0

By functional calculus we extend the identity (56) to any bounded Borel function f on R.
(iii) By using (ii), we get for all s,t €e R and ¥ € H

S S
eitNeiSA\I/ _ eitN E eiSA"\I/(n) _ E eitneiSA"\I/(n) _ eisAeitN\Ij )
n=0

n=0
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(iv) The algebraic direct sum Dy, = ®%9 D(A,) C D(A) is dense in H and invariant with
respect to the group (e"4);cg. Therefore, Dy;, is a core for A. In the other hand, the subspace

DY, = @9 D, satisfies
Alpfm C A‘D?m C A|D(A) .

Hence D?m is also a core for A since m = Aipa)-
(v) The operator B = Y A, + p(n)lly, (with its natural domain) is self-adjoint by assertion
(1). It is clear that

Dyin = ®n2yD(An) C D(A) ND(p(N)) C D(B),

and furthermore
Bp;,, = A+p(N)p;,, CA+pN)paynpipvy) C Bios) -

Therefore, the operator A+ p(N)p(a)np(p(n)) is essentially self-adjoint since Bip,,, = Bip)- U

B Second quantization

For reader convenience we recall here the general framework of second quantization and put some
related notations.

The phase-space, a complex separable Hilbert space, is denoted by Z with the scalar product (., .).
The symmetric Fock space over Z is defined as the following direct Hilbert sum

r.(z)=gVsz,
n=0

where \/" Z is the n-fold symmetric tensor product. The orthogonal projection from Z®™ onto
the closed subspace \/" Z is given by

1
cEG,
Algebraic direct sums or tensor products are denoted with a %9 superscript. Hence

alg n

Hein=EP\ 2

neN

denotes the subspace of vectors with a finite number of particles. The creation and annihilation
operators a*(z) and a(z), parameterized by € > 0, are then defined by :

a(2)p®" = Ven (z,p)p®MD
D = VAT D Sl z® %), Yoz e 2.

They extend to closed operators and they are adjoint of one another. They also satisfy the e-
canonical commutation relations (CCR):

[a(z1),a"(22)] = (21, 22) 1, [a"(21),a" (22)] = 0 = [a(21), a(22)] - (57)
The Weyl operators are given for z € Z by
W(z) = evala® ()+a(2)]

and they satisfy Weyl commutation relations in the Fock space

W(z1)Wi(z2) = e~ FIm (21,22) W(z1 + 22), 21,20 € Z. (58)
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The number operator is also parametrized by € > 0,
N\\/"Z :En]llvnz.

For any self-adjoint operator A : Z D D(A) — Z, the operator dI'(A) is the self-adjoint operator
given by

dF(A)‘vn,alng(A):E ];ﬂ@@\?/@@ﬂ
B.1 Weyl, Anti-Wick quantized operators

Let P denote the set of all finite rank orthogonal projections on Z and for a given p € P let
L (dz) denote the Lebesgue measure on the finite dimensional subspace pZ, with volume 1 for an
orthonormal hypercube in pZ. A function f: Z — C is said cylindrical if there exists p € P and
a function g on pZ such that f(z) = g(pz), for all z € Z. In this case we say that f is based on
the subspace pZ. We set Scyi(Z) to be the cylindrical Schwartz space:

(f€Seu(2)) & Bp eP,3g € S(p2), f(z)=4g(p2)) .
The Fourier transform of a function f € S.,;(Z) based on the subspace pZ is defined as
FII) = | _flz) e R B9 Lo(dz)
[o=4

and its inverse Fourier transform as

flz)= [ FIfE) e B =8 Lo(dg).

[y

With any symbol b € S.yi(Z) based on pZ, a Weyl observable can be associated according to
pWevl — / Fbl(2) W(V2rz) Ly(dz). (59)
©Z

Notice that b"We¥! is a well defined bounded operator on # for all b € Scyi(Z) and that this
quantization of cylindrical symbols depends on the parameter €.

We also recall the Anti-Wick quantization thought its usual finite dimensional relation to Weyl
operators. In fact, we have

\Z\?gz Weyl
—Wic e ¢
pA—Wick go*z (rej2)mE (60)
= [ FPBlE©) W(V2re) e F k= L (de), (61)

©Z

for any b € S(pZ) by setting

b x v(z) :/ b(2)y(z — 2") Ly(d2').
0z

0z

B.2 Wick quantized operators

For any p,q € N, the space Py 4(Z) of complex-valued polynomials on Z is defined with the
following continuity condition:

P q
b€ P, q(2) iff there exists b € E(\/ Z, \/Z)
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such that: 3
b(z) = (2% b2%P) .
On these spaces the norms are given by |b|,.q = HEHL(VP Z\/7Z) -
The subspace of P, ;(Z) made of polynomials b such that bisa compact operator is denoted by

P (2).
The Wick monomial of a ’symbol’ b € P, ,(Z) is the linear operator

WV U pin — Hpin
defined as :

. ! - ! pt+q
blm\//szz = 1[p1+oo) (n)—n (7’L ' p) g%

T Su-pra (b 1) . (62)

where b® 1" ™) is the operator with the action (I;@ 1P ¥ — (h®P) @ ®(1=P) Notice that

bWick depends on the scaling parameter . When b is an unbounded operator with domain D(b)
containing \/***"Y D, the formula (62) makes sense when applied to ¥ € \/ D

Proposition B.1. For b € P, 4(Z), the following number estimate holds

N) 2 Wik (N)TE | < b, 63
(N) (NY2] Ly = Pl (63)
An important property of our class of Wick polynomials is that a composition of b}Vi¢* o plVick
with by, by € ®IP, 4(Z) is a Wick polynomial with symbol in &28P, ,(Z). This was checked
with a convenient writing in [4] and widely used also in [5][6].
We need some notations: For b € P, ;(Z), the k-th differential is well defined according to

k k
okb(z) € (\/ Z)* and 9%b(2) € \/Z,

for any fixed z € Z. Actually (\/k Z)* is the dual of (\/k Z) with a C-bilinear duality bracket. For
two symbols b; € Py, 4,(Z), i = 1,2, and any k € N, the new symbol 0%b;.0%b is now defined by

afbl . 35172(2) = <8§b1(z), 8§b2(z)>(\/k zy»\Vkz - (64)
We also use the following notation for multiple Poisson brackets:
{b1, 02} ®) = 88b,.0Fby — 0%bs.08by,
{b1,bo} = {b1, b2}V

With these notations, the composition formula of Wick symbols has a very familiar form.
Proposition B.2. Let by € Pp, ¢, (Z) and by € Py, 4,(Z).
For any k € {0,...,min{p1,q2}}, 0%b1.0%by belongs to Pp,_k.q—k(Z) with the estimate

pi! !
|Pp27<11 S (pl _ k)[ (q2 _ k)[ |b1|PP17<11 |b2|PP‘2vQ2 :

|0%b1.0% by

The formulas

Wick
min{p1,q2}
(’L) bWickObWick — Z i 8kb 8’—“1)
1 2 Kl TR
k=0
Wick
_ (es(az,am>b1(z)b2(w) |Z:w) ,
. . max{min{pi,q2} , min{p2,q1 } } Ek Wick
(i) [b]7*, b ik] = > e} ’
k=1 '

hold as identities on Hyip.
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. —__\ Wick
Combined with Proposition B.1 and (b"Vi¢F)* = (b(z)) this also gives the

Proposition B.3. For b € P, ,(Z), (N)= P22 pWick gng pWick(NY="3" extend as bounded op-

erators on H with norm smaller that Cp7q||l~7|\£(vp z,yez), for all e € (0,8).

We will also need some more particular estimates stated in the following two lemmata.

Lemma B.4. Let A be a self-adjoint operator on Z with A > 1. For any polynomials by € P1,2(Z2)
and by € Py.1(Z) the estimates below hold true:

() @0A) + VN 1)1 bk (d0(A) + VN D) < AT 20 (1@ A2 22 2.2
(i) [I(dD(A) + VN +1)7 by (dD(A) + VN + 1) 7Y < (L@ A7) by A7V £z 2 2y -

Remark B.5. The term VN can be absorbed in dT'(A) + 1, if one accepts constants larger than
1 as factors of the right-hand sides of (i) and (ii).

Proof. The estimate (ii) follows from (i) by taking the adjoint. Let us prove (i).
For ®,¥ ¢ @ffzgo n’algD(A), we write

(T, bR ®) = Y2 /n(n— 120D, (b @ 1772) M)
n=2

= Z 32 /n(n — D2((A? @ 1" w1 B, @ AY? @ 1"~2) () |
n=2

with R
Ba=[A"2b) (e A7) @12
Hence, by Cauchy-Schwarz inequality, we get

(@, 017 @) < ATV (1@ ATV2) oo 2.2

00 1/2
x (Z 2l = 1P (A & n<“>>\11<"1>|2>
n=2

IS 1/2
X (Z e32\/n(n — 1)2|(]1®A1/2®]1<"2>)<1><">|2> .
n=2

Now, we observe that
S TP (47 5 1)

2\/e(n — 1)@V (e(n—1))(A @ 12 )gr=1)
20D VNAr(A)w (D)

[VARVA

and
Vne(@™ ne (1o A @ 1=2)pM)
\/n_g@(n)’ ne (A® ﬂ(n—l))q)(n)>
(@™ V/NAI'(A4)e™) .
On the other hand, with the inequality 2ab < a? + b2, we see that

20D VNAD(A) D) < (T (N 4 dD(A)) D) < [[(VN + dr(A)) B2
and  2(d™ VNAT(A)d™) < (@ (N +dT(4)2)¥™) < ||(VN +dI(A)d™) |2,
where the last inequalities come from 2v/NdT'(A) > 0. Therefore, we obtain

(2,077 @)| < | ATY20 (1@ A7V2)|| [|(VN +dD(A) ]| [|(VN +dr(4))|

and hence the estimate extends to ®, ¥ € D(v/N + dT'(A)) N H . This means that the operator

(dT(A) + VN + 1)~ 1pWVick(dD(A) + VN + 1)r731(m+dF(A))mein extends to a bounded operator

satisfying (i). O

e Vn(n —12(1e A2 @ 1" )22

ININ A
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Lemma B.6. Let A, B two self-adjoint operators on Z with D(A) C D(B) and B > 0. Let C be
a self-adjoint operator on \/*> Z such that D(C) C D(By) where By = B® 11+ 1 ® B. Then the
estimates below hold true:

() ((B) + N+ 1)~ dr(A) (dUB) + N+ 1) < [0+ B A1+ B) ez
(i) [[(dD(B) + N +1)71/2 CWiek (AD(B) + N*+1)~/2|| < (14 B2) "2 C (L + Ba) 2| cy2 2) -

Proof. We follow a similar argument as in the proof of Lemma B.4. Indeed, Cauchy-Schwarz
. . . alg n,alg
inequality gives for every ¥, ® € @, 7, D(B)

0o 1/2
(@, dT(A) @)} < [[(1+B) A1+ B) ez (Z en||(1+B)® ﬂ(”l))‘l’(")||2>

n=1
I 1/2
X <an|((1+3) ®u<"-1>)<1><n>|2> .
n=1

Now, we observe that

enll((1+B) @ 1" NP = (U™ dr((1+ B)*)et)
lar(1+ B)e ™[5 2,

A

since in the sense of quadratic forms dI'((1 4+ B)?) < dI'(1 + B)?. Hence we obtain
(T, dT(A) ®)] < [|(1+ B) "' A (1 + B) " |lg(z) AT (1 + B)¥| [|dT (1 + B)®].

This proves (i).
Expressing CVi* as a quadratic form for ¥, & € @9, ™9 D(B) and then applying Cauchy-
Schwarz inequality yield

(T, CViR )| < I+ B+ 1e©B) 201+ B+ 10 B) |00z

- 1/2
x <Z Enn—1)|[(1+Bel1+1®B)Y/?® ]1<"—2>]\If<”>|2>

n=2

oo 1/2
X (Z e2n(n—1)||[1+Bo1+1®B)'/? ]1<"2>]q><”>|2> .
n=2
Due to the symmetry of the vector ®™ we remark that

En?[(+Bel+1e B2 1" 2)e™|2 = 22 [(1+Bel+1e B)o 1" 2]eM)

2(6™ (1 + dr(B)) N2 &™)
< |1 +d0(B) + N?) ()2

A

So we obtain

(U, CV*F @) < |[(14 Ba)™?C (14 Ba) ™2 2 2) (1 +dT(B) + N?) 0|
«||(1+ dT(B) + N2) 3| .

This proves (ii). O

C Absolutely continuous curves in Proby(Z; r)
This section firstly gathers results presented in [3] about Borel probability measures on a separable

real Hilbert space which are weak solutions to continuity equations. In a second step, we shall
adapt it to a complex Hilbert space Z; endowed with its real euclidean structure.
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C.1 Absolutely continuous curves in Proby(F)

Let E be a real Hilbert space with scalar product (, ) and norm | |. The symbol Prob,(E) (resp.
Prob(E)) refers to the set of Borel probability measures 1 on E such that [, [z|P du(z) < +oo
(resp. with no momentum condition), and we simply work with p = 2. On Probs(FE), the 2-
Wasserstein distance is defined by

)

W2 (', pi?) = min{/ |1 — 2ol B dp(wr, 2) 5 Tjap = Mj} ;
E2

where II; : E? — E is the natural projection, j = 1,2. Narrow convergence of a sequence (fi,)nen
of Proby (E), with a uniform control of [, |z|* du, is equivalent to the W? convergence on Proby(E)
(see Proposition 7.1.5 in [3]). Remember also that the tightness property of subsets of Proby(E)
can be checked in the infinite dimensional case with the weak topology, or after introducing a

Hilbert basis (e, )nen+, with the distance dy,(z1,22) = >, cn- Wii)e{‘)‘z This use of weak or
d,, topology, is done also when considering probability measures on set of absolutely continuous
curves in E.
This tightness property is called the weak tightness property in [3] since it refers to the weak
topology on E. Especially when one considers the narrow convergence in Probe(E), there is
a weak narrow convergence and a strong narrow convergence (see the discussions about this in
Chapter 5 and 7 of [3]). The terms “narrow convergence” or “narrow continuity” refer to the
strong ones and we shall specify “weak narrow convergence” and “weak narrow continuity” when
necessary.
We recall two results of [3] and give a complete proof in the infinite dimensional case of the second
one, for the sake of completeness (it is left as an exercise to the reader in [3]).

The following result is the second part of Theorem 8.3.1 in [3] with p = 2.

Proposition C.1. Let I be an open interval in R. If a W?2-continuous curve j; : I — Proba(E)
satisfies the continuity equation
Oepre + V7T (vpp1) = 0 (65)

in the weak sense
// (Orp(,t) + (v1(), Voo, ) 5) dpe(@)dt =0, Vo € Coy(E x T), (66)
I1JE

for some Borel velocity field ve, with |v¢|r2(p,,,) € L*(I), then py : I — Proby(E) is absolutely
continuous and |p'[(t) < |v¢|p2(p ) for Lebesgue almost every t € I . Moreover for Lebesgue almost

every t € I, vy belongs to the closure in L?(E, ;) of the subspace spanned by {V(p, RS Cgf’cyl(E)} .

The previous result concerns non regular (non Lipschitz) vector fields for which there is no
uniqueness result for the Cauchy problem. Remember that the infinite dimensional case, which re-
lies on the cylindrical integration of v; and cylindrical disintegration of the measure p¢, requires the
introduction of such singular vector fields (see the proof of Theorem 8.3.1 in [3]). Nevertheless an
interpretation of the continuity equation (65)(66) in terms of characteristic curves can be done via
a probabilistic representation. For the sake of completeness, we adapt the proof of Theorem 8.2.1
stated in [3] for the finite dimensional case, to our infinite dimensional case. For T € (0, +00),
consider the set I'y = C°([-T,T]; E) endowed with the norm |y|so,r = maxe;_7 7y |7(t)|5. For
a Borel probability measure 1 defined on E x I'p, consider the time dependent Borel probability
measure ju; defined by

[owi=[ el dnwa). veey,(B) te-1.1). (67)
E ExT'r

The measure pu; is the push-forward of 1 by the evaluation map

er:(x,y) e ExTyr —~(t)e E, forte[-T,T].
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Proposition C.2. Let u; : [-T,T] — Probe(E) be a W2-continuous solution to the continuity
equation (65)(66), with I = (=T,T), for a suitable Borel vector field v(t,xz) = vi(x) such that
[ve|L2(B ) € LY([-T,T)). Then there exists a Borel probability measure n in E x I'r such that

(i) m is concentrated on the set of pairs (z,7) such that v € AC?*([-T,T); E) is a solution to the
ODE 4(t) = ve(v(t)) for Lebesgue almost every t € (—=T,T) with v(0) = = ;

(ii) pe = py for any t € [=T,T), with uy defined as in (67).

Conversely, any n satisfying (i) and

T
/ / (1)) dnp(e,)dt < +oo,
0 ExI'r

induces via (67) a solution to the continuity equation, with o = v(0).n .

Remark C.3. The notation AC?*([-T,T); E) refers to the set of absolutely continuous curves
in B with L*>([-T,T); E) derivative. We keep the notation ®.u of differential geometry, for the
push-forward or direct image of a measure p, by the Borel map ® .

Proof. The result is proved in [3] when E is finite dimensional. The proof of the second (converse)
part of the statement, is exactly the same as in finite dimension, after replacing regular (Lipschitz)
test functions by cylindrical ones. We now show, for the first part, how the infinite dimensional case
is deduced from the finite dimensional result, following an approximation scheme like in the proof
of [3, Theorem 8.3.1]. After introducing an Hilbert basis (e, )nen- of E, the maps 7 : E — R,
74T R  E and 7 : E — E are defined according to

7Td(1') = ({e1,x),...,{eq,x)),

d
d,T _ Z
m (yla"'ayd) - Yi€j,
=1
7t = 3T opd,

With the measure p; € Proby(F), the measure ué € Proby(R?) is defined by pé = 7%u; and
{ Wiy Y € Rd} denotes the disintegration of y; w.r.t uf . Within the space E endowed with the basis
(€n)nen+, i is nothing but ué @ dg in the decomposition Z = F,; x Fj‘ with F; = span(ey, ..., eq) .
The vector field v¢ (resp. ©¢) is defined on R? (resp. on E) by

W) = [ ule) i), g e R
(rd)=1(y)
resp. f)f(y) = / ﬁdvt(:r) duey(z), yekE.
(7d) =1 (7dy)

Within the proof of Theorem 8.3.1 in [3], it was checked that u¢ (resp. i) is a weak solution to
the continuity equation

Oepil + VT (vf 1))
resp. i + V7T (0] i)

)

0
0.

with the following properties:
1) |ﬁ;£i|L2(E,ﬂf) = |’Uz(£i|L2(]Rd,pf) < ||Ut||L2(E.,dut)3
t t
2) W2(ud ) < [0 10f | ne@a gy dt < [.7 Vel L2 (o) dt, for =T <ty <ty < T

3) the sequence (fi)gen- converges weakly narrowly to u; with the estimate

ta
W2 (e, ua,) < liminf W2(uf,, o)) S/ ol 2y dt, —T <ti<ta <T.
t1

39



The set of continuous maps from [T, T] to R? is denoted by I'4 . By using the finite dimensional
result, stated in Theorem 8.2.1 of [3], there exists for any d € N a probability measure, n¢, on
R? x T'4 such that the properties (i) and (ii) hold when (pq, v, E) is replaced by (ut,vt ,RY).
Equivalently the result can be formulated in E after using (4, 9¢, E) instead of (u, v¢, R%) and
using R? = (74T x 77T),nd . Hence we have a sequence (%) 4ew of probability measures on £ x I'p
which satisfy

/ port djif =/ @ duf =/ e((t) dn’(z,7)
E Rd R4 xT'd

- /E pont(y(t) dife.n)., Yo € CORY. t € [-T.T], (68)

where ¢ o 7@ can be replaced by ¢ o #¢ with ¢ € C)(Fy).
After some regularization done [3] pp179-180, it is proved that any measure ¢ satisfies

T T
/ / F dan' < [ [ pie)? didar< [ [ P die.
I'r -TJE -TJE

Since the functional g — f (t)|? dt, defined on {g € '+, ¢(0)=0} and set to +oo if g &
AC?([-T,T); E), has compact sublevel sets in I'r, the two mappings

ri(z,y) EExTr wz€E |, r:i(x,y) €ExTy =gy p=7—z €Ty

give rise to (weakly) tight families of marginals (rifn?)seny = (48)aen and (729%)gen . Remember
that the compactness of subsets of F or I'r is considered with the weak topology on E or the
distance d,, . Hence the family (79)gen is (weakly) tight in Prob(E x I'r) and we take for n a weak
narrow limit point of 7¢. By assuming the test function ¢ in (68) to depend only on d’ coordinates
with d’ < d, and by taking the limit d — +oc while d’ and ¢ are fixed, we get

/ (pon?) duy = / (0 o) (v(t) dn(z.7).
E ExT

for all € C (Rdl) and t € [-T,T], where po 74" can then be replaced by any cylindrical function
or Borel bounded function on E. It remains to prove the condition (i) for 1, namely that this
measure is concentrated on curves verifying ¥ = v(y(¢)) for Lebesgue almost every t € (=T,T)
(7(0) = x is already known) .

The estimate (8.2.6) used in [3] for the finite dimensional case, provides the inequality

t T
/ () — @ - / we(4(s)) dsf? dn(z,7) < (2T) / / ol — wrl2dpd dt
R xT'd, 0 -7 JRe

for any family ws(z) = w(s, ) uniformly bounded continuous function from [T, 7] x R% to R?.
After assuming that w actually belongs to CJ([=T,T] x R?;R?) with d’ < d fixed and, by using
oy = 7T 0wy o mgr € CA[—T,T) x E; E), taking the limit as d — oo gives

t
[ h=o- [ o) dsf dntey) < @) limsup / [ bt = it ar.
ExTr 0 d— o0 Rd

But the condition 1) for |ﬁ§i|L2(E,,1g) is easily extended to

~d N ~
|0y — wt|L2(E,ﬂf) < v — wt|L2(E7m) )

by the same argument, relying on

/wz’l—wt, x) dig
B

IN

/E (ralvn() — 0y(2)) , x(F(@)) dpn(2)

vt = We|p2(mipn) X L2 09y YXE L*(E, ).

IN
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This uniform upper bound leads to

t T
/E LGRS / u(y(s)) ds|? dn(z,~) < (2T) / /E Jor () — o (2)[? dpudt

According to the last statement of Proposition C.1, v; can be approximated in L?(E, u;) by a
sequence of bounded regular cylindrical functions, (1, )nen . By possibly truncating with respect
to times ¢ — by, SO that [v; — Wi n|r2(p,) < 1 for ae. t € (=T,T) and all n € N*, Lebesgue’s
Theorem implies

[ b= [ o) s ditte) =o.
ExT'r 0

which ends the proof. O
Below is a consequence of the above probabilistic interpretation when the Cauchy problem 4(t) =
ve(y(t)), 7(0) = z admits a unique solution for all x € E. The fact that we have to pass by the
probabilistic representation is a real question. Contrary to the finite dimensional case, the well-
posedness of the Cauchy problem, even with the standard Picard’s contraction argument, defining
a flow on the whole space F, does not give a representation formula for observables. The point is
that the natural observables, or test functions, are cylindrical functions, a property which is not
preserved a nonlinear flow.

Proposition C.4. Let ji; : R — Proby(E) be a W2-continuous solution to the continuity equation
(65)(66) for a suitable Borel velocity field v(t,x) = vy(x) such that |ve| 2k .,y € L' ([=T,T)) for
all T > 0. Assume additionally that the Cauchy problem

V() = v(y(@), (s) =2

(t) =z + / 0s(1(5)) ds,

admits a unique global continuous solution on R for all s € R and all x € E, such that v(t) =
®(t,s)v(s) defines a Borel flow on E (i.e. ®(t,s): E — E is a Borel function for all t,s € R).
Then the measure u; satisfies

Vt,s €R, = D(t,8)epts -

Proof. It suffices to work with ¢t € [—T,T] as in Proposition C.2. Since the evaluation map
et : E x (z,7)I'r — 7(t) € F is a continuous, thus Borel, map. The relation p; = py defined
according to (67) extends to any bounded Borel function ¢ on E:

/Ew dmz[Em e(y(t) dn(z,v).

By using y(t) = ®(t, s)y(s), with ®(¢, s) Borel, we deduce

/E o dus = [E o @t 9)(3(s)) dn(a,) = /E oo (t, 5)] ds

which is nothing but p; = ®(t, 8). s - O

C.2 Application to Hamiltonian fields

We finally specify how these results apply to our case, when the phase-space Zj is a complex
Hilbert space and the velocity field is associated with a (singular) Hamiltonian vector field, only
defined on 21 C Z;.

Consider a complex Hilbert triple Z; C Zy C Z_1, with Z; densely continuously embedded in Z
and Z_; being the dual of Z; for the duality bracket extending (21, 22)z, . The dual of a complex
Hilbert space Z while keeping the C-bilinear duality bracket, written u.v in (64), is still denoted
by Z*. In the case treated in the article Zy = L?(R¢,dx), Z; = H'(R?) and Z_; = H~'(R%). The
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space Z; is endowed with its scalar product (21 , z2) z,, real euclidean structure with Re (21, 22) z,
and its symplectic structure o(z1, 22) = Im (21, 22) z, . On Z; we will use the hermitian (z1 , 2z2) z,
and euclidean scalar product

<Zl , ZQ>217]R = Re <Zl , 22>Zl .

For a cylindrical function f € S¢yi(20), based on pZy, the differentials 0. f(z) and 0zf(z) are
defined

9.f(z) = / im(g[e®mRe 2O F[£](€) Ly (de)
©Zo
B-f(z) = / _inlet e <O FIfe) Ly(de).

Hence 0, f(z) is a continuous C-linear form on Zy while dzf(z) € Z,. This notation is coherent
with the definition of 9.b(z) and dzb(z) when b is a Wick symbol in @24P, ((Z).
A function f € S¢yi(21) is given by

f(Z) = @((51 ) Z>21""a<§Na Z>Zl) = (P(<771 ) z>""’<77Na Z>)

with p(w1,...wy) € S(RY) and &,...,&v € Z1 and mi,...,ny € Z_1, such that (&, 2)z, =
(nj, z) for all z € Z; . The derivatives 0, f and dzf are thus given by

N
VZEZl, azf(z)zzachp«nlv Z>7"'ﬂ<77N7 Z>)<77]| Ezila

J=1

N
VZEZI; azf(z):ZaW@(O?la Z>a"'a<77Na z>)|77]> EZ—l-
When h(z) is an unbounded polynomial on Z; but which happens to be a real-valued Fréchet
C!-function on Z, the derivatives 0,h(z) and dzh(z) are defined only for z € Z; and we have
Vz e Z R %h(z) €z 8zh(z) S Zil .

When f € Scyi(20) (vesp. g € Seyi(Z1) or h) is real valued differentiating f(z+te) at t =0, t € R,
for any e € Z; (resp. any e € Z7) leads to

O.f(z)u={(u, d:f(2)), z€Zy,u€ 2 (69)
0.9(2)u={(u, 0:9(2)), z€Z,ueZ. (70)
O.h(z)u= (u, 0zh(z)), z€ Z,uecZ_. (71)

Note that the Poisson bracket
i{h,b} (2) =i (0,h.0sb — 0,b.0zh) (2), z€ 2
is well defined for b € S;y;(Z1;R) and our aim is to write it as the real scalar product
(w(z), (Vb)(2)z, R, 2€ 2Z1.

Definition C.5. For a cylindrical function on 21, f € Seyi(21), the gradients Vz and V are
defined by

Vz € Z,u€ 2z, {(u,Vzf(z))z, = (u, dzf(2)),
V - QVE
Remark C.6. o Although it is not necessary, these definitions can be justified by introducing a

complex conjugation u — 4 on 2y, which remains a conjugation on Z1 , that is an isometric
C-antilinear application such that (u,v)z,, = (U, V)z,, . When Zy = L*(R%;C) and 2, =
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HY(RY) this is the usual pointwise complex conjugation.
For real valued function one then sets

1
Vrf=Vzf+V.f and Vif= 7 (V=f =V.f).
so that

Vif =5 (VRf+iVif) .

Similarly, an element X of Z1 can be written X = Xr+iX; with Xp 1 = Xg or X = (;((R)
I

and the real scalar product
(X, Y)z, gk =Re (X, Y)z, = (Xr,Yr)z, + (X1, YI)z, .
Then the definition of the gradient of a real cylindrical function f becomes
Vrf
Vf= .
= (%)
e [t is important to notice that we do not use the Zi-gradient for the real valued function

h(z), but keep the derivative, Ozh(z) modeled on the duality bracket ( , ). With a complex
conjugation and since h is real valued, it can be decomposed into Ozh = % (Orh +i0rh) and

—i0zh = %Zhh — %8Rh.
Lemma C.7. With the above notations and assumptions the equality
Vz e 21, i{h,b}(z) =2Re (—id:zh(z), Vzb(2))z, = (v(2), Vb(2))z, &,
holds for any b € Seyi(Z1;R) with v(z) = —i0zh(z) .
Proof. It suffices to compute

i{h,b} = i[0.h.0sb— 8.b.0:h]

= —2Im (9<h, Ozb) = 2Re (—idzh , 3zb) = 2Re (—idzh, Vzb)z,
= (—i0h, Vb)z k.

O

Proposition C.8. Let 21 C Zy C Z_1 be a Hilbert triple of separable complex Hilbert spaces.
Consider a time dependent real sesquilinear form z — h(z,t) on Z1 which is Fréchet-C' and such
that 21 x R 3 (z,t) = (0zh(z,t), 0 h(z,t)) € Z1 x Z*, is strongly continuous. Assume also that
the time-dependent Hamilton equation

102y = Osh(z, Z,t) ,  Z=s = %

admits a unique continuous solution z, = ®(t,s)z for all t,s € R and all z € Z1, with ®(t,s) :
Z1 — Z1 Borel.

Consider a time dependent measure p(t) € Probe(Z1) which satisfies
o t — uy € Proby(2) is W2-continuous.

o For all T >0, |0:h(t)|r2(z,.,) € L' ([-T,T)).
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o The time-dependent probability measure u; is a weak solution to
O +if{h(t), pt =0,

namely for all p € C§%,,,(Z1 x R;R),

/ / Doz, 8) + i {hy 0} (2,8)) dpue(2)dt = 0.
RJZ,
Then the measure u; satisfies
Vi, s €R, = P(t,8)wpts
and it is unique when g is fized.

Proof. We apply Proposition C.4 while E = Z; is endowed with its euclidean structure (z; , 22) Z R =
Re (z1, z2)z, . Lemma C.7 says that the weak Liouville equation is

Ve €2 xB). [ [ (@elet)+ (0, Vo)02) du(ede =0,

with v(z,t) = —i0zh(z,t) . The measure p; is a weak solution to
Dopa+ V7 (o) = 0

where V and V7 are defined according to the real structure on Z;. Our hypothesis on p and h
cover all the assumptions of Proposition C.4 0

D Weak L? conditions for the potential V

Let Lga be the Lebesgue measure on R?. Let 0 < p < oo, a Lebesgue measurable function
f : R? — C is said to be weak LP integrable, or shortly in LP*>°(R?), if there exists a constant
¢ > 0 such that for all ¢ > 0

Lya{z : |f(x)] >t} < P[P

Two functions in L?>*(R%) are equal if they are equal Lpa-almost everywhere. The quantity
[fllpoe = inf{c: Lpa{a: |f(x)] >t} < cP/tP,¥E> 0}

sup{tLgaf{z : |f(2)| > t}'/7}

t>0

defines a complete quasi-norm on LP*°(R?) with || f||p.co < || flp-
By combining Hunt and Marcinkiewicz interpolation theorems according to [34, 55, 11]), the Young
and Holder inequalities can be extended to weak LP spaces.

Proposition D.1 (generalized Young’s inequality). Let 1 < p,q,r < oo such that % + % =1+ %
There exists a constant cpq > 0 such that for all f € LP(RY) and g € LY (R?)

1f gl < coq 1F 1l llgllg.00 -

Proposition D.2 (generalized Holder inequality). Let 1 < p,q,r < oo satisfying %—i—i =1 There

exists a constant cp, 4 such that for all f € LP*°(R?) and g € LY(R?)

1£-9ll < epq [ fllpoo l9lla-

Proposition D.3 (Hardy inequality). Suppose that d > 3 and V € L%>®(R?). There exists a
constant ¢ > 0 such that for all w € H*(R?)

Vaullz < ellull g ga) -
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Proof. For u € L?*(R?), we can write (1 — A)™'/2u(z) = G * u(x) with G the inverse Fourier

transform of (1 + |2|?)~1/2. Tt is not difficult to prove that G € LT (see [55, Exercice 50]).
Hence, we conclude that

Holder
IVA=28)uly=[[VGxulls < Crl[V]deo |G *ull 20

Young
< CVaee 1G] o, o llull2
O

The above proposition provides a class of potentials which are bounded multiplication operators
from H*(R?) into L?(R) when the dimension d > 3. For lower dimension, the Sobolev embeddings
give at once:

o ifd=1,VeL*R)+L®(R) then V € L(H'(R), L*(R)).
o ifd=2,V € LP(R?) + L>®(R?) for p > 2, then V € L(H(R?), L?(R?)).

We denote by LP(R?) 4+ L (R?) the space of Lebesgue measurable functions f such that there
exists (fn)nen € LP(RT)N satisfying lim,, o || f — fnlleo = 0.

Lemma D.4. For 0 <p<g,
LT (RY) ¢ LP(R?) 4 L5 (RY)

Proof. For e > 0, we decompose each f € L& (R?) into a sum f = f. + f€ such that f. = 1 g5
and f€ = f15<c. We observe that for any € > 0

I felly

p/oo tp_lLRd{:C D fe(z)] >t} dt
0

= p/ tP Lpa{x o |f(2)| > t}dt + €’ Lpa{x : |f(z)| > €}

IN

[ee] tpfl
c/ Eodt+ Ly ()] > €} < o0
Moreover, when ¢ — 0

1fNoe = £ 1<elloc < €= 0.
Therefore, each f € L9>°(R?) belongs to the space LP(RY) + Lg°(R?). O

Proposition D.5. For any V € L*(RY) + LP(R?) such that V(1 — A)~Y2 € L(L*(R?)) the
operator (1 —A)~Y2V (1 — A)~Y2 is compact (i.e.: V is a relatively compact perturbation of —A).

Proof. Let g(¢) = (1 + [£]2)7'/2 and ¢,,(¢) = L10,m1([€])g(&). The following norm convergence
holds
lygéygnm(l))‘/ﬁhn(l)) ::g(l))"g(l)),

m

using the fact that lim, eo [|gm (D) — 9(D)| £(z2rayy = 0 and |V g(D) |l z(r2(ray) < 0.
By Lemma D.4, there exist V,, € L?(R%) such that lim, o ||V — V;||cc = 0. We observe now that
the Hilbert-Schmidt norm of g, (D)V,,(z)gm (D) is

”gm(D) Va gm(D)Hl:z(L?(]R'i)) = HVn||2 ”gmlli < 00.

Therefore by norm convergence, the operator g(D)V g(D) is compact. a

Corollary D.6. The potential V' satisfies the assumptions (A2)-(A3) in the following cases:
e ifd=1andV € L*(R) + L°(R),
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o ifd=2andV € LP(R?) + L (R?) with p > 2,
o ifd>3andV € L4>(RY).

Proof. Combine Proposition D.3, Lemma D.4 and Proposition D.5, with the observation in
dimension d = 2

LP(R?) + L (R?) C L*(R?) + Lg°(R?) for p > 2.

1

In particular, in dimension d = 3 the Coulomb potential V(z) = &+ T2l

(A1), (A2) and (A3) because ﬁ € L3(R?).

satisfies the assumptions
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