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. In addition, this result can be transformed to a polynomial-time truthful randomized algorithm with expected approximation ratio 3/2 + (resp. 11 6 -1 3 ) for || max (resp. || max).

Introduction

Nowadays, there are many systems involving autonomous entities (agents). These systems are organized by protocols, trying to maximize the social welfare in the presence of private information held by the agents. In some settings the agents may try to manipulate the protocol by reporting false information in order to maximize their own profit. With false information, even the most efficient protocol may lead to unreasonable solutions if it is not designed to cope with the selfish behavior of the agents. In such a context, it is natural to study the efficiency of truthful protocols, i.e. protocols that are able to guarantee that no agent has incentive to lie. This approach has been considered in many papers these last few years (see [START_REF] Mueller | Games and mechanism design in machine scheduling -an introduction[END_REF] for a recent survey).

In this paper, we study the problem of designing truthful algorithms for scheduling a set of tasks, each one owned by a selfish agent, to a set of parallel (identical or unrelated) machines in order to minimize the makespan. We consider the following process: before the start of the execution, the agents declare the length of their tasks, then given these bids the protocol schedules the tasks on the machines. The aim of the protocol is to minimize the makespan, i.e. the maximal completion time of the tasks, while the objective of each agent is to minimize the completion time of its task and thus an agent may lie if by doing so, his task may finish earlier. We focus on protocols without side payments that simultaneously offer a guarantee on the quality of the schedule (its makespan is not arbitrarily far from the optimum) and guarantee that the solution is truthful (no agent can lie and improve his own completion time).

Formal definition

There are agents, represented by the set {1, 2, ⋅ ⋅ ⋅ , } and parallel machines.

Variants of the problem. Depending on the type of the machines and the jobs characteristics, we consider three different variants of the problem:

-Identical parallel machines ( || max ). All the machines are identical and every task has a private value that represents its length. We assume that an agent cannot shrink the length of her task (otherwise he will not get his result), but if he can decrease his completion time by bidding a value larger than the real one ( ≥ ), then he will do so. -Identical parallel machines with release dates ( | | max ). All the machines are identical and every task has now a private pair ( , ), where is the length of task and its release date. Every task may bid any pair ( , ) such that ≥ and ≥ . A task may not bid a release date smaller than its real release date i.e.

< , because otherwise, the task may be scheduled before and thus the final schedule may be infeasible.

-Unrelated parallel machines ( || max ). The machines are here unrelated. Every task has a private vector ( 1 , . . . , ), where , 1 ≤ ≤ , is the processing time of task if it is executed on machine . Every task bids any vector ( 1 , . . . , ) with 1 ≥ 1 , . . . , ≥ .

Models of execution.

We consider two models of execution:

-The strong model of execution: task bids any value ≥ and its execution time is (i.e. task is completed units of time after it starts even if bids ∕ = ). -The weak model of execution: bids any value ≥ and its execution time is (i.e. task is completed units of time after it starts).

Notation. By , we denote the completion time of task . The objective of the protocol is to determine a schedule of the tasks minimizing the maximal completion time of the tasks or makespan, denoted in what follows by max . We say that an algorithm is truthful, if and only if, for every task , 1 ≤ ≤ and for every bid , ∕ = , the completion time of task is minimum when bids = . In other, words, an algorithm is truthful if truth-telling is the best strategy for a player regardless of the strategy adopted by the other players.

Related works

The works that are more closely related to our are those of [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF], [START_REF] Angel | Truthful algorithms for scheduling selfish tasks on parallel machines[END_REF], [START_REF] Auletta | How to route and tax selfish unsplittable traffic[END_REF] and [START_REF] Christodoulou | Scheduling selfish tasks: About the performance of truthful algorithms[END_REF]. In the paper by Auletta et al. [START_REF] Auletta | How to route and tax selfish unsplittable traffic[END_REF], the authors consider the variant of the problem of related machines in which the individual function of each task is the completion time of the machine on which it is executed, while the global objective function is the makespan. They consider the strong model of execution by assuming that each task may declare an arbitrary length (smaller or greater than its real length) while the load of each machine is the sum of the true lengths of the tasks assigned to it. They provide equilibria-truthful mechanisms that use payments in order to retain truthfulness. In [START_REF] Angel | Truthful algorithms for scheduling selfish tasks on parallel machines[END_REF], the authors consider a different variant with identical machines in which the individual objective function of each task is its completion time and they consider the strong model of execution (but here the tasks may only report values that are greater than or equal to their real lengths). Given that for this variant the SPT (Shortest Processing Time) algorithm1 is truthful, they focus on the design of algorithms with better approximation ratio than that of the SPT algorithm. The rough idea of their approach is a randomized algorithm in which they combine the LPT (Longest Processing Time) algorithm2 , which has a better approximation ratio than SPT but is not truthful, with a schedule (DSPT) based on the SPT algorithm where some "unnecessary" idle times are introduced between the tasks. These unnecessary idle times are introduced in the SPT schedule in order to penalize more the tasks that report false information. Indeed, in the DSPT schedule such a task is doubly penalized, since not only is its execution delayed by the other tasks but also by the introduced idle times. In such a way, it is possible to find a probability distribution over the deterministic algorithms, LPT and DSPT which produces a randomized algorithm that is proved to be truthful and with an (expected) approximation ratio of 2 -1 +1 ( 5 3 + 1 3 ), i.e. better than the one of SPT which is equal to 2 -1 . An optimal truthful randomized algorithm and a truthful randomized PTAS for identical parallel machines in the weak model of execution appeared in [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF]. The idea of these algorithms is to introduce fake tasks in order to have the same completion time in all the machines and then to use a random order in each machine for scheduling the tasks allocated to it (including the eventual fake one). These results have been also generalized in the case of related machines and the on-line case with release dates. Another related work, presented in [START_REF] Christodoulou | Scheduling selfish tasks: About the performance of truthful algorithms[END_REF], gives some new lower and upper bounds. More precisely, the authors proved that there is no truthful deterministic (resp. randomized) algorithm with an approximation ratio smaller than 2 -1/ (resp. 3/2 -1/2 ) for the strong model of execution. They also provide a lower bound of 1.1 for the deterministic case in the weak model (for ≥ 3) and a deterministic 4 3 -1 3 truthful algorithm based the idea of bloc schedule where after inserting fake tasks in order to have the same completion time in all the machines, instead of using a random order on the tasks of each machine, the authors proposed to take the mirror of the LPT schedule.

Our contribution

In the first part of the paper we consider the strong model of execution. Our contribution is a new truthful randomized non-polynomial algorithm that we call Starting Time Equalizer (STE), presented in Section 2, whose approximation ratio for the makespan is 3 2 for || max . This new upper bound asymptotically closes the gap between the lower bound 3 2 -1 2 of [START_REF] Christodoulou | Scheduling selfish tasks: About the performance of truthful algorithms[END_REF] and the previously best known upper bound of 2 -1 +1

( 5 3 + 1 3
) for this problem [START_REF] Angel | Truthful algorithms for scheduling selfish tasks on parallel machines[END_REF]. We also give two polynomial-time variants of Algorithm STE, respectively with approximation ratio 3 2 + for || max and 11 6 + 1 3

for || max (we underline that both 3 2 + and 11 6 + 1 3 are better than the previous upper bound of 2 -1

+1

(

)

). In the second part of the paper, we consider the weak model of execution. We give in Section 3.1, a new truthful randomized non-polynomial algorithm, called Mid-Time Equalizer (MTE) for the off-line problem with release dates, where the private information of each task is not only each length, but also its release date ( | | max ). Finally, we consider the case of scheduling a set of selfish tasks on a set of unrelated parallel machines ( || max ) for the weak model of execution (Section 3.2) where we propose a new truthful randomized nonpolynomial algorithm that we call Completion Time Equalizer (CTE). Table 1 gives a summary of the upper and lower bounds on the approximation ratio of truthful algorithms for the considered problems (with † we give the results obtained in this paper).

Deterministic Randomized Lower bound

Upper bound Lower bound Upper bound

|| max strong model 2 -1 [5] 2 -1 [6] 3 2 -1 2 [5] 3 2 † || max weak model if = 2 then 1 + √ 105-9 12 > 1.1 if ≥ 3 then 7 6 > 1.16 [5] 4 3 -1 3 [5] 1 [2] 1 [2]
|| max weak model unknown unknown

3 2 † | | max weak model 2 -1 [7] 3 2 † Table 1.
Bounds for parallel machines.

The lower bounds for truthful deterministic algorithms in the weak model for | | max and || max are simple implications of the lower bound for truthful deterministic algorithms solving || max . Up to our knowledge, there is no interesting lower bounds for truthful randomized algorithms (resp. upper bound for truthful deterministic algorithms) for || max and | | max (resp. || max ). The upper bound 2 -1 for | | max in the weak model holds only if we consider that each task can identified by an identification number (ID). With this assumption, we just have to consider the on-line algorithm which schedules the tasks when they become available with (for instance) the smallest ID first. This algorithm is then trivially truthful, because task i will not have incentive of bidding ( > , > ) ( has no effect on the way in which tasks are scheduled and bidding > can only increase ). Moreover, as this algorithm is a particular case of Graham's list scheduling (LS) algorithm with release dates, it is (2 -1 )-competitive (because Graham's LS algorithm is (2 -1 )-competitive for |on-line-list | max , [START_REF] Graham | Bounds for certain multiprocessing anomalies[END_REF]).

Strong model of execution

Identical machines

Algorithm STE

We consider in this section the problem with identical machines ( || max ) in the strong model. Every task has a private value that represents its length and it has to bid any value ≥ .

Algorithm STARTING TIME EQUALIZER (STE)

1. Let max be the makespan of an optimal schedule for || max . Let be the sub-schedule of on machine . Let 1 ≤ ⋅ ⋅ ⋅ ≤ be the bids (sorted by increasing order) of the tasks in . Figure 1 illustrates the construction of schedules 1 and 2 in algorithm STE on machine machine . The main idea of the algorithm STE is to make equal the expected starting times of all the tasks. More precisely, we prove below that the expected starting time of every task in the final schedule constructed by STE, which is the average between its starting time in 1 and its starting time in 2 , will be equal to max 2 (i.e. the same value for every task). This property will be used in the proof of Theorem 1 to show that STE is truthful. In the example given in Figure 1, the expected starting time of the four tasks is max 2 and it is equal to 5.5.
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Theorem 1. STE is a randomized, truthful and 3 2 -approximate algorithm in the strong model of execution for || max .

Proof. As STE is a randomized algorithm, to prove it is truthful, we have to show that the expected completion time of each task is minimum when it tells the truth. By definition of STE, the expected completion time of any task is the average between its completion time in schedule 1 and its completion time in schedule 2 . In the strong model of execution, every task is completed units of time after its starting time. Thus, = 1 2

(( + ∑ = +1 ) + ( + max - ∑ = +1
)) = + max 2

For every task , the completion time of task is = + max 2 and it reaches its minimum value when tells the truth because does not depend on the bid and because max obviously does not decrease if bids > instead of = . Thus, STE is truthful in the strong model of execution. Given that STE is truthful, we may consider in the following that for every , we have = . Given also that STE is a randomized algorithm choosing with probability 1/2 schedule 1 and with probability 1/2 schedule 2 , its approximation ratio will be the average between the approximation ratios of schedules 1 and 2 . In 1 , all tasks end before or at time max . Thus, as for every , = , max is the makespan of an optimal solution computed with the true types of the agents, tasks in 2 end before or at time 2 max . Thus, 2 is 2-approximate. Hence, the expected approximation ratio of STE is ) . Secondly, by using approximated solutions instead of the optimal one, we can obtain polynomial-time variants of STE. To precise these variants, we first need to define what we call an increasing algorithm.

Definition (Increasing algorithm). Let

and ′ be two sets of tasks { 1 , 2 , . . . , } and { ′ 1 , ′ 2 , . . . , ′ } respectively. We denote by ≤ ′ the fact that for every 1 ≤ ≤ , we have ( ) ≤ ( ′ ) (where ( ) is the length of task ). An algorithm is increasing if for every pair of sets of tasks and ′ such that ≤ ′ , it constructs schedules such that max ( ) ≤ max ( ′ ) (where max ( ) is the makespan of the solution constructed by Algorithm for the set of tasks ).

As LPT (Longest Processing Time) is an increasing algorithm (See [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF]) and as there exists an increasing PTAS for || max (See [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF]), we get the following two theorems. Theorem 2. By using LPT instead of an optimal algorithm, we obtain a polynomial-time, randomized, truthful and ( 11 6 -1 3 )-approximate variant of STE in the strong model of execution for || max . Theorem 3. By using the increasing PTAS in [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF] instead of an optimal algorithm, we obtain a polynomial-time, randomized, truthful and ( 3 2 + )-approximate variant of STE in the strong model of execution for || max .

Theorem 2 (resp. Theorem 3) can be proved in a similar way as in Theorem 1.

Indeed, as the completion time of each task will be = + max 2 (resp. = + max

2

) instead of = + max 2 and as LPT (resp. the PTAS in [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF]) is increasing, the variant of STE in Theorem 2 (resp. Theorem 3) is truthful. Moreover, as LPT is ( 43 -1 3 )-approximate for || max (resp. the PTAS in [START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF] is (1 + )-approximate for || max ), we obtain that the expected approximation ratio of the variant of STE in Theorem 2 (resp. Theorem 3) is 3 Weak model of execution

Identical machines with release dates

We consider in this section | | max in the weak model. Every task has now a private pair ( , ) (its type), where is the length of task and its release date. Each task may bid any pair ( , ) such that ≥ and ≥ . Notice here that we consider that task may not bid a release date smaller than its real release date i.e. < , because otherwise, the task may be scheduled before in the final schedule and thus, the final schedule may be infeasible.

Algorithm MID-TIME EQUALIZER (MTE) 

2 .. 3 .. 4 .

 234 Construct schedule 1 as follows: for every machine (1 ≤ ≤ ), every task ( 1 ≤ ≤ ) in is executed on machine by starting at time ∑ = +1 Construct schedule 2 as follows: for every machine (1 ≤ ≤ ), every task ( 1 ≤ ≤ ) in is executed on machine by starting at time max -∑ = +1 Choose schedule 1 or 2 each with probability 1/2.

Fig. 1 .

 1 Fig. 1. An illustration of execution of Algorithm STE on machine . We give an example of schedules 1 and 2 with four tasks in such that 1 = 1, 2 = 1.5, 3 = 3, 4 = 4 and max = 11.

  Given that Algorithm STE requires the computation of an optimal solution for || max and as this problem is NP-hard, it is clear that STE cannot be executed in polynomial time. Nevertheless, it is interesting for two reasons. First, it asymptotically closes the gap between the lower bound3 

	1 2 (1 + 2) = 3 2 .	⊓ ⊔
	2.2 Polynomial-time variants of Algorithm STE	
	2 -1 2 algorithm and the previously best known upper bound of 2 -1 of any truthful +1 ( 5 3 + 1 3

  1. Let max be the makespan of an optimal schedule for | | max . Let be the machine where Task is executed in . Let ( ) be the completion time of Task in . 2. Construct Schedule in which every task is executed on machine and start at Time max 1≤ ≤ { } + max -( ).

	3. Choose Schedule	or	each with probability 1/2.
	Figure 2 illustrates the construction of Schedules	and	in algo-
	rithm MTE on any machine	.

where the tasks are scheduled greedily following the increasing order of their lengths (its approximation ratio is

-1/ )[START_REF] Angel | On truthfulness and approximation for scheduling selfish tasks[END_REF] where the tasks are scheduled greedily following the decreasing order of their lengths (its approximation ratio is 4/3 -1/(3 ))

is optimal. In

, on every machine , all tasks end before or at time max except task , which finishes at time max + . Given that ≤ max , all

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 The main idea of algorithm Mid-Time Equalizer (MTE) is make equal the expected time at which every task has executed half of its total length. More precisely, we prove below that the expected mid-time of every task in the final schedule constructed by MTE is the average between its mid-time in and in and it is equal to 1 2 ( max 1≤ ≤ { } + max ) (i.e. the same value for every task). This property will be used in the proof of Theorem 4 in order to show that MTE is truthful in the weak model of execution. In the example given in Figure 2, the expected mid-time of the four tasks is 1 2

) and it is equal to 8+11 2 = 9.5. Note that as we consider that for every , we have ≥ , we get max 1≤ ≤ { } ≥ max 1≤ ≤ { }. Moreover, as ( ) ≤ max , every task starts in schedule at time max 1≤ ≤ { } + max -(

) ≥ max 1≤ ≤ { } ≥ . Thus, schedule respects all the constraints of the release dates. Proof. Let us prove that the expected completion time of every task is minimum when it tells the truth. By definition of MTE, the expected completion time of any task is the average between its completion time (

) in schedule and its completion time ( ) in schedule . In the weak model of execution, every task is completed units of time after its starting time. Thus, we have = 1 2

For every task , its completion time = 1 2 ( max 1≤ ≤ { } + max + ) reaches its minimum value when tells the truth (i.e. when bids simultaneously = and = ), because -for every ≥ , both max and obviously do not decrease if bids ( > , ) instead of ( = , ), and -for every ≥ , both max 1≤ ≤ { } and max obviously do not decrease if bids ( , > ) instead of ( , = ).

It is then clear that MTE is truthful and thus we may consider in what follow that for every , we have = and = . The expected approximation ratio of MTE will be the average between the approximation ratios of and . In , all tasks end before or at time max . Thus, as for every , = , max is the makespan of an optimal solution computed with the types of the agents, and thus, is optimal. In , all tasks end before or at time max 1≤ ≤ { } + max (because for every , = by definition of MTE). Given that max 1≤ ≤ { } ≤ max , all tasks in terminate before or at time 2 max . Thus, is 2-approximate. Hence the expected approximation ratio of Algorithm MTE is 1 2

Unrelated machines

We consider in this section the case with unrelated machines ( || max ) in the weak model of execution. Here, every task has a private vector ( 1 , . . . , ) (his type), where (1 ≤ ≤ ) is the processing time of if it is executed on machine . Every task bids any vector ( 1 , . . . , ) with 1 ≥ 1 , . . . , ≥ .

Algorithm COMPLETION TIME EQUALIZER (CTE)

1. Let max be the makespan of an optimal schedule for || max . Let be the sub-schedule of on Machine . Let 1 ≤ ⋅ ⋅ ⋅ ≤ be the bids (sorted by increasing order) of the tasks in .

2. Construct schedule 1 as follows: for every machine ( ≤ ≤ ), every task ( 1 ≤ ≤ ) in is executed on machine by starting at time max -∑ = .

3. Construct schedule 2 as follows: for every machine ( ≤ ≤ ), every task ( 1 ≤ ≤ ) in is executed on machine by starting at time max -+ ∑ = +1

.

4. Choose schedule 1 or 2 each one with probability 1/2.

Figure 3 illustrates the construction of schedules 1 and 2 in algorithm CTE on machine . The intuitive idea of algorithm Completion Time Equalizer is to make equal the expected completion times of the tasks. More precisely, the expected completion time of every task in the final schedule constructed by CTE is the average between its starting time in 1 and its starting time in 2 and it is equal to max (i.e. the same for all the tasks). This property will be used in the proof of Theorem 1 to show that CTE is truthful in the weak model of execution. For instance, in the example given in Figure 1, the expected completion time of the four tasks is max and it is equal to 11. Theorem 5. CTE is a randomized, truthful and 3 2 -approximate algorithm in the weak model of execution for || max .

Proof. We first show that the expected completion time of each task is minimum when it tells the truth. By definition of CTE, the expected completion time of any task is the average between its completion time in Schedule 1 and its completion time in Schedule 2 . In the weak model of execution, each task is completed units of time after its starting time on machine . Thus, we have = 1 2

)) = max

For every task , = max reaches its minimum value when tells the truth because max obviously does not decrease if for any , , task bids > instead of = . Hence, CTE is truthful and so we can consider in the following that for every , , we have = . In schedule 1 , all tasks finish before or at time max . Thus, as for every , , = , max is the makespan of an optimal solution computed with the types of the agents, 1 is optimal. In 2 , on each machine , all tasks end before or at time max + ∑

=2

. As ∑

=2

≤ max , all tasks in 2 end before or at time 2 max . Thus, 2 is 2-approximate. Finally, the expected approximation ratio of algorithm CTE is 1 2 (1 + 2) = 3 2 . ⊓ ⊔