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A POSITIVE DENSITY OF FUNDAMENTAL DISCRIMINANTS

WITH LARGE REGULATOR

ÉTIENNE FOUVRY AND FLORENT JOUVE

Abstract. We prove that there is a positive density of positive fundamental

discriminants D such that the fundamental unit ε(D) of the ring of integers of

the field Q(
√

D) is essentially greater than D3.

1. Introduction

LetD > 1 be a fundamental discriminant which means thatD is the discriminant
of the quadratic field K := Q(

√
D). Let ZK be its ring of integers and let ω =

D+
√
D

2 . Then ZK is a Z–module of rank 2

(1) ZK = Z⊕ Zω.

Furthermore there exists a unique element ε(D) > 1 such that the group UK of
invertible elements of ZK has the shape

UK = {± ε(D)n ; n ∈ Z}.
The element ε(D) is called the fundamental unit of ZK and its logarithm R(D) :=
log ε(D) is called the regulator. The regulator R(D) is a central object of algebraic
number theory. For instance R(D) plays a role in the computation of the class
number (see (34)). The study of the properties of the unruly function D 7→ R(D)
is a fascinating problem in both theoretical and computational aspects (see [1] for
instance).

A rather similar, but not completely equivalent problem – see the discussion in
§5 – is the study of the fundamental solution εd to the so–called Pell equation

(PE(d)) T 2 − dU2 = 1 ,

where the parameter d is a non square positive integer and the unknown is the pair
(T, U) of integers. It is convenient to write any given solution of (PE(d)) under

the form T +U
√
d. Let εd be the least of these solutions greater than 1. Then the

set of solutions of (PE(d)) is infinite and also has the shape {± εnd ; n ∈ Z}.
It is known that there exists an absolute constant C, such that the following

inequalities hold

(2)
√
D < ε(D) ≤ exp(C

√
D logD) and 2

√
d < εd ≤ exp(C

√
d log d).

It is widely believed that most of the time ε(D) and εd are huge in absolute value
compared to the size of D or d, and this fact is confirmed by numerical evidence.
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One can find more precise conjectures ([13] & [22], for instance) which would imply
in particular that for all ε > 0 the inequality

(3) εd ≥ exp(d
1
2
−ε),

holds for almost all non square d (and for almost all fundamental discriminants
D, since these D form a subset of positive density). Recall that a subset A of
positive integer is said to have a positive density if its counting function satisfies
the inequality

lim inf
# {a ∈ A ; 1 ≤ a ≤ x}

x
> 0 (x→ ∞).

The set A is said to be negligible (or with zero density) if one has

lim sup
# {a ∈ A ; 1 ≤ a ≤ x}

x
= 0 (x→ ∞).

Since a proof of (3) still seems to be out of reach, it is a challenging problem to
construct infinite sequences of fundamental discriminants D (resp. of non square d)
with a huge ε(D) (resp. with a huge εd). In the case of fundamental discriminants
D, it is now proved that there exists c > 1, such that the inequality ε(D) >
exp(logcD) is true for infinitely many D’s: see [24], [21], [12], ...

In the case of a non square d the situation is better understood. Indeed we know
that for some positive c there exists infinitely many d’s such that εd > exp(dc). We
refer the reader to the pioneering work of Dirichlet [16] leading to the optimality
of (2), and to more recent work on the subject: for instance [23, p.74 & 85], [5,
Theorem 2],... See also [9] for the study of the case d = 5p2. However none of these
works manages to produce an infinite family of squarefree d’s.

Besides it is not known whether there exists a constant c > 1 such that the
inequality εd ≥ exp(logc d) holds for a positive density of d’s. So we may ask for
the frequency of weaker inequalities such as εd > dθ, or ε(D) > Dθ, where θ > 1/2
is a fixed constant. In that direction, Hooley [13, Corollary] proved that for almost

every d, one has εd > d
3
2
−ε. This was improved to εd > d

7
4
−ε by the authors [4,

Corollary 1] (ε > 0 arbitrary).
The same work of Hooley implies that there exists a positive density of d sat-

isfying εd > d
3
2 / log d. By a complete different technique, based on the theory of

continued fractions, Golubeva [11, Theorem] constructed a set of d’s of positive
density, such that εd ≥ d2−ε (ε > 0 arbitrary). It does not seem to be an easy task
to extend these two results to the case of a fundamental D, because the condition
for an integer to be squarefree seems hard to insert in the corresponding proofs of
Hooley and Golubeva.

Our main result asserts that there is a positive density of positive fundamental
discriminants D with fundamental unit of size essentially larger than D3. In fact
we can say more: first we show it is enough to consider the contribution of positive
fundamental discriminants with fundamental unit of positive norm to get our den-
sity estimate. Moreover we can further restrict our study to positive fundamental
discriminants D that satisfy a very specific divisibility property. This property is
of an algebraic nature. To explain precisely what it is we state the following propo-
sition the first version of which goes back (at least) to Dirichlet (see the beginning
of §3 for historical background and references).
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If D > 1 is a fundamental discriminant set

D′ =











D , if D is odd ,

D/2 , if D = 4d , d ≡ 3 mod 4 ,

D/4 , if 8 | D .

In other words D′ is the kernel of D. Finally let Fund+ denote the set of funda-
mental discriminants D > 1 such that ε(D) has norm 1.

Proposition 1. For every D ∈ Fund+ there exists exactly two distinct positive
divisors of D′, both different from 1 and D/(4, D), among the set of norms of
principal ideals of ZQ(

√
D).

Let Φ be the function on Fund+ sending D to the minimum of the two distinct
divisors of D′ the existence of which is guaranteed by Proposition 1. With notation
as above our main result can be stated as follows.

Theorem 1. For every δ > 0 there exists x0(δ) > 0 and c0(δ) > 0 such that

(4) #
{

D ∈ Fund+ ; X < D ≤ 2X, 22‖D,Φ(D) < Dδ, ε(D) ≥ D3−δ
}

≥ c0(δ)X,

for every X > x0(δ).
Similar statements are true when the condition 22‖D in the set on the left–hand

side is replaced by 8 | D, or D ≡ 1 mod 4.

We shall mainly concentrate on the case 22‖D since the situation is simplified a

lot thanks to an easy link between units of Q(
√
D) and the equation (PE(D/4))

via the equality

(5) ε(D) = εD/4 .

Proposition 1 can naturally be seen as a feature of the algebraic interpretation
of the transformation of Legendre and Dirichlet we describe in §2.1. We devote §3
to the proof of this statement. The proof of (4) in Theorem 1 is given in §4. The
cases 8 | D and D odd will be treated in §5.

The last part of the paper explains another application of the ideas leading to
Theorem 1. It is well known that any information on the size of ε(D) can be

interpreted in terms of the ordinary class number h(D) of the field Q(
√
D). Among

the various possible illustrations, we have selected the following one.

Theorem 2. Let C0 denote the converging Euler product:

C0 :=
∏

p≥3

(

1 +
p

(p+ 1)2(p− 1)

)

.

There exists a constant δ > 0 such that for every sufficiently large x one has the
inequality

(6)
∑

D≤x
22‖D

h(D) ≤
( 8

21π2
C0 − δ

) x
3
2

log x
.

The proof of this theorem is essentially based on [4] and Proposition 3. It will be
given in §6, where we will explain why the inequality (6) is better than the trivial
upper bound by some constant factor strictly larger than 3.5. We shall also use in
a crucial way the fact that the set of D’s with a large ε(D) exhibited in Theorem
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1 has some regularity. More precisely, up to a few exceptions this set consists in
integers of the form pm with p large (see (29) for the definition of Dγ

m(x)). However,
the inequality (6) is certainly far from giving a crucial step towards the proof of
the following expected asymptotic formula

∑

D≤x
22‖D

h(D) ∼ c0x log
2 x,

where x tends to infinity and c0 is some absolute positive constant.

Acknowledgements. The authors thank E.P. Golubeva, J. Klüners and F. Lem-
mermeyer for discussions and comments concerning a previous version of this work.

2. Strategy of the proof

2.1. Legendre & Dirichlet’s transformation. In this subsection d denotes any
positive integer, not necessarily a fundamental discriminant. We describe and use
an easy transformation of the Pell equation (PE(d)), which was initiated by Le-
gendre [14, Chap. VII, p.61–74] and then extended by Dirichlet [15, §1]. For the
sake of completeness, we give the detail of Legendre’s argument. For a more de-
tailed presentation together with historical background and interpretations of this
technique we refer to [17]. See also [13, p.109], [2, p.18–19],...

Let us write (PE(d)) as

(7)
T 2 − 1

d
= U2.

Since d | T 2 − 1, we have d = (T 2 − 1, d) = ((T + 1)(T − 1), d). Because the
gcd (T + 1, T − 1) can only take the values 1 or 2, we are led to consider the two
corresponding cases:

• If T + 1 and T − 1 are coprime (i.e. T is even), we factorize

d = (T + 1, d)(T − 1, d) =: d1d2,

in a unique way. Combining this splitting of d with (7) yields the four equations

T + 1 = d1U
2
1 , T − 1 = d2U

2
2 , d = d1d2, U = U1U2,

which are equivalent to

(8) d1U
2
1 − d2U

2
2 = 2, T = −1 + d1U

2
1 , d = d1d2, U = U1U2, 2 ∤ d1U1.

• If 2 = (T + 1, T − 1), two subcases are to be considered:

• either 4 ∤ d in which case U is even and the equation (7) can be written as

((T + 1)/2) · ((T − 1)/2)

d
= (U/2)2.

Arguing as in the previous case, we are reduced to considering the following set of
equations:

(9) d1U
2
1 − d2U

2
2 = 1, T = −1 + 2d1U

2
1 , d = d1d2, U = 2U1U2, 4 ∤ d,

• or 4 | d in which case we can write (7) as follows:

((T + 1)/2) · ((T − 1)/2)

(d/4)
= U2.
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We factorize d/4 = ((T + 1)/2, d/4)((T − 1)/2, d/4) =: d1d2 and get the set of
equations

(10) d1U
2
1 − d2U

2
2 = 1, T = −1 + 2d1U

2
1 , d = 4d1d2, U = U1U2.

The following statement summarizes the above decomposition in a more concise
and applicable way.

Lemma 1. (Legendre & Dirichlet) Let d, U ∈ N≥1 be fixed integers. Set

A(d, U) := {T ≥ 1 ; T 2 − dU2 = 1}
and,

• if 2 ∤ dU :

B(d, U) :=
{

(d1, d2, U1, U2) ∈ N4
≥1 ; U1U2 = U, d1d2 = d, d1U

2
1 − d2U

2
2 = 2

}

,

• if 2 | dU and 4 ∤ d:

B(d, U) :=
{

(d1, d2, U1, U2) ∈ N4
≥1 ; 2U1U2 = U, d1d2 = d, d1U

2
1 − d2U

2
2 = 1

}

,

• if 4 | d:
B(d, U) :=

{

(d1, d2, U1, U2) ∈ N4
≥1 ; U1U2 = U, 4d1d2 = d, d1U

2
1 − d2U

2
2 = 1

}

,

Then in each case, we have

#A(d, U) = #B(d, U) ∈ {0, 1}.
Proof. The proof follows from several observations. The first one is obvious:
#A(d, U) ∈ {0, 1}. We give the detail of the rest of the argument only in the first
case, the other two cases being exactly similar.

Our second observation is: #B(d, U) ∈ {0, 1}. To see this we fix (d1, d2, U1, U2) a
quadruple in B(d, U) and we show that the values of d1, U1 are prescribed by those
of d, U . We compute the square of d1U

2
1 −1 = d2U

2
2 +1: it is (d1U

2
1 −1)(d2U

2
2 +1) =

dU2+1. Thus d1U
2
1 −1 is determined by d, U and so is the gcd (d1U

2
1 , d). We claim

this gcd is d1. Indeed (d1, d2) = 1 since these integers satisfy d1U
2
1 − d2U

2
2 = 2 and

2 ∤ dU . Thus if (d1U
2
1 , d) 6= d1, there is a non trivial common factor q to U1 and d2.

Again using the equation satisfied by (d1, d2, U1, U2) we deduce q = 2, contradicting
the condition 2 ∤ dU .

To conclude the proof we observe that both the implications
(

#A(d, U) = 1
)

⇒
(

#B(d, U) ≥ 1
)

, and
(

#B(d, U) = 1
)

⇒
(

#A(d, U) ≥ 1
)

,

hold. The first implication is just a way of rephrasing the reduction step explained
before the statement of the lemma. To prove the second implication we notice that
a quadruple (d1, d2, U1, U2) gives rise to an element T := d2U

2
2 + 1 = d1U

2
1 − 1

belonging to A(d, U). �

2.2. Remarks on Lemma 1. The first remark concerns the implicit decomposi-
tion (d, T, U) 7→ (d1, d2, U1, U2) of Lemma 1 which should really be seen as a square
rooting process. This explains the efficiency of the method as a tool to study the size
of the solutions to the Pell equation (PE(d)). More precisely, a solution T + U

√
d

to (PE(d)) produces via Lemma 1 the algebraic integer
√
d1U1 +

√
d2U2 which has

degree at most 4 (and at least 2, when d is not a square) over Q and which satisfies
(

√

d1U1 +
√

d2U2

)2
= d1U

2
1 + d2U

2
2 + 2

√

d1d2U1U2.
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If T is odd this is precisely T + U
√
d. If T is even, this number is 2(T + U

√
d).

Therefore Lemma 1 enables us to significantly reduce the order of magnitude of the
algebraic integers we work with.

The second remark concerns the special case where d = p ≡ ±1 mod 4. In that
case the integer d has only two decompositions d = d1d2 with (d1, d2) = (1, p)
or (p, 1). Hence the study of the equation T 2 − pU2 = 1 is reduced to the four
equations

U2
1 − pU2

2 =

{

±2 if 2 ∤ U,

±1 if 2 | U.

Since U2 ≥ 1, we deduce that U1 ≥ √
p− 2 and also that in every case, one has the

inequality U ≥ √
p− 2. Hence any non trivial solution Ξ = T + U

√
p of the Pell

equation T 2 − pU2 = 1, satisfies the inequality

Ξ =
√

pU2 + 1 + U
√
p ≥

√

p(p− 2) + 1 +
√

p(p− 2) ≥ p.

In particular this shows that the fundamental solution εp of (PE(p)) satisfies the
inequality

(11) εp > p.

For p ≡ 3 mod 4 we deduce the lower bound

(12) ε(4p) > p ,

for the fundamental unit of Q(
√
4p). If the general case of the equation T 2−dU2 =

1, the corresponding fundamental solution is greater than 2
√
d and this bound is

essentially best possible, as the choice d = n2 − 1 shows.
As E.P. Golubeva pointed out to us, the lower bound (11) which is certainly

already in the literature, can be deduced from properties of the continued fraction
expansion of

√
p. For instance, by [19, Satz 14, p.94], we know that if the non

square integer d is such that the period k of the expansion of
√
d is even then it

has the shape
√
d = [b0; b1, · · · , bν−1, bν , bν−1, · · · , b1, 2b0],

where b0 is the integral part of
√
d, the central coefficient bν of index ν := k/2

either equals b0 or b0−1 or is less than (2/3)b0, and where any bℓ, 1 ≤ ℓ < ν, is less
than (2/3)b0. If d is divisible by some prime congruent to 3 mod 4 it is well known
that the associated integer k is even. In the particular case where d = p ≡ 3 mod 4
we even know that bν = b0 or b0 − 1 (see [10, p.1277]). Note that this last property

is false if d ≡ 3 mod 4 is not a prime. Consider for instance
√
15 = [3; 1, 6].

Classical properties of continued fraction expansions of quadratic integers imply
that if

√
d has even period k = 2ν, the fundamental solution T0+U0

√
d of (PE(d))

satisfies

T0
U0

= [b0; b1, · · · , bν−1, bν , bν−1, · · · , b1] .

We deduce from the above discussion that in the case d = p ≡ 3 mod 4 one has
U0 ≥ bν ≥ b0 − 1 ≥ √

p− 2. This gives (11).
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3. Proof of Proposition 1

This result has been known for a long time. Dirichlet (see [15, §5]) was the first to
solve the question of the uniqueness of the decomposition d = d1d2 (or d = 4d1d2)
appearing in (8), (9) and (10) but without, of course, using the language of modern
algebraic number theory. We reprove this uniqueness result for squarefree d in
passing in §3.1. For a statement using the language of binary quadratic forms
see [18] where the author notes that the result at issue essentially follows from a
theorem due to Gauss (see the references in [18]). We refer the reader to [17, Th.
3.3 and the discussion that follows] for more on this subject. (Note however that
in loc. cit. the statement of Theorem 3.3 contains a minor typo. One should allow
the right–hand side of the equation to be negative since, e. g., the set of integral
solutions (r, s) to each of the two equations pr2 − s2 = 1 and pr2 − s2 = 2 is empty
if p ≡ 7 mod 8.)

3.1. Applying Gauss’s Theorem on the 2-rank of CD. Let D ∈ Fund+. We
denote by ClD (resp. CD) the group of ideal classes of ZQ(

√
D) in the ordinary

(resp. narrow) sense. Let pi, 1 ≤ i ≤ t, be the pairwise distinct prime divisors of
D. These primes are precisely the ones ramifying in ZQ(

√
D). For each 1 ≤ i ≤ t,

let pi be the prime ideal of ZQ(
√
D) above pi. Let us define:

(13) M = {pδ11 · · · pδtt ; δi ∈ {0, 1} for all i} .
It is exactly the set of integral ideals of norm dividing D′.

Let S be the subgroup of the group of fractional ideals of ZQ(
√
D) generated by

the prime ideals pi, 1 ≤ i ≤ t. Of courseM is a subset of S. Moreover a well known
result of Gauss (see e. g. [8, Chap. V, Th. 39]) asserts that the narrow class map:

ν : S → CD ,

induces a surjection

S/S2 → CD/C
2
D ,

whose kernel has order 2 and where, if G is an abelian group, G2 denotes its
subgroup of squares.

One deduces that each class in CD/C
2
D has exactly two representatives in M . In

particular the image under the narrow class map of

P+

Q(
√
D)

:= { fractional principal ideals of ZQ(
√
D)

generated by a totally positive element } ,
which is the trivial class of CD/C

2
D, has two representatives in M . These represen-

tatives are (1) and a non trivial ideal I ∈ M . By definition of M the norm of I
divides D′. Besides it is easily seen that the norm of I is not D/(4, D). Indeed if by
contradiction the norm of I were D/(4, D) then, since I ∈M , the ideal I would be
principal and equal to (D/(4, D)). However D ∈ Fund+ and (D/(4, D)) is gener-
ated by an element of negative norm. Thus (D/(4, D)) cannot be a representative
of the trivial coset C2

D of CD/C
2
D.

It turns out the ideal I can be described explicitly thanks to the Legendre–
Dirichlet transformation. To see this let us analyse each case separately.

• Assume first that D = 4d, d ≡ 3 mod 4. The fundamental unit of Q(
√
D)

may be written ε(D) = T + U
√
d. Applying the transformation described
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in §2.1 to the norm equation T 2−dU2 = 1 leads either to (8) or (9) depending
on whether T is even or odd.

– In case we are led to (8) (i.e. T is even) the integer 2d1 > 1 is a divisor of

D′ thus the ideal I is (d1U1 + U2

√
d). Indeed the norm of the algebraic

integer d1U1 + U2

√
d is 2d1 > 0 (note that

√
dU1 + U2d2 has norm

−2d2 < 0).
– Otherwise T is odd hence U is even. Therefore, as explained in §2.2,
ε(D) = T +U

√
d is the square of the algebraic integer

√
d1U1 +

√
d2U2.

We deduce d1 > 1 since otherwise this algebraic integer would be a unit
(it would have norm 1) of ZQ(

√
D) contradicting the minimality of ε(D).

Thus one also has I = (d1U1+
√
dU2), the element d1U1+

√
dU2 having

norm d1 > 0.
• The second case we consider is D ≡ 1 mod 4. For convenience and to unify
the notation we set in that case d := D. We may write ε(D) = T/2 +

(U/2)
√
d where T ≡ U mod 2. If T and U are both even we argue as in the

previous case (note that by reducing modulo 4 we see that T/2 has to be odd).
Otherwise T and U are both odd and satisfy T 2 − dU2 = 4. Mimicking the
transformation of Legendre and Dirichlet described in §2.1 (see also Lemma 2)
one easily gets factorizations into coprime integers d = d1d2, U = U1U2, such
that

(14) d1U
2
1 − d2U

2
2 = 4, T = −2 + d1U

2
1 .

Therefore the integral principal ideal (d1U1/2+U2

√
d/2) (note that both d1U1

and U2 are odd) is generated by an element of norm d1 > 0. To see that this
ideal is I it is enough to prove that d1 > 1. Indeed if by contradiction d1 = 1
then (U1/2)

√
d1 +(U2/2)

√
d2 would be a unit of ZQ(

√
D) the square of which

equals ε(D) contradicting the minimality of the fundamental unit.
• Finally let us consider the case where D = 4d, d ≡ 2 mod 4. As in the first
case the fundamental unit may be written ε(D) = T +U

√
d. From the norm

equation T 2 − dU2 = 1 we deduce that T is odd and U is even i.e. the
transformation of Legendre and Dirichlet leads to (9). As in the first case

one easily shows that I = (d1U1 +
√
dU2).

However what we want to understand is how (the narrow classes of) the elements
of PQ(

√
D) := { fractional principal ideals of ZQ(

√
D)} ⊃ P+

Q(
√
D)

are represented in

M . It turns out (see e. g. [7, (6)]) that one has a short exact sequence

1 → F∞ → CD → ClD → 1 ,

where F∞ has order at most 2. It is straightforward from the definitions that
|F∞| = [PQ(

√
D) : P+

Q(
√
D)

]. Moreover one knows that |F∞| = 2 if and only if

ε(D) has norm 1 (see the discussion following [7, (6)] and the references therein).
Since we have assumed D ∈ Fund+ we have [PQ(

√
D) : P

+

Q(
√
D)

] = 2 and the above

discussion then implies that PQ(
√
D) has four representatives in M . We can even

argue in a completely explcit way: PQ(
√
D) is the disjoint union of two left cosets

with respect to the subgroup P+

Q(
√
D)

. We have exhibited two elements ((1) and

I =: (a)) in the trivial coset. In the non trivial coset obviously lies the ideal (
√
d):

the algebraic integer
√
d has norm −d dividing D′. Using (a) and (

√
d) we easily

deduce the construction of the fourth suitable ideal. Indeed in the decomposition
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of (a
√
d) as a product of prime ideals, the pi’s are the only prime ideals that may

appear. Reducing the exponent of each pi appearing modulo 2 we get a principal
ideal (recall that p2j = (pj) for each j) the norm of which divides D′. Clearly this

ideal is different from (1), (a) and (
√
d). (We can deduce more: since both I and

(
√
d) are elements of M and since d differs from D′ by at most a factor 2 then

either the norm d̃ of I = (a) divides d and therefore the norm of the “fourth” ideal

is d/d̃ or d̃ is even and the norm of the fourth ideal is 4d/d̃.)
In terms of the Legendre–Dirichlet transformation and besides (1) and I = (a)

the ideals (
√
d) and (

√
dU1 + d2U2) (or (

√
d (U1/2) + d2U2/2) in the case d = D ≡

1 mod 4) are representatives of PQ(
√
D) inM . Of these four integral principal ideals

one has norm 1 and one has norm d, the norms of the other two are d1 and d2 (or
2d1 and 2d2 in the case where D = 4d, d ≡ 3 mod 4, and the coordinate T of the
fundamental unit ε(D) = T + U

√
d is even) respectively. This concludes the proof

of Proposition 1.

3.2. Remarks on Proposition 1 and its proof. Among the constraints defining
the sets on the left–hand side of (4) one may object that there is some redundancy
in imposing both the conditions D ∈ Fund+ and 22‖D. However the norm of the
fundamental unit is of course no longer automatically positive in the cases D odd
or 8 | D.

On a different note it is well known that a statement analogous to Proposition 1
could be given in the case where D is a negative fundamental discriminant. The
situation is even simpler then since in that case the notions of class group in the
ordinary and narrow sense coincide. However, to simplify the exposition and be-
cause the case of imaginary quadratic fields is outside the scope of this paper, we
prefer not to include the case D < 0 in the statement of Proposition 1.

Finally, in view of the above proof of Proposition 1, we see that the integer
Φ(D) can be given explicitly via the Legendre–Dirichlet transformation. Indeed we
deduce from the above proof the following explicit version of Proposition 1.

Proposition 2. Let D ∈ Fund+ and d := D/(4, D). Let d = d1d2 be the coprime
factorization of d obtained by applying (8), (9) or (14) to the norm equation satisfied
by the fundamental unit ε(D). Then

Φ(D) =

{

min(2d1, 2d2) if D = 4d, d ≡ 3 mod 4, T ≡ 0 mod 2 ,

min(d1, d2) otherwise ,

where in the first case ε(D) = T + U
√
d.

Note that we easily deduce from the proposition that Φ(D) <
√
D and that,

unless D = 4d, d ≡ 3 mod 4 and the coordinate T of the fundamental unit ε(D) =

T + U
√
d is even, one even has Φ(D) <

√
d.

Example 1. Assuming D ∈ Fund+ one might get the intuitive idea that among
the four integral principal ideals of norm dividing D′, the ideal (

√
d) is the one

with norm of maximal absolute value. Of course this is true if the norms of the four
ideals in question divide d which is always the case unless D = 4d, d ≡ 3(mod4),

and ε(D) = T + U
√
d with T even. However this intuitive idea is not necessarily

true in the latter situation. Consider the case D = 12. Thus D′ = 6 and d = 3.
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If N denotes the norm map relative to the extension Q(
√
3)/Q, one easily checks

that

N (
√
3) = −3 , N (1 +

√
3) = −2 , N (3 +

√
3) = 6 .

In the notation of the Legendre–Dirichlet transformation the maximum of the ab-
solute values of the three norms above is 2d1 = 6. Moreover Φ(12) = 2 and one
notices as expected the identity among ideals:

(
√
3) · (3 +

√
3) = (3) · (1 +

√
3) ,

which is congruent to (1 +
√
3) modulo squares (i.e. modulo S2 in the notation of

the proof of Proposition 1).
This example contains even more information. Not only does it show that d is

not in general the maximum of the four divisors of D′ among the norms of integral
principal ideals, but also that at most one of the other three divisors is larger than
d. Otherwise, in view of Proposition 2, we would have 2d1 ≥ d and 2d2 ≥ d. Since
d = d1d2 ≡ 3 mod 4 this implies d = 3. This corresponds to D = 12 in which case,
as shown above, d2 = 1.

4. Proof of Theorem 1 when 22‖D
4.1. Notation. The letter p is reserved for prime numbers. The Möbius function
is denoted by µ, the number of distinct prime divisors of the integer n is ω(n), the
cardinality of the set of primes p ≤ x which are congruent to a mod q is denoted
by π(x; q, a). The condition n ∼ N means that the variable n has to satisfy the
inequalities N < n ≤ 2N . As it shall not lead to confusion the symbol ∼ will also
be used in the usual sense: if f, g are two functions of the real variable x defined
on a neighborhood of a on which g does not vanish, f(x) ∼ g(x) as x → a means
that f/g approaches 1 as x→ a.

4.2. The basic splitting. Let D be a fundamental discriminant such that 22‖D.
Hence d := D/4 is squarefree and congruent to 3 mod 4. In that particular case (1)

simplifies into ZK = Z⊕Z
√
d. As already mentioned both the facts that D ∈ Fund+

and that D is divisible by some p ≡ 3 mod 4 imply that there is no unit with norm
−1. Hence T + U

√
d belongs to UK if and only if T 2 − dU2 = 1, hence (5) holds.

We construct a sequence of fundamental discriminants D = 4d with a large
ε(D) = εd by starting from

d = pm,

where p ≡ 3 mod 4 and m ≡ 1 mod 4 is squarefree. We keep in mind that m is
small compared to p, hence m is coprime with p.

For any squarefree integer m and any x ≥ 2 let

(15) Dm(x) :=
{

pm ; pm ∼ x, p ≥ 7, p ≡ 3 mod 4
}

.

Dirichlet’s Theorem on primes in arithmetic progressions directly implies

(16) #Dm(x) ∼ x

2m log(x/m)
,

as x→ ∞ uniformly for m ≤ √
x. We now introduce the following subset of Dm(x)

consisting of elements pm with a small εpm: for δ = δ(x) > 0, we consider

Dm(x, δ) :=
{

pm ; pm ∈ Dm(x), εpm ≤ (4pm)3−δ
}

.
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By counting solutions which may not be fundamental, we have the inequality
(17)
#Dm(x, δ) ≤ #

{

(p, T, U) ; T, U ≥ 1, T 2 − pmU2 = 1, T + U
√
pm ≤ (4pm)3−δ

}

.

We now want to apply Lemma 1 with the choice d = pm where m satisfies

(18) 2 ∤ m and µ2(m) = 1.

Let m1m2 = m be a decomposition of m. For

(19) η ∈ {±1, ±2}.
we consider the equation

(E(m1,m2, η)) m1U
2
1 − pm2U

2
2 = η.

By (17) and by the values of T appearing in (8) & (9) we get the inequality

#Dm(x, δ) ≤
∑

m1m2=m

∑

η=±1

#
{

(p, U1, U2) ;m1U
2
1 − pm2U

2
2 = η,

(20)

− 1 + 2m1U
2
1 + 2U1U2

√
pm ≤ (4pm)3−δ

}

+
∑

m1m2=m

∑

η=±2

#
{

(p, U1, U2) ;m1U
2
1 − pm2U

2
2 = η,

− 1 +m1U
2
1 + U1U2

√
pm ≤ (4pm)3−δ

}

.

We now want to simplify the above inequality, by studying the orders of magnitude
of the variables U1 and U2. The equation (E(m1,m2, η)) and the assumption p ≥ 7
in (15) imply that we have

1

2
m1U

2
1 ≤ pm2U

2
2 ≤ 2m1U

2
1 .

Multiplying these inequalities by m1 and using the assumption pm ∼ x we obtain:

(21)
1

2
m1U1x

− 1
2 ≤ U2 ≤ 2m1U1x

− 1
2 .

From the inequalities defining the sets in the right–hand side of (20) we deduce

U1U2
√
pm ≤ 64 (pm)3−δ,

which implies in turn

(22) U1U2 ≤ 400x
5
2
−δ .

Also note that (21) and (22) imply the inequalities

(23) U2 ≤ 30m
1
2

1 x
1− δ

2 and U1 ≤ 2m−1
1 x

1
2U2.

Returning to (20) and dropping the condition that p is prime we deduce the in-
equality

(24) #Dm(x, δ) ≤
∑

m1m2=m

∑

η=±1,±2

F (m1,m2, η),

where F (m1,m2, η) is the number of solutions to the congruence

(25) m1U
2
1 ≡ η mod m2U

2
2 ,
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where (U1, U2) is subject to (23). Let ρη,m1
(t) be the number of solutions to the

congruence

m1u
2 − η ≡ 0 mod t,

where η satisfies (19) andm1 is odd. The study of the function ρη,m1
(t) is classically

reduced to the study of ρη,m1
(pk). Since we always have (m1, η) = 1, in every case

one has ρη,m1
(2k) ≤ 4 and ρη,m1

(pk) ≤ 2 (k ≥ 1 and p ≥ 3). This leads to the
inequality

(26) ρη,m1
(t) ≤ 2 · 2ω(t) for any t ≥ 1.

Looking back at (24) we split the interval of variation of U1 into intervals of length
m2U

2
2 together with perhaps an incomplete one. Inserting (26) and noting that η

can take four distinct values we obtain the inequality

#Dm(x, δ) ≤ 8
∑

m1m2=m

∑

U2≤30m
1
2
1
x1− δ

2

2ω(m2U2)
(

2
x

1
2

m1m2U2
+ 1

)

≤ 16
x

1
2

m
Σ1 + 8Σ2,(27)

with

Σ1 :=
∑

m1m2=m

2ω(m2)
∑

U2≤30m
1
2
1
x1− δ

2

2ω(U2)

U2
,

and

Σ2 :=
∑

m1m2=m

2ω(m2)
∑

U2≤30m
1
2
1
x1− δ

2

2ω(U2).

It remains to apply techniques for summing multiplicative functions (recall that m
is squarefree). We obtain

Σ1 ≪
∑

m1m2=m

2ω(m2) log2 x≪ 3ω(m) log2 x,

and

Σ2 ≪ x1−
δ
2 log x

∑

m1m2=m

2ω(m2)m
1
2

1 =
(

x1−
δ
2 log x

)

m1/2
∑

m2|m

2ω(m2)

√
m2

,

≪κ κ
ω(m)m

1
2x1−

δ
2 log x,

for any fixed κ > 1. Putting everything together via (27) we have finally proved:

Proposition 3. For every κ > 1 there exists c(κ) > 0 such that the inequality

(28) #Dm(x, δ) ≤ c(κ)
(

3ω(m)m−1x
1
2 log2 x+ κω(m)m

1
2x1−

δ
2 log x

)

,

holds for every x ≥ 2, for every odd squarefree m ≤ √
x and for every δ = δ(x) ≥ 0.

Applying this proposition with m = 1 one instantly deduces:

Corollary 1. Let t 7→ ψ(t) be any increasing function of the variable t ≥ 1,
approaching infinity as t→ ∞. Then as x tends to infinity one has

#
{

p ≤ x ; p ≡ 3 mod 4, ε(4p) ≤ p3/(ψ(p) log4 p)
}

= o(x/(log x)).
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In other words, this corollary tells us that for almost every p ≡ 3 mod 4, the
regulator R(4p) of the field Q(

√
4p) is greater than (3 − ε) log p (where ε > 0 is

arbitrary). However Corollary 1 is not new: it is slightly weaker by a power of log p
than [10, Corollary 5] which was obtained by Golubeva via the theory of continued
fractions. In the statement of Corollary 1, it is possible to make the power of log p
decrease. It requires a better control of the function ρη,1(p) which can be achieved
by appealing to oscillations of some Legendre symbol. One essentially deduces the
fact that this ρ–function has mean value 1 as long as η 6= 1. Actually, requiring
that T + U

√
p be a fundamental solution to (PE(d)) is enough to reduce to this

case.

4.3. End of the proof of the lower bound in Theorem 1. Let γ be a constant
satisfying 0 ≤ γ ≤ 1/2. Let

(29) Dγ(x) :=
⋃

m

Dm(x),

where the union is taken over the integers m satisfying

(30) 1 ≤ m ≤ xγ , µ2(m) = 1 and m ≡ 1 mod 4.

Since the sets Dm(x) are pairwise disjoint (when m runs over the set of integers
satisfying (30)), we have the equality

#Dγ(x) =
∑

m satisfies (30)

# Dm(x).

Inserting (16), summing over m, and using the formula
∑

m≤y, m≡1 mod 4

µ2(m) ∼ 2

π2
y (y → ∞),

we deduce that for every γ0 > 0 and for x→ ∞, one has

(31) #Dγ(x) ∼ −
(

log(1− γ)

π2

)

x,

uniformly for γ0 ≤ γ ≤ 1/2.
Now we apply Proposition 3 and (31) with the choice γ = δ/4. Consider

E(x, δ) :=
⋃

m

(

Dm(x) \ Dm(x, δ)
)

,

where the union is taken over the indices m satisfying (30). Every element pm ∈
E(x, δ) is squarefree and congruent to 3 mod 4. Hence D := 4pm is a fundamental
discriminant and it satisfies the inequality εd = ε(D) ≥ D3−δ and the inequality
D ≤ 8x. Furthermore, because the sets Dm(x) appearing in the definition of E(x, δ)
are pairwise disjoint, one trivially has:

E(x, δ) = Dγ(x) \
(

⋃

m

Dm(x, δ)
)

,

where the union appearing on the right–hand side is a disjoint union. Therefore:

# E(x, δ) ≥ − (1− o(1)) log(1− δ/4)

π2
· x−O

(

x1−
δ
2 log x

∑

m≤xδ/4

(3/2)ω(m)m
1
2

)

≥ − (1− o(1)) log(1− δ/4)

π2
· x.
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This gives the first case of Theorem 1. Indeed note that since the argument
so far has only involved splittings of positive fundamental discriminants D of type
D/4 = d1d2 with d1 = m1 and d2 = pm2 (see (20)) and since m = m1m2 is a
divisor of D of very small size (see (30)), the condition on Φ(D) on the left–hand
side of (4) is automatically fulfilled for the particular D’s under consideration in
view of Proposition 1 or rather its explicit version Proposition 2.

4.4. Comments on the proof of Proposition 3. To obtain the inequality (24),
we have dropped the condition p prime. By sieve techniques it is possible to handle
this constraint. The upshot of this would consist in saving a power of log x in the
first term of the right–hand side of (28). This improvement does not seem to affect
the exponent 3− δ in the statement of (4).

A more promising way to improve this exponent is to apply a better treatment
of the congruence (25) in small intervals. After a classical expansion via Fourier
techniques we would be led to bound the general exponential sum

∑ ∑

m1m2=m

∑

U2≤30m
1
2 x1− δ

2

∑

U1 mod m2U
2
2

m1U
2
1≡η mod m2U

2
2

∑

1≤|h|≤
m1m2x

−
1
2 U1+ε

2

exp
(

2πıh
U1

m2U2
2

)

.

5. Proof of the remaining cases

5.1. The case D divisible by 8. In that case, for d := D/4, we still have K :=

Q(
√
D) = Q(

√
d) and ZK = Z ⊕ Z

√
d. However, contrary to the case 22‖D, the

fact that D ∈ Fund+ is no longer guaranteed which means that the negative Pell
equation T 2 − dU2 = −1 may be solvable.

Since we are only dealing with discriminants in Fund+ we are led to modify (15):

Dm(x) :=
{

pm ; 2pm ∼ x, p ≡ 3 mod 4
}

,

hence D ∈ Dm(x) implies D ∈ Fund+. We shall consider these sets form squarefree
and congruent to 1 mod 4. The proof of Theorem 1 is essentially the same in this
case.

5.2. The case D odd. In that case D is squarefree and congruent to 1 mod 4,

write d := D. Then K = Q(
√
D), we have ZK = {a+b

√
d

2 ; a, b ∈ Z, a ≡ b mod 2}.
Hence the study of the fundamental unit of K is reduced to the question of finding
the smallest non trivial solution to the equation

T 2 − dU2 = ±4.

As above, we can ensure the equation T 2−dU2 = −4 has no integral solution (thus
D ∈ Fund+) by imposing d to be divisible by some p ≡ 3 mod 4. To deal with the
equation T 2 − dU2 = 4 we appeal to a variant of Lemma 1 that we state without
proof.

Lemma 2. Let d and U be positive integers such that 2 ∤ d. Define A(d, U) as in
Lemma 1. Set

Ã(d, U) := {T ≥ 1 ; T 2 − dU2 = 4},
and

B̃(d, U) :=
{

(d1, d2, U1, U2) ∈ N4
≥1 ; U1U2 = U, d1d2 = d, d1U

2
1 − d2U

2
2 = 4

}

.
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Then we have

(32) Ã(d, U) = 2 · A(d, U/2) if 2 | U,
and

(33) # Ã(d, U) = # B̃(d, U) ∈ {0, 1} if 2 ∤ U.

We are led to modify (15) in the following way:

Dm(x) :=
{

pm ; pm ∼ x, p ≡ 3 mod 4
}

.

We shall consider these sets for m squarefree and congruent to 3 mod 4. Thanks
to Lemma 2 the proof of Theorem 1 in this last case is once more essentially the
same.

The proof of Theorem 1 is now complete.

Remark 1. The “algebraic interpretation” provided by Proposition 1 and trans-
lated by the condition on the function Φ in (4) relies heavily on the assumption that
for the D’s under consideration the fundamental unit ε(D) has norm 1 (see §3).
With notation as in §3 and (8), (9) and (14), if |F∞| = 1 (i.e. ε(D) has norm −1)
then necessarily (d1, d2) = (D/(4, D), 1). Indeed d = D/(4, D) is the norm of the

algebraic integer ε(D)
√
d. Gauss’s Theorem on the 2-rank of CD still applies and

shows that the only two divisors of D′ among norms of integral principal ideals
generated by totally positive elements are 1 and d. Moreover since ε(D) has norm
−1 the groups PQ(

√
D) and P

+

Q(
√
D)

coincide.

Therefore no integral principal ideal has norm dividing D′ and different from 1
and d.

Remark 2. One may wonder why neglecting the contribution of positive funda-
mental discriminants with fundamental unit of negative norm has such little influ-
ence on the difficulty of showing the lower bound (4). This comes from the fact that
the set of fundamental discriminants with fundamental unit of norm −1 is negligi-
ble. More precisely the number of special discriminants (i.e. positive fundamental
discriminants only divisible by 2 or primes congruent to 1 modulo 4) up to X is
asymptotic to c ·X(logX)−1/2, where c is an absolute constant (see [7, §1] and the
references therein).

6. Proof of Theorem 2

Our starting point is the following well known class number formula (see [1,
Prop.5.6.9, p.262], for instance)

(34) h(D) =
L(1, χD)

2R(D)

√
D,

where D is a positive fundamental discriminant and L(s, χD) is the Dirichlet L–
function associated to the Kronecker symbol χD =

(

D
·
)

L(s, χD) :=

∞
∑

n=1

χD(n)n−s (ℜs > 1).

Recall the classical upper bound

(35) L(1, χ) ≪ log(q + 1),
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which holds for any non principal Dirichlet character χ modulo q > 1. To prove
Theorem 2 we have to study the sum

Σ(x) :=
∑

D≤x
22‖D

h(D),

and prove the inequality

(36) Σ(x) ≤
( 8

21π2
C0 − δ

) x
3
2

log x
,

for sufficiently large x. Define the two positive valued functions

κ(D) := R(D)/ logD , ξ(D) := L(1, χD)
√
D

and

(37) Σ̃(x) :=
∑

D≤x
22‖D

ξ(D)

κ(D)
.

Hence, by (34) and by partial summation, we see that (36) can be deduced from
the inequality

(38) Σ̃(x) ≤ 2
( 8

21π2
C0 − 2δ

)

x
3
2 ,

for sufficiently large x.
Let γ, η and η′ be small positive numbers and let E(x) be the set of indices over

which the summation (37) is performed. We write any D ∈ E(x) under the form
D = 4d. Hence D ∈ E(x) if and only if d ∈ F(x) where

(39) F(x) := {d ; µ2(d) = 1, d ≡ 3 mod 4 and d ≤ x/4}.
We now consider two disjoint subsets of F(x) defined as follows:

F1(x) := {d ∈ F(x) ; κ(4d) ≤ 7

4
− η′},

F2(x) := {d ∈ F(x) ; κ(4d) >
7

4
− η′, d = pm, pm ∼ x/8, p ≡ 3 mod 4,

m ≡ 1 mod 4, m ≤ xγ } .

We denote by G(x) the complement of F1(x) ∪ F2(x) in F(x). Let us then use the
condition κ(4d) ≤ (7/4)+η to split further F2(x) into the partition F+

2 (x)∪F−
2 (x)

where:

F−
2 (x) := {d ∈ F2(x) ; κ(4d) ≤

7

4
+η} and F+

2 (x) := {d ∈ F2(x) ; κ(4d) >
7

4
+η} .

Using this decomposition we split the sum Σ̃(x) accordingly:

(40) Σ̃(x) = σF1
(x) + σF−

2

(x) + σF+

2

(x) + σG(x) ,

where each term on the right–hand side is a sum over the corresponding obvious
subset of F(x) we have just defined. To upper bound σF1

(x) we use [4, Theorem
1] which asserts that for any ε > 0 one has

#{(D, εD);D non square , 2 ≤ D ≤ x, εD ≤ D
1
2
+α } = Oε(x

α
3
+ 7

12
+ε) ,
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uniformly for α ≥ 0 and x ≥ 2. Together with (5) the above formula (with the
choices ε = η′/12 and α = 5/4− η′) implies:

#F1(x) ≪γ x
1−η′/4.

Hence by the inequality κ(4d) ≥ 1
2 (see (2)) and by (35), we deduce the inequality

(41) σF1
(x) ≪ x

3
2
− η′

4 log x.

By (28), we also know that

#F−
2 (x) ≪ x1−

η
10 ,

with the choice γ = η/10. Hence, as for the proof of (41), we deduce that

(42) σF−

2

(x) ≪ x
3
2
− η

10 log x.

Next note the following easy inequality, consequence of the definitions of the sets
F+

2 (x), F−
2 (x) and G(x):

σF+

2

(x) + σG(x) ≤
1

7/4 + η

∑

d∈F+

2
(x)

ξ(4d) +
1

7/4− η′

∑

d∈G(x)
ξ(4d) .

Set

(43) F̃2(x) := {d ; d = pm, µ2(d) = 1, pm ∼ x/8, m ≤ xγ ,

p ≡ 3 mod 4,m ≡ 1 mod 4 }.

From the inclusion F1(x) ∪ F2(x) ⊃ F̃2(x) one deduces
∑

d∈F1(x)∪F2(x)

ξ(4d) ≥
∑

d∈F̃2(x)

ξ(4d) .

Combining the last two inequalities with the following obvious facts:
∑

d∈G(x)
ξ(4d) =

∑

d∈F(x)

ξ(4d)−
∑

d∈F1(x)∪F2(x)

ξ(4d) ,

∑

d∈F+

2
(x)

ξ(4d) 6
∑

d∈F̃2(x)

ξ(4d)

we deduce the inequality

(44) σF+

2

(x) + σG(x) ≤
1

7/4− η′

∑

d∈F(x)

ξ(4d)− η + η′

(7/4 + η)(7/4− η′)

∑

d∈F̃2(x)

ξ(4d) .

It remains to evaluate each of the two sums in (44). To that end we state and prove
two lemmas, the most classical of which is the following:

Lemma 3. As y → ∞, one has

∑

d≤y
d≡3 mod 4

µ2(d)L(1, χ4d)
√
d ∼ 4C0

3π2
y

3
2 .
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Proof. Let A1(y) be the sum we want to evaluate. By the properties of the Kro-
necker symbol, we have the equality

A1(y) =
∑

d≤y
d≡3 mod 4

µ2(d)
√
d

∑

n≥1, 2∤n

(

d
n

)

n
,

that now involves a Legendre symbol. By the fact that the sum over n varying in
any interval of length 4d of the symbols

(

4d
n

)

equals zero, we can express, using
partial summation, the above infinite series as a finite sum with a small enough
error term:

∑

n≥1, 2∤n

(

d
n

)

n
=

y2

∑

n≥1, 2∤n

(

d
n

)

n
+O(y−1),

uniformly for d ≤ y. Inserting this equality in the definition of A1(y) and splitting
the sum according to whether n is a square or not, we get the equality

(45) A1(y) = MT1(y) + Err1(y) +O(y
1
2 ) .

In the above equality the sum MT1(y) which will appear as the main term, is the
following

(46) MT1(y) :=
∑

d≤y
d≡3 mod 4

∑

1≤t≤y
(t,2d)=1

µ2(d)

√
d

t2
,

whereas Err1(y) is defined by

(47) Err1(y) :=
∑

d≤y
d≡3 mod 4

∑

1≤n≤y2

2∤n, n 6=�

µ2(d)

√
d

n

(

d

n

)

.

We first consider Err1(y). We want to prove that it behaves as an error term.
More precisely we want to show:

(48) Err1(y) = o(y
3
2 ) (y → ∞).

To do so, we split the double sum in (47) in O(log2 y) subsums Err1(D,N) where
the sizes of d and n are controlled:

(49) Err1(D,N) :=
∑

d∼D
d≡3 mod 4

∑

n∼N
2∤n, n 6=�

µ2(d)

√
d

n

(

d

n

)

,

with D ≤ y/2 and N ≤ y2/2. Our purpose is to prove that in all these cases we
have

(50) Err1(D,N) = O(y
3
2 log−3 y).

Of course the trivial bound is Err1(D,N) ≪ D
3
2 . Hence (50) is proved for any

(D,N) such that D ≤ y log−2 y. Thus for the rest of the proof we suppose that

(51) D > y log−2 y.

The sum Err1(y) is a particular case of double sum of Legendre or Kronecker
symbols which is nowadays quite common in analytic number theory. For instance,
we have ([6, Prop.10]):
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Lemma 4. For every A > 0, there exists c(A) > 0, such that, for every bounded
complex sequences (αm) and (βn), for every M and N satisfying the inequalities

M , N ≥ max(2, logA(MN)) one has the inequality
∣

∣

∣

∑

m∼M

∑

n∼N

αmβnµ
2(2m)µ2(2n)

(m

n

)∣

∣

∣
≤ c(A) ‖(α)‖∞ ‖(β)‖∞MN log−

A
2 (MN).

However in the definition (49) of Err1(D,N), the variable n is not squarefree. To
circumvent this difficulty we decompose n = ℓ2n′ where now n′ is squarefree and we
consider two cases. Either ℓ ≤ N

1
4 and we apply Lemma 4 where the parameters

M and N respectively have the values D and Nℓ−2. Or ℓ > N
1
4 and we apply the

trivial bound. Summing over ℓ, choosing a big enough A in Lemma 4 and appealing
to (51), we finally deduce the inequality

Err1(D,N) ≪ D
3
2 log−10(DN) ≪ y

3
2 log−3 y ,

which holds uniformly for N ≥ log100 y. Hence we have also proved (50) in that
case. Combining with (51), it remains to prove (50) in the case where D is large
and N is small:

(52) D ≥ y log−2 y and N ≤ log100 y.

We shall now benefit from the oscillations of the character d 7→
(

d
n

)

when d runs
over squarefree integers d ≡ 3 mod 4 as follows. Our argument uses the following
rather standard lemma, which can be found in [20, formula (1)].

Lemma 5. The following equality

∑

n≤x
n≡ℓ mod k

µ2(n) =
6

π2

∏

p|k

(

1− 1

p2

)−1x

k
+O(x

1
2 ),

holds uniformly for x ≥ 2, k ≥ 1 and ℓ coprime with k.

Applying Lemma 5 to each of the reduced classes ℓ modulo 4n such that ℓ ≡
3 mod 4 and summing over these ℓ, we obtain the equality

(53)
∑

d≤y
d≡3 mod 4

µ2(d)

(

d

n

)

= O(ny
1
2 ).

Integrating by part and summing over n ∼ N , we easily see that (50) also holds
under the condition (52). As a conclusion the proof of (48) is now complete.

We now deal with MT1(y). From Lemma 5 we deduce that for any given A > 0
the formula

∑

d≤z
(d,t)=1, d≡3 mod 4

µ2(d) ∼ 2

π2

∏

p|t

(

1 +
1

p

)−1

z,

holds as z → ∞ uniformly for t odd satisfying t ≤ zA. By a partial summation and
comparison with an integral we have

∑

d≤z
(d,t)=1,d≡3 mod 4

µ2(d)
√
d ∼ 4

3π2
·
∏

p|t

(

1 +
1

p

)−1

z
3
2 .
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Inserting this formula in the definition (46) and summing over every odd t ≤ y
yields:

MT1(y) ∼
4

3π2
y

3
2

∑

2∤t

t−2
∏

p|t

(

1 +
1

p

)−1

.

The above infinite series admits an expansion as an Euler product

(54) MT1(y) ∼
4

3π2

∏

p≥3

(

1 +
p

(p+ 1)2(p− 1)

)

y
3
2 =

4C0

3π2
y

3
2 .

Putting together (45), (48) and (54) we complete the proof of Lemma 3.
�

The second lemma we need in order to evaluate the sums in (44) is the following.

Lemma 6. Let 0 < γ < 1/2 and, for any y > 0, let F̃2(y) be defined as in (43).
Then there exists c(γ) > 0, such that as y → ∞ one has

∑

d∈F̃2(y)

L(1, χ4d)
√
d ∼ c(γ)y

3
2 .

Furthermore, for every 1/4 > γ0 > 0, the above asymptotics is uniform for γ0 ≤
γ ≤ 1

2 − γ0.

Proof. The proof is very similar to the proof of Lemma 3. The main difference
being that (53) is replaced by the following consequence of the classical Siegel–
Walfisz Theorem

(55)
∑

m≡1 mod 4
m≤xγ

µ2(d)
∑

p≡3 mod 4
p∼D/m

(pm

n

)

= OA(
√
nD log−AD),

which holds for any constant A > 0. Note that the upper bound contained in (55)

is only interesting if n ≤ log2AD. This exactly fits the constraint we have on the
summation over n (see (52)).

The corresponding main term will have the shape (see (46))

∑

m≤xγ

m≡1 mod 4

µ2(m)
√
m

∑

p∼x/(8m)
p≡3 mod 4

√
p

∑

t,(t,2pm)=1

1

t2
.

Inverting summations, we first sum over p (where we use a variant of (16)), then
over m and finally over t, as in the proof of (54). We note in passing that c(γ)
could be given an explicit value. �

6.1. End of the proof of Theorem 2 and remarks. Putting together the def-
inition (40), the equalities (41), (42) and (44) and the lemmas 3 and 6 (with the
choice γ = η/10), we get the inequality

Σ̃(x) ≤
{ 4C0

3π2(7/4− η′)
(1 + o(1))− (η + η′)c(η/10)

(7/4 + η)(7/4− η′)
(1− oη(1))

}

x
3
2 + oη,η′(x

3
2 ).

Now fix η = 1/10. Then by fixing a very small η′ > 0 the above upper bound can
be written

Σ̃(x) ≤ K0x
3
2 ,
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for sufficiently large x and for some fixed K0 satisfying the inequality

K0 >
16C0

21π2
.

This proves (38) hence (36) and completes the proof of Theorem 2.

We now discuss the influence of the different results about the size of ε(D) we
have used on the sum we have studied. If our only input is the trivial lower bound
ε(D) ≥ 2

√
D (see (2)), we cannot get anything better than

(56)
∑

D≤x
22‖D

h(D) ≤ 4C0

3π2

x
3
2

log x
,

for every positive δ.
Using [4, Theorem 1] has enabled us to improve the multiplicative coefficient in

the above upper bound by the factor 3.5. Finally the purpose of our Proposition 3
has been to improve the inequality (56) by some factor slightly larger than 3.5.

6.2. A consequence of Corollary 1. A natural question is to ask for some upper
bound on average for the class number h(D) when D is essentially prime. So we
consider the sum

S(x) :=
∑

p≤x
p≡3 mod 4

h(4p).

By techniques very similar to those presented in the beginning of §6 and the trivial
bound ε(4p) ≥ 2

√
p, we can prove that we have the trivial asymptotic inequality

S(x) ≤
(1

2
+ o(1)

) x
3
2

log2 x
.

When appealing instead to (12), we improve this upper bound by a factor 2. Finally,
Corollary 1 improves by a factor 6 the trivial asymptotic inequality. More precisely
we get the following result the proof of which easily follows from Corollary 1 and
is left to the reader.

Corollary 2. As x→ ∞, one has the inequality

S(x) ≤
( 1

12
+ o(1)

) x
3
2

log2 x
.
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