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We prove that there is a positive density of positive fundamental discriminants D such that the fundamental unit ε(D) of the ring of integers of the field Q( √ D) is essentially greater than D 3 .

Introduction

Let D > 1 be a fundamental discriminant which means that D is the discriminant of the quadratic field K := Q( √ D). Let Z K be its ring of integers and let ω =

D+ √ D 2
. Then Z K is a Z-module of rank 2

(1)

Z K = Z ⊕ Z ω.
Furthermore there exists a unique element ε(D) > 1 such that the group U K of invertible elements of Z K has the shape

U K = {± ε(D) n ; n ∈ Z}.
The element ε(D) is called the fundamental unit of Z K and its logarithm R(D) := log ε(D) is called the regulator. The regulator R(D) is a central object of algebraic number theory. For instance R(D) plays a role in the computation of the class number (see (34)). The study of the properties of the unruly function D → R(D) is a fascinating problem in both theoretical and computational aspects (see [START_REF] Cohen | A course in computational algebraic number theory[END_REF] for instance).

A rather similar, but not completely equivalent problem -see the discussion in §5 -is the study of the fundamental solution ε d to the so-called Pell equation

(P E(d)) T 2 -dU 2 = 1 ,
where the parameter d is a non square positive integer and the unknown is the pair (T, U ) of integers. It is convenient to write any given solution of (P E(d)) under the form T + U √ d. Let ε d be the least of these solutions greater than 1. Then the set of solutions of (P E(d)) is infinite and also has the shape {± ε n d ; n ∈ Z}. It is known that there exists an absolute constant C, such that the following inequalities hold

(2) √ D < ε(D) ≤ exp(C √ D log D) and 2 √ d < ε d ≤ exp(C √ d log d).
It is widely believed that most of the time ε(D) and ε d are huge in absolute value compared to the size of D or d, and this fact is confirmed by numerical evidence.

One can find more precise conjectures ( [START_REF] Hooley | On the Pellian equation and the class number of indefinite binary quadratic forms[END_REF] & [START_REF] Sarnak | Class numbers of indefinite binary quadratic forms II[END_REF], for instance) which would imply in particular that for all ε > 0 the inequality

(3) ε d ≥ exp(d 1 2 -ε ),
holds for almost all non square d (and for almost all fundamental discriminants D, since these D form a subset of positive density). Recall that a subset A of positive integer is said to have a positive density if its counting function satisfies the inequality

lim inf # {a ∈ A ; 1 ≤ a ≤ x} x > 0 (x → ∞).
The set A is said to be negligible (or with zero density) if one has

lim sup # {a ∈ A ; 1 ≤ a ≤ x} x = 0 (x → ∞).
Since a proof of (3) still seems to be out of reach, it is a challenging problem to construct infinite sequences of fundamental discriminants D (resp. of non square d) with a huge ε(D) (resp. with a huge ε d ). In the case of fundamental discriminants D, it is now proved that there exists c > 1, such that the inequality ε(D) > exp(log c D) is true for infinitely many D's: see [START_REF] Yamamoto | Real quadratic number fields with large fundamental units[END_REF], [START_REF] Reiter | Effective lower bounds on large fundamental units of real quadratic fields[END_REF], [START_REF] Halter-Koch | Reell-quadratische Zahlkörper mit grosser Grundeinheit[END_REF], ...

In the case of a non square d the situation is better understood. Indeed we know that for some positive c there exists infinitely many d's such that ε d > exp(d c ). We refer the reader to the pioneering work of Dirichlet [START_REF] Lejeune-Dirichlet | Sur une propriété des formes quadratiques à déterminant positif, G. Lejeune Dirichlet's Werke[END_REF] leading to the optimality of [START_REF] Cremona | Some density results for negative Pell equations; an application of graph theory[END_REF], and to more recent work on the subject: for instance [23, p.74 & 85], [5, Theorem 2],... See also [START_REF] Golubeva | On the lengths of the periods of a continued fraction expansion of quadratic irrationalities and on the class numbers of real quadratic fields[END_REF] for the study of the case d = 5p 2 . However none of these works manages to produce an infinite family of squarefree d's.

Besides it is not known whether there exists a constant c > 1 such that the inequality ε d ≥ exp(log c d) holds for a positive density of d's. So we may ask for the frequency of weaker inequalities such as ε d > d θ , or ε(D) > D θ , where θ > 1/2 is a fixed constant. In that direction, Hooley [START_REF] Hooley | On the Pellian equation and the class number of indefinite binary quadratic forms[END_REF]Corollary] proved that for almost every d, one has ε d > d The same work of Hooley implies that there exists a positive density of d satisfying ε d > d 3 2 / log d. By a complete different technique, based on the theory of continued fractions, Golubeva [START_REF] Golubeva | On the Pellian equation[END_REF]Theorem] constructed a set of d's of positive density, such that ε d ≥ d 2-ε (ε > 0 arbitrary). It does not seem to be an easy task to extend these two results to the case of a fundamental D, because the condition for an integer to be squarefree seems hard to insert in the corresponding proofs of Hooley and Golubeva.

Our main result asserts that there is a positive density of positive fundamental discriminants D with fundamental unit of size essentially larger than D 3 . In fact we can say more: first we show it is enough to consider the contribution of positive fundamental discriminants with fundamental unit of positive norm to get our density estimate. Moreover we can further restrict our study to positive fundamental discriminants D that satisfy a very specific divisibility property. This property is of an algebraic nature. To explain precisely what it is we state the following proposition the first version of which goes back (at least) to Dirichlet (see the beginning of §3 for historical background and references).

If D > 1 is a fundamental discriminant set D ′ =      D , if D is odd , D/2 , if D = 4d , d ≡ 3 mod 4 , D/4 , if 8 | D .
In other words D ′ is the kernel of D. Finally let Fund + denote the set of fundamental discriminants D > 1 such that ε(D) has norm 1. Let Φ be the function on Fund + sending D to the minimum of the two distinct divisors of D ′ the existence of which is guaranteed by Proposition 1. With notation as above our main result can be stated as follows.

Theorem 1. For every δ > 0 there exists x 0 (δ) > 0 and c 0 (δ) > 0 such that

(4) # D ∈ Fund + ; X < D ≤ 2X, 2 2 D, Φ(D) < D δ , ε(D) ≥ D 3-δ ≥ c 0 (δ)X,
for every X > x 0 (δ).

Similar statements are true when the condition 2 2 D in the set on the left-hand side is replaced by 8 | D, or D ≡ 1 mod 4.

We shall mainly concentrate on the case 2 2 D since the situation is simplified a lot thanks to an easy link between units of Q( √ D) and the equation (P E(D/4)) via the equality ( 5)

ε(D) = ε D/4 .
Proposition 1 can naturally be seen as a feature of the algebraic interpretation of the transformation of Legendre and Dirichlet we describe in §2.1. We devote §3 to the proof of this statement. The proof of (4) in Theorem 1 is given in §4. The cases 8 | D and D odd will be treated in §5.

The last part of the paper explains another application of the ideas leading to Theorem 1. It is well known that any information on the size of ε(D) can be interpreted in terms of the ordinary class number h(D) of the field Q( √ D). Among the various possible illustrations, we have selected the following one.

Theorem 2. Let C 0 denote the converging Euler product:

C 0 := p≥3 1 + p (p + 1) 2 (p -1)
.

There exists a constant δ > 0 such that for every sufficiently large x one has the inequality

(6) D≤x 2 2 D h(D) ≤ 8 21π 2 C 0 -δ x 3 2 log x .
The proof of this theorem is essentially based on [START_REF] Fouvry | Size of regulators and consecutive square-free numbers[END_REF] and Proposition 3. It will be given in §6, where we will explain why the inequality [START_REF] Fouvry | The parity of the period of the continued fraction of √ d[END_REF] is better than the trivial upper bound by some constant factor strictly larger than 3.5. We shall also use in a crucial way the fact that the set of D's with a large ε(D) exhibited in Theorem 1 has some regularity. More precisely, up to a few exceptions this set consists in integers of the form pm with p large (see (29) for the definition of D γ m (x)). However, the inequality ( 6) is certainly far from giving a crucial step towards the proof of the following expected asymptotic formula

D≤x 2 2 D h(D) ∼ c 0 x log 2 x,
where x tends to infinity and c 0 is some absolute positive constant.
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Strategy of the proof

2.1. Legendre & Dirichlet's transformation. In this subsection d denotes any positive integer, not necessarily a fundamental discriminant. We describe and use an easy transformation of the Pell equation (P E(d)), which was initiated by Legendre [14, Chap. VII, p.61-74] and then extended by Dirichlet [15, §1]. For the sake of completeness, we give the detail of Legendre's argument. For a more detailed presentation together with historical background and interpretations of this technique we refer to [START_REF] Lemmermeyer | Higher descent on Pell conics.I[END_REF]. See also [13, p.109 

T 2 -1 d = U 2 . Since d | T 2 -1, we have d = (T 2 -1, d) = ((T + 1)(T -1), d).
Because the gcd (T + 1, T -1) can only take the values 1 or 2, we are led to consider the two corresponding cases:

• If T + 1 and T -1 are coprime (i.e. T is even), we factorize

d = (T + 1, d)(T -1, d) =: d 1 d 2 ,
in a unique way. Combining this splitting of d with (7) yields the four equations

T + 1 = d 1 U 2 1 , T -1 = d 2 U 2 2 , d = d 1 d 2 , U = U 1 U 2 , which are equivalent to (8) d 1 U 2 1 -d 2 U 2 2 = 2, T = -1 + d 1 U 2 1 , d = d 1 d 2 , U = U 1 U 2 , 2 ∤ d 1 U 1 .
• If 2 = (T + 1, T -1), two subcases are to be considered:

• either 4 ∤ d in which case U is even and the equation ( 7) can be written as

((T + 1)/2) • ((T -1)/2) d = (U/2) 2 .
Arguing as in the previous case, we are reduced to considering the following set of equations:

(9) d 1 U 2 1 -d 2 U 2 2 = 1, T = -1 + 2d 1 U 2 1 , d = d 1 d 2 , U = 2U 1 U 2 , 4 ∤ d,
• or 4 | d in which case we can write [START_REF] Fouvry | On the negative Pell equation[END_REF] as follows:

((T + 1)/2) • ((T -1)/2) (d/4) = U 2 .
We factorize d/4 = ((T + 1)/2, d/4)((T -1)/2, d/4) =: d 1 d 2 and get the set of equations ( 10)

d 1 U 2 1 -d 2 U 2 2 = 1, T = -1 + 2d 1 U 2 1 , d = 4d 1 d 2 , U = U 1 U 2 .
The following statement summarizes the above decomposition in a more concise and applicable way.

Lemma 1. (Legendre & Dirichlet) Let d, U ∈ N ≥1 be fixed integers. Set A(d, U ) := {T ≥ 1 ; T 2 -dU 2 = 1}
and,

• if 2 ∤ dU : B(d, U ) := (d 1 , d 2 , U 1 , U 2 ) ∈ N 4 ≥1 ; U 1 U 2 = U, d 1 d 2 = d, d 1 U 2 1 -d 2 U 2 2 = 2 ,
• if 2 | dU and 4 ∤ d:

B(d, U ) := (d 1 , d 2 , U 1 , U 2 ) ∈ N 4 ≥1 ; 2U 1 U 2 = U, d 1 d 2 = d, d 1 U 2 1 -d 2 U 2 2 = 1 , • if 4 | d: B(d, U ) := (d 1 , d 2 , U 1 , U 2 ) ∈ N 4 ≥1 ; U 1 U 2 = U, 4d 1 d 2 = d, d 1 U 2 1 -d 2 U 2 2 = 1 , Then in each case, we have #A(d, U ) = #B(d, U ) ∈ {0, 1}.
Proof. The proof follows from several observations. The first one is obvious: #A(d, U ) ∈ {0, 1}. We give the detail of the rest of the argument only in the first case, the other two cases being exactly similar.

Our second observation is: #B(d, U ) ∈ {0, 1}. To see this we fix (d 1 , d 2 , U 1 , U 2 ) a quadruple in B(d, U ) and we show that the values of d 1 , U 1 are prescribed by those of d, U . We compute the square of

d 1 U 2 1 -1 = d 2 U 2 2 +1: it is (d 1 U 2 1 -1)(d 2 U 2 2 +1) = dU 2 + 1. Thus d 1 U 2 1 -1 is determined by d, U and so is the gcd (d 1 U 2 1 , d). We claim this gcd is d 1 . Indeed (d 1 , d 2 ) = 1 since these integers satisfy d 1 U 2 1 -d 2 U 2 2 = 2 and 2 ∤ dU . Thus if (d 1 U 2 1 , d) = d 1 ,
there is a non trivial common factor q to U 1 and d 2 . Again using the equation satisfied by (d 1 , d 2 , U 1 , U 2 ) we deduce q = 2, contradicting the condition 2 ∤ dU .

To conclude the proof we observe that both the implications

#A(d, U ) = 1 ⇒ #B(d, U ) ≥ 1 , and #B(d, U ) = 1 ⇒ #A(d, U ) ≥ 1 ,
hold. The first implication is just a way of rephrasing the reduction step explained before the statement of the lemma. To prove the second implication we notice that a quadruple (d

1 , d 2 , U 1 , U 2 ) gives rise to an element T := d 2 U 2 2 + 1 = d 1 U 2 1 -1 belonging to A(d, U ). 2.2. Remarks on Lemma 1. The first remark concerns the implicit decomposi- tion (d, T, U ) → (d 1 , d 2 , U 1 , U 2 )
of Lemma 1 which should really be seen as a square rooting process. This explains the efficiency of the method as a tool to study the size of the solutions to the Pell equation (P E(d)). More precisely, a solution T + U √ d to (P E(d)) produces via Lemma 1 the algebraic integer

√ d 1 U 1 + √ d 2 U 2
which has degree at most 4 (and at least 2, when d is not a square) over Q and which satisfies

d 1 U 1 + d 2 U 2 2 = d 1 U 2 1 + d 2 U 2 2 + 2 d 1 d 2 U 1 U 2 . If T is odd this is precisely T + U √ d. If T is even, this number is 2(T + U √ d).
Therefore Lemma 1 enables us to significantly reduce the order of magnitude of the algebraic integers we work with.

The second remark concerns the special case where d = p ≡ ±1 mod 4. In that case the integer d has only two decompositions d = d 1 d 2 with (d 1 , d 2 ) = (1, p) or (p, 1). Hence the study of the equation T 2 -pU 2 = 1 is reduced to the four equations

U 2 1 -pU 2 2 = ±2 if 2 ∤ U, ±1 if 2 | U.
Since U 2 ≥ 1, we deduce that U 1 ≥ √ p -2 and also that in every case, one has the

inequality U ≥ √ p -2. Hence any non trivial solution Ξ = T + U √ p of the Pell equation T 2 -pU 2 = 1, satisfies the inequality Ξ = pU 2 + 1 + U √ p ≥ p(p -2) + 1 + p(p -2) ≥ p.
In particular this shows that the fundamental solution ε p of (P E(p)) satisfies the inequality (11) ε p > p.

For p ≡ 3 mod 4 we deduce the lower bound

(12) ε(4p) > p , for the fundamental unit of Q( √ 4p). If the general case of the equation T 2 -dU 2 =
1, the corresponding fundamental solution is greater than 2 √ d and this bound is essentially best possible, as the choice d = n 2 -1 shows.

As E.P. Golubeva pointed out to us, the lower bound [START_REF] Golubeva | On the Pellian equation[END_REF] which is certainly already in the literature, can be deduced from properties of the continued fraction expansion of √ p. For instance, by [START_REF] Perron | Die Lehre von den Kettenbrüchen[END_REF]Satz 14,p.94], we know that if the non square integer d is such that the period k of the expansion of √ d is even then it has the shape

√ d = [b 0 ; b 1 , • • • , b ν-1 , b ν , b ν-1 , • • • , b 1 , 2b 0 ],
where b 0 is the integral part of √ d, the central coefficient b ν of index ν := k/2 either equals b 0 or b 0 -1 or is less than (2/3)b 0 , and where any b ℓ , 1 ≤ ℓ < ν, is less than (2/3)b 0 . If d is divisible by some prime congruent to 3 mod 4 it is well known that the associated integer k is even. In the particular case where d = p ≡ 3 mod 4 we even know that b ν = b 0 or b 0 -1 (see [10, p.1277] 

T 0 + U 0 √ d of (P E(d)) satisfies T 0 U 0 = [b 0 ; b 1 , • • • , b ν-1 , b ν , b ν-1 , • • • , b 1 ] .
We deduce from the above discussion that in the case d = p ≡ 3 mod 4 one has

U 0 ≥ b ν ≥ b 0 -1 ≥ √ p -2.
This gives [START_REF] Golubeva | On the Pellian equation[END_REF].

Proof of Proposition 1

This result has been known for a long time. Dirichlet (see [15, §5]) was the first to solve the question of the uniqueness of the decomposition

d = d 1 d 2 (or d = 4d 1 d 2 )
appearing in ( 8), ( 9) and [START_REF] Golubeva | The class numbers of real quadratic fields of discriminatnt 4p, (Russian) Zap[END_REF] but without, of course, using the language of modern algebraic number theory. We reprove this uniqueness result for squarefree d in passing in §3.1. For a statement using the language of binary quadratic forms see [START_REF] Pall | Discriminantal divisors of binary quadratic forms[END_REF] where the author notes that the result at issue essentially follows from a theorem due to Gauss (see the references in [START_REF] Pall | Discriminantal divisors of binary quadratic forms[END_REF]). We refer the reader to [17, Th. 3.3 and the discussion that follows] for more on this subject. (Note however that in loc. cit. the statement of Theorem 3.3 contains a minor typo. One should allow the right-hand side of the equation to be negative since, e. g., the set of integral solutions (r, s) to each of the two equations pr 2s 2 = 1 and pr 2s 2 = 2 is empty if p ≡ 7 mod 8.) 3.1. Applying Gauss's Theorem on the 2-rank of C D . Let D ∈ Fund + . We denote by Cl D (resp. C D ) the group of ideal classes of Z Q( √ D) in the ordinary (resp. narrow) sense. Let p i , 1 ≤ i ≤ t, be the pairwise distinct prime divisors of D. These primes are precisely the ones ramifying in

Z Q( √ D) . For each 1 ≤ i ≤ t, let p i be the prime ideal of Z Q( √ D) above p i . Let us define: (13) M = {p δ1 1 • • • p δt t ; δ i ∈ {0, 1} for all i} . It is exactly the set of integral ideals of norm dividing D ′ .
Let S be the subgroup of the group of fractional ideals of Z Q( √ D) generated by the prime ideals p i , 1 ≤ i ≤ t. Of course M is a subset of S. Moreover a well known result of Gauss (see e. g. [8, Chap. V, Th. 39]) asserts that the narrow class map:

ν : S → C D , induces a surjection S/S 2 → C D /C 2 D
, whose kernel has order 2 and where, if G is an abelian group, G 2 denotes its subgroup of squares.

One deduces that each class in C D /C 2 D has exactly two representatives in M . In particular the image under the narrow class map of

P + Q( √ D) := { fractional principal ideals of Z Q( √ D)
generated by a totally positive element } , 9) depending on whether T is even or odd.

which
-In case we are led to (8) (i.e. T is even) the integer 2d

1 > 1 is a divisor of D ′ thus the ideal I is (d 1 U 1 + U 2 √ d).
Indeed the norm of the algebraic integer

d 1 U 1 + U 2 √ d is 2d 1 > 0 (note that √ dU 1 + U 2 d 2 has norm -2d 2 < 0). -Otherwise T is odd hence U is even. Therefore, as explained in §2.2, ε(D) = T + U √ d is the square of the algebraic integer √ d 1 U 1 + √ d 2 U 2 .
We deduce d 1 > 1 since otherwise this algebraic integer would be a unit (it would have norm 1) of Z Q( √ D) contradicting the minimality of ε(D). Thus one also has

I = (d 1 U 1 + √ d U 2 ), the element d 1 U 1 + √ d U 2 having norm d 1 > 0.
• The second case we consider is D ≡ 1 mod 4. For convenience and to unify the notation we set in that case d := D. We may write ε(D) = T /2 + (U/2) √ d where T ≡ U mod 2. If T and U are both even we argue as in the previous case (note that by reducing modulo 4 we see that T /2 has to be odd). Otherwise T and U are both odd and satisfy T 2 -dU 2 = 4. Mimicking the transformation of Legendre and Dirichlet described in §2.1 (see also Lemma 2) one easily gets factorizations into coprime integers

d = d 1 d 2 , U = U 1 U 2 , such that (14) d 1 U 2 1 -d 2 U 2 2 = 4, T = -2 + d 1 U 2 1 . Therefore the integral principal ideal (d 1 U 1 /2+U 2 √ d/2) (note that both d 1 U 1 and U 2 are odd) is generated by an element of norm d 1 > 0. To see that this ideal is I it is enough to prove that d 1 > 1. Indeed if by contradiction d 1 = 1 then (U 1 /2) √ d 1 + (U 2 /2) √ d 2 would be a unit of Z Q( √ D)
the square of which equals ε(D) contradicting the minimality of the fundamental unit.

• Finally let us consider the case where D = 4d, d ≡ 2 mod 4. As in the first case the fundamental unit may be written ε(D) = T + U √ d. From the norm equation T 2 -dU 2 = 1 we deduce that T is odd and U is even i.e. the transformation of Legendre and Dirichlet leads to [START_REF] Golubeva | On the lengths of the periods of a continued fraction expansion of quadratic irrationalities and on the class numbers of real quadratic fields[END_REF]. As in the first case one easily shows that

I = (d 1 U 1 + √ d U 2 )
. However what we want to understand is how (the narrow classes of) the elements of

P Q( √ D) := { fractional principal ideals of Z Q( √ D) } ⊃ P + Q( √ D)
are represented in M . It turns out (see e. g. [7, (6)]) that one has a short exact sequence

1 → F ∞ → C D → Cl D → 1 ,
where F ∞ has order at most 2. It is straightforward from the definitions that d) we easily deduce the construction of the fourth suitable ideal. Indeed in the decomposition of (a √ d) as a product of prime ideals, the p i 's are the only prime ideals that may appear. Reducing the exponent of each p i appearing modulo 2 we get a principal ideal (recall that p 2 j = (p j ) for each j) the norm of which divides D ′ . Clearly this ideal is different from ( 1 3.2. Remarks on Proposition 1 and its proof. Among the constraints defining the sets on the left-hand side of (4) one may object that there is some redundancy in imposing both the conditions D ∈ Fund + and 2 2 D. However the norm of the fundamental unit is of course no longer automatically positive in the cases D odd or 8 | D.

|F ∞ | = [P Q( √ D) : P + Q( √ D 
On a different note it is well known that a statement analogous to Proposition 1 could be given in the case where D is a negative fundamental discriminant. The situation is even simpler then since in that case the notions of class group in the ordinary and narrow sense coincide. However, to simplify the exposition and because the case of imaginary quadratic fields is outside the scope of this paper, we prefer not to include the case D < 0 in the statement of Proposition 1.

Finally, in view of the above proof of Proposition 1, we see that the integer Φ(D) can be given explicitly via the Legendre-Dirichlet transformation. Indeed we deduce from the above proof the following explicit version of Proposition 1. If N denotes the norm map relative to the extension

Q( √ 3)/Q, one easily checks that N ( √ 3) = -3 , N (1 + √ 3) = -2 , N (3 + √ 3) = 6 .
In the notation of the Legendre-Dirichlet transformation the maximum of the absolute values of the three norms above is 2d 1 = 6. Moreover Φ(12) = 2 and one notices as expected the identity among ideals:

( √ 3) • (3 + √ 3) = (3) • (1 + √ 3) ,
which is congruent to (1 + √ 3) modulo squares (i.e. modulo S 2 in the notation of the proof of Proposition 1).

This example contains even more information. Not only does it show that d is not in general the maximum of the four divisors of D ′ among the norms of integral principal ideals, but also that at most one of the other three divisors is larger than d. Otherwise, in view of Proposition 2, we would have 2d Notation. The letter p is reserved for prime numbers. The Möbius function is denoted by µ, the number of distinct prime divisors of the integer n is ω(n), the cardinality of the set of primes p ≤ x which are congruent to a mod q is denoted by π(x; q, a). The condition n ∼ N means that the variable n has to satisfy the inequalities N < n ≤ 2N . As it shall not lead to confusion the symbol ∼ will also be used in the usual sense: if f, g are two functions of the real variable x defined on a neighborhood of a on which g does not vanish, f (x) ∼ g(x) as x → a means that f /g approaches 1 as x → a. consisting of elements pm with a small ε pm : for δ = δ(x) > 0, we consider

D m (x, δ) := pm ; pm ∈ D m (x), ε pm ≤ (4pm) 3-δ .
By counting solutions which may not be fundamental, we have the inequality

(17) # D m (x, δ) ≤ # (p, T, U ) ; T, U ≥ 1, T 2 -pmU 2 = 1, T + U √ pm ≤ (4pm) 3-δ .
We now want to apply Lemma 1 with the choice d = pm where m satisfies (18) 2 ∤ m and µ 2 (m) = 1.

Let m 1 m 2 = m be a decomposition of m. For [START_REF] Perron | Die Lehre von den Kettenbrüchen[END_REF] η ∈ {±1, ±2}.

we consider the equation [START_REF] Lemmermeyer | Higher descent on Pell conics.I[END_REF] and by the values of T appearing in ( 8) & ( 9) we get the inequality

(E(m 1 , m 2 , η)) m 1 U 2 1 -pm 2 U 2 2 = η. By
# D m (x, δ) ≤ m1m2=m η=±1 # (p, U 1 , U 2 ) ; m 1 U 2 1 -pm 2 U 2 2 = η, (20) 
-1 + 2m 1 U 2 1 + 2U 1 U 2 √ pm ≤ (4pm) 3-δ + m1m2=m η=±2 # (p, U 1 , U 2 ) ; m 1 U 2 1 -pm 2 U 2 2 = η, -1 + m 1 U 2 1 + U 1 U 2 √ pm ≤ (4pm) 3-δ .
We now want to simplify the above inequality, by studying the orders of magnitude of the variables U 1 and U 2 . The equation (E(m 1 , m 2 , η)) and the assumption p ≥ 7 in ( 15) imply that we have

1 2 m 1 U 2 1 ≤ pm 2 U 2 2 ≤ 2m 1 U 2 1 .
Multiplying these inequalities by m 1 and using the assumption pm ∼ x we obtain:

(21) 1 2 m 1 U 1 x -1 2 ≤ U 2 ≤ 2m 1 U 1 x -1 2 .
From the inequalities defining the sets in the right-hand side of (20) we deduce

U 1 U 2 √ pm ≤ 64 (pm) 3-δ , which implies in turn (22) U 1 U 2 ≤ 400 x 5 2 -δ .
Also note that ( 21) and ( 22) imply the inequalities

(23) U 2 ≤ 30 m 1 2 1 x 1-δ 2 and U 1 ≤ 2m -1 1 x 1 2 U 2 .
Returning to [START_REF] Prachar | Über die kleinste quadratfreie Zahl einer arithmetischen Reihe[END_REF] and dropping the condition that p is prime we deduce the inequality

(24) # D m (x, δ) ≤ m1m2=m η=±1, ±2 F (m 1 , m 2 , η),
where F (m 1 , m 2 , η) is the number of solutions to the congruence

(25) m 1 U 2 1 ≡ η mod m 2 U 2 2 ,
where (U 1 , U 2 ) is subject to [START_REF] Zagier | Zetafunktionen und quadratische Körper. Eine Einführung in die höhere Zahlentheorie[END_REF]. Let ρ η,m1 (t) be the number of solutions to the congruence m 1 u 2η ≡ 0 mod t, where η satisfies ( 19) and m 1 is odd. The study of the function ρ η,m1 (t) is classically reduced to the study of ρ η,m1 (p k ). Since we always have (m 1 , η) = 1, in every case one has ρ η,m1 (2 k ) ≤ 4 and ρ η,m1 (p k ) ≤ 2 (k ≥ 1 and p ≥ 3). This leads to the inequality

(26) ρ η,m1 (t) ≤ 2 • 2 ω(t) for any t ≥ 1.
Looking back at [START_REF] Yamamoto | Real quadratic number fields with large fundamental units[END_REF] we split the interval of variation of U 1 into intervals of length m 2 U 2 2 together with perhaps an incomplete one. Inserting (26) and noting that η can take four distinct values we obtain the inequality

# D m (x, δ) ≤ 8 m1m2=m U2≤30 m 1 2 1 x 1-δ 2 2 ω(m2U2) 2 x 1 2 m 1 m 2 U 2 + 1 ≤ 16 x 1 2 m Σ 1 + 8Σ 2 , (27) with 
Σ 1 := m1m2=m 2 ω(m2) U2≤30 m 1 2 1 x 1-δ 2 2 ω(U2) U 2 ,
and

Σ 2 := m1m2=m 2 ω(m2) U2≤30 m 1 2 1 x 1-δ 2 2 ω(U2) .
It remains to apply techniques for summing multiplicative functions (recall that m is squarefree). We obtain

Σ 1 ≪ m1m2=m 2 ω(m2) log 2 x ≪ 3 ω(m) log 2 x, and 
Σ 2 ≪ x 1-δ 2 log x m1m2=m 2 ω(m2) m 1 2 1 = x 1-δ 2 log x m 1/2 m2|m 2 ω(m2) √ m 2 , ≪ κ κ ω(m) m 1 2 x 1-δ 2 log x,
for any fixed κ > 1. Putting everything together via (27) we have finally proved:

Proposition 3. For every κ > 1 there exists c(κ) > 0 such that the inequality

(28) # D m (x, δ) ≤ c(κ) 3 ω(m) m -1 x 1 2 log 2 x + κ ω(m) m 1 2 x 1-δ 2 log x ,
holds for every x ≥ 2, for every odd squarefree m ≤ √ x and for every δ = δ(x) ≥ 0.

Applying this proposition with m = 1 one instantly deduces:

Corollary 1. Let t → ψ(t) be any increasing function of the variable t ≥ 1, approaching infinity as t → ∞. Then as x tends to infinity one has

# p ≤ x ; p ≡ 3 mod 4, ε(4p) ≤ p 3 /(ψ(p) log 4 p) = o(x/(log x)).
In other words, this corollary tells us that for almost every p ≡ 3 mod 4, the regulator R(4p) of the field Q( √ 4p) is greater than (3ε) log p (where ε > 0 is arbitrary). However Corollary 1 is not new: it is slightly weaker by a power of log p than [10, Corollary 5] which was obtained by Golubeva via the theory of continued fractions. In the statement of Corollary 1, it is possible to make the power of log p decrease. It requires a better control of the function ρ η,1 (p) which can be achieved by appealing to oscillations of some Legendre symbol. One essentially deduces the fact that this ρ-function has mean value 1 as long as η = 1. Actually, requiring that + U √ p be a fundamental solution to (P E(d)) is enough to reduce to this case. Since the sets D m (x) are pairwise disjoint (when m runs over the set of integers satisfying (30)), we have the equality

# D γ (x) = m satisfies (30) # D m (x).
Inserting [START_REF] Lejeune-Dirichlet | Sur une propriété des formes quadratiques à déterminant positif, G. Lejeune Dirichlet's Werke[END_REF], summing over m, and using the formula m≤y, m≡1 mod 4

µ 2 (m) ∼ 2 π 2 y (y → ∞),
we deduce that for every γ 0 > 0 and for x → ∞, one has

(31) # D γ (x) ∼ - log(1 -γ) π 2 x,
uniformly for γ 0 ≤ γ ≤ 1/2. Now we apply Proposition 3 and (31) with the choice γ = δ/4. Consider

E(x, δ) := m D m (x) \ D m (x, δ) ,
where the union is taken over the indices m satisfying (30). Every element pm ∈ E(x, δ) is squarefree and congruent to 3 mod 4. Hence D := 4pm is a fundamental discriminant and it satisfies the inequality ε d = ε(D) ≥ D 3-δ and the inequality D ≤ 8x. Furthermore, because the sets D m (x) appearing in the definition of E(x, δ) are pairwise disjoint, one trivially has:

E(x, δ) = D γ (x) \ m D m (x, δ) ,
where the union appearing on the right-hand side is a disjoint union. Therefore:

# E(x, δ) ≥ - (1 -o(1)) log(1 -δ/4) π 2 • x -O x 1-δ 2 log x m≤x δ/4 (3/2) ω(m) m 1 2 ≥ - (1 -o(1)) log(1 -δ/4) π 2 • x.
This gives the first case of Theorem 1. Indeed note that since the argument so far has only involved splittings of positive fundamental discriminants D of type D/4 = d 1 d 2 with d 1 = m 1 and d 2 = pm 2 (see [START_REF] Prachar | Über die kleinste quadratfreie Zahl einer arithmetischen Reihe[END_REF]) and since m = m 1 m 2 is a divisor of D of very small size (see (30)), the condition on Φ(D) on the left-hand side of ( 4) is automatically fulfilled for the particular D's under consideration in view of Proposition 1 or rather its explicit version Proposition 2.

4.4. Comments on the proof of Proposition 3. To obtain the inequality [START_REF] Yamamoto | Real quadratic number fields with large fundamental units[END_REF], we have dropped the condition p prime. By sieve techniques it is possible to handle this constraint. The upshot of this would consist in saving a power of log x in the first term of the right-hand side of (28). This improvement does not seem to affect the exponent 3δ in the statement of [START_REF] Fouvry | Size of regulators and consecutive square-free numbers[END_REF].

A more promising way to improve this exponent is to apply a better treatment of the congruence (25) in small intervals. After a classical expansion via Fourier techniques we would be led to bound the general exponential sum

m1m2=m U2≤30 m 1 2 x 1-δ 2 U1 mod m2U 2 2 m1U 2 1 ≡η mod m2U 2 2 1≤|h|≤ m1m2x -1 2 U 1+ε 2 exp 2πıh U 1 m 2 U 2 2 .
5. Proof of the remaining cases 5.1. The case D divisible by 8. In that case, for d := D/4, we still have

K := Q( √ D) = Q( √ d) and Z K = Z ⊕ Z √ d.
However, contrary to the case 2 2 D, the fact that D ∈ Fund + is no longer guaranteed which means that the negative Pell equation T 2 -dU 2 = -1 may be solvable.

Since we are only dealing with discriminants in Fund + we are led to modify (15):

D m (x) := pm ; 2pm ∼ x, p ≡ 3 mod 4 ,
hence D ∈ D m (x) implies D ∈ Fund + . We shall consider these sets for m squarefree and congruent to 1 mod 4. The proof of Theorem 1 is essentially the same in this case.

5.2. The case D odd. In that case D is squarefree and congruent to 1 mod 4, write d := D.

Then K = Q( √ D), we have Z K = { a+b √ d 2 ; a, b ∈ Z, a ≡ b mod 2}.
Hence the study of the fundamental unit of K is reduced to the question of finding the smallest non trivial solution to the equation

T 2 -dU 2 = ±4.
As above, we can ensure the equation T 2 -dU 2 = -4 has no integral solution (thus D ∈ Fund + ) by imposing d to be divisible by some p ≡ 3 mod 4. To deal with the equation T 2 -dU 2 = 4 we appeal to a variant of Lemma 1 that we state without proof. 

:= (d 1 , d 2 , U 1 , U 2 ) ∈ N 4 ≥1 ; U 1 U 2 = U, d 1 d 2 = d, d 1 U 2 1 -d 2 U 2 2 = 4 .
Then we have

(32) Ã(d, U ) = 2 • A(d, U/2) if 2 | U, and (33) 
# Ã(d, U ) = # B(d, U ) ∈ {0, 1} if 2 ∤ U.
We are led to modify [START_REF] Lejeune-Dirichlet | Einige neue Sätze über unbestimmte Gleichungen, G. Lejeune Dirichlet's Werke[END_REF] in the following way:

D m (x) := pm ; pm ∼ x, p ≡ 3 mod 4 .
We shall consider these sets for m squarefree and congruent to 3 mod 4. Thanks to Lemma 2 the proof of Theorem 1 in this last case is once more essentially the same.

The proof of Theorem 1 is now complete.

Remark 1. The "algebraic interpretation" provided by Proposition 1 and translated by the condition on the function Φ in (4) relies heavily on the assumption that for the D's under consideration the fundamental unit ε(D) has norm 1 (see §3).

With notation as in §3 and ( 8), ( 9) and ( 14 Remark 2. One may wonder why neglecting the contribution of positive fundamental discriminants with fundamental unit of negative norm has such little influence on the difficulty of showing the lower bound (4). This comes from the fact that the set of fundamental discriminants with fundamental unit of norm -1 is negligible. More precisely the number of special discriminants (i.e. positive fundamental discriminants only divisible by 2 or primes congruent to 1 modulo 4) up to X is asymptotic to c • X(log X) -1/2 , where c is an absolute constant (see [7, §1] and the references therein).

Proof of Theorem 2

Our starting point is the following well known class number formula (see [1, Prop.5.6.9, p.262], for instance) It remains to evaluate each of the two sums in (44). To that end we state and prove two lemmas, the most classical of which is the following: When appealing instead to [START_REF] Halter-Koch | Reell-quadratische Zahlkörper mit grosser Grundeinheit[END_REF], we improve this upper bound by a factor 2. Finally, Corollary 1 improves by a factor 6 the trivial asymptotic inequality. More precisely we get the following result the proof of which easily follows from Corollary 1 and is left to the reader. 

3 2

 3 -ε . This was improved to ε d > d

7 4

 7 -ε by the authors [4, Corollary 1] (ε > 0 arbitrary).

Proposition 1 .

 1 For every D ∈ Fund + there exists exactly two distinct positive divisors of D ′ , both different from 1 and D/(4, D), among the set of norms of principal ideals of Z Q( √ D) .

  is the trivial class of C D /C 2 D , has two representatives in M . These representatives are (1) and a non trivial ideal I ∈ M . By definition of M the norm of I divides D ′ . Besides it is easily seen that the norm of I is not D/(4, D). Indeed if by contradiction the norm of I were D/(4, D) then, since I ∈ M , the ideal I would be principal and equal to (D/(4, D)). However D ∈ Fund + and (D/(4, D)) is generated by an element of negative norm. Thus (D/(4, D)) cannot be a representative of the trivial coset C 2 D of C D /C 2 D . It turns out the ideal I can be described explicitly thanks to the Legendre-Dirichlet transformation. To see this let us analyse each case separately. • Assume first that D = 4d, d ≡ 3 mod 4. The fundamental unit of Q( √ D) may be written ε(D) = T + U √ d. Applying the transformation described in §2.1 to the norm equation T 2 -dU 2 = 1 leads either to (8) or (

  ) ]. Moreover one knows that |F ∞ | = 2 if and only if ε(D) has norm 1 (see the discussion following [7, (6)] and the references therein). Since we have assumed D ∈ Fund + we have [P Q( √ D) : P + Q( √ D) ] = 2 and the above discussion then implies that P Q( √ D) has four representatives in M . We can even argue in a completely explcit way: P Q( √ D) is the disjoint union of two left cosets with respect to the subgroup P + Q( √ D) . We have exhibited two elements ((1) and I =: (a)) in the trivial coset. In the non trivial coset obviously lies the ideal ( √ d): the algebraic integer √ d has norm -d dividing D ′ . Using (a) and ( √

  ), (a) and ( √ d). (We can deduce more: since both I and ( √ d) are elements of M and since d differs from D ′ by at most a factor 2 then either the norm d of I = (a) divides d and therefore the norm of the "fourth" ideal is d/ d or d is even and the norm of the fourth ideal is 4d/ d.) In terms of the Legendre-Dirichlet transformation and besides (1) and I = (a) the ideals ( √ d) and ( √ d U 1 + d 2 U 2 ) (or ( √ d (U 1 /2) + d 2 U 2 /2) in the case d = D ≡ 1 mod 4) are representatives of P Q( √ D) in M . Of these four integral principal ideals one has norm 1 and one has norm d, the norms of the other two are d 1 and d 2 (or 2d 1 and 2d 2 in the case where D = 4d, d ≡ 3 mod 4, and the coordinate T of the fundamental unit ε(D) = T + U √ d is even) respectively. This concludes the proof of Proposition 1.

Proposition 2 .Example 1 .

 21 Let D ∈ Fund + and d := D/(4, D). Let d = d 1 d 2 be the coprime factorization of d obtained by applying (8), (9) or (14) to the norm equation satisfied by the fundamental unit ε(D). Then Φ(D) = min(2d 1 , 2d 2 ) if D = 4d, d ≡ 3 mod 4, T ≡ 0 mod 2 , min(d 1 , d 2 ) otherwise , where in the first case ε(D) = T + U √ d. Note that we easily deduce from the proposition that Φ(D) < √ D and that, unless D = 4d, d ≡ 3 mod 4 and the coordinate T of the fundamental unit ε(D) = T + U √ d is even, one even has Φ(D) < √ d. Assuming D ∈ Fund + one might get the intuitive idea that among the four integral principal ideals of norm dividing D ′ , the ideal ( √ d) is the one with norm of maximal absolute value. Of course this is true if the norms of the four ideals in question divide d which is always the case unless D = 4d, d ≡ 3(mod4), and ε(D) = T + U √ d with T even. However this intuitive idea is not necessarily true in the latter situation. Consider the case D = 12. Thus D ′ = 6 and d = 3.

4 .

 4 1 ≥ d and 2d 2 ≥ d. Since d = d 1 d 2 ≡ 3 mod 4 this implies d = 3. This corresponds to D = 12 in which case, as shown above, d 2 = 1. Proof of Theorem 1 when 2 2 D 4.1.

4. 2 .

 2 The basic splitting. Let D be a fundamental discriminant such that 2 2 D. Hence d := D/4 is squarefree and congruent to 3 mod 4. In that particular case (1) simplifies into Z K = Z⊕Z √ d. As already mentioned both the facts that D ∈ Fund + and that D is divisible by some p ≡ 3 mod 4 imply that there is no unit with norm -1. Hence T + U √ d belongs to U K if and only if T 2 -dU 2 = 1, hence (5) holds. We construct a sequence of fundamental discriminants D = 4d with a large ε(D) = ε d by starting from d = pm, where p ≡ 3 mod 4 and m ≡ 1 mod 4 is squarefree. We keep in mind that m is small compared to p, hence m is coprime with p. For any squarefree integer m and any x ≥ 2 let (15) D m (x) := pm ; pm ∼ x, p ≥ 7, p ≡ 3 mod 4 . Dirichlet's Theorem on primes in arithmetic progressions directly implies (16) # D m (x) ∼ x 2m log(x/m) , as x → ∞ uniformly for m ≤ √ x. We now introduce the following subset of D m (x)

4. 3 .

 3 End of the proof of the lower bound in Theorem 1. Let γ be a constant satisfying 0 ≤ γ ≤ 1/2. Let (29) D γ (x) := m D m (x), where the union is taken over the integers m satisfying (30) 1 ≤ m ≤ x γ , µ 2 (m) = 1 and m ≡ 1 mod 4.

Lemma 2 .

 2 Let d and U be positive integers such that 2 ∤ d. Define A(d, U ) as in Lemma 1. Set Ã(d, U ) := {T ≥ 1 ; T 2 -dU 2 = 4}, and B(d, U )

  ), if |F ∞ | = 1 (i.e. ε(D) has norm -1) then necessarily (d 1 , d 2 ) = (D/(4, D), 1). Indeed d = D/(4, D) is the norm of the algebraic integer ε(D) √ d. Gauss's Theorem on the 2-rank of C D still applies and shows that the only two divisors of D ′ among norms of integral principal ideals generated by totally positive elements are 1 and d. Moreover since ε(D) has norm -1 the groups P Q( √ D) and P + Q( √ D) coincide. Therefore no integral principal ideal has norm dividing D ′ and different from 1 and d.

4 . 3 2 -η ′ 4

 434 D is a positive fundamental discriminant and L(s, χ D ) is the Dirichlet Lfunction associated to the Kronecker symbolχ D = D • L(s, χ D ) := ∞ n=1 χ D (n) n -s (ℜs > 1).Recall the classical upper bound (35)L(1, χ) ≪ log(q + 1), uniformly for α ≥ 0 and x ≥ 2. Together with (5) the above formula (with the choices ε = η ′ /12 and α = 5/4η ′ ) implies:# F 1 (x) ≪ γ x 1-η ′ /Hence by the inequality κ(4d) ≥ 1 2 (see (2)) and by (35), we deduce the inequality(41) σ F1 (x) ≪ x log x.By (28), we also know that# F - 2 (x) ≪ x 1-η 10 ,with the choice γ = η/10. Hence, as for the proof of (41), we deduce that Next note the following easy inequality, consequence of the definitions of the sets F + 2 (x), F - 2 (x) and G(x):σ F + 2 (x) + σ G (x) F2 (x) := {d ; d = pm, µ 2 (d) = 1, pm ∼ x/8, m ≤ x γ , p ≡ 3 mod 4, m ≡ 1 mod 4 }.From the inclusion F 1 (x) ∪ F 2 (x) ⊃ F2 (x) one deducesd∈F1(x)∪F2(x) ξ(4d) ≥ d∈ F2(x)ξ(4d) .Combining the last two inequalities with the following obvious facts: ) -η + η ′ (7/4 + η)(7/4η ′ ) d∈ F2(x) ξ(4d) .

Lemma 3 .mod 4 µ 2 ∼ 4C 0 3π 2 y> 16C 0 21π 2 . 4 ,

 342224 As y → ∞, one has d≤y d≡3 (d)L(1, χ 4d ) √ dfor sufficiently large x and for some fixed K 0 satisfying the inequality K 0 This proves (38) hence (36) and completes the proof of Theorem 2.We now discuss the influence of the different results about the size of ε(D) we have used on the sum we have studied. If our only input is the trivial lower bound ε(D) ≥ 2 √ D (see (2)), we cannot get anything better than Theorem 1] has enabled us to improve the multiplicative coefficient in the above upper bound by the factor 3.5. Finally the purpose of our Proposition 3 has been to improve the inequality (56) by some factor slightly larger than 3.5.6.2. A consequence of Corollary 1.A natural question is to ask for some upper bound on average for the class number h(D) when D is essentially prime. So we consider the sum S(x) := p≤x p≡3 mod 4 h(4p).

  By techniques very similar to those presented in the beginning of §6 and the trivial bound ε(4p) ≥ 2 √ p, we can prove that we have the trivial asymptotic inequality

Corollary 2 .

 2 As x → ∞, one has the inequality

  ). Note that this last property is false if d ≡ 3 mod 4 is not a prime. Consider for instance

	√	15 = [3; 1, 6].
	Classical properties of continued fraction expansions of quadratic integers imply that if √ d has even period k = 2ν, the fundamental solution

which holds for any non principal Dirichlet character χ modulo q > 1. To prove Theorem 2 we have to study the sum Σ(x) := Hence, by (34) and by partial summation, we see that (36) can be deduced from the inequality

for sufficiently large x.

Let γ, η and η ′ be small positive numbers and let E(x) be the set of indices over which the summation (37) is performed. We write any D ∈ E(x) under the form D = 4d. Hence D ∈ E(x) if and only if d ∈ F(x) where We now consider two disjoint subsets of F(x) defined as follows:

We denote by G(x) the complement of F 1 (x) ∪ F 2 (x) in F(x). Let us then use the condition κ(4d) ≤ (7/4) + η to split further F 2 (x) into the partition F + 2 (x) ∪ F - 2 (x) where:

Using this decomposition we split the sum Σ(x) accordingly:

where each term on the right-hand side is a sum over the corresponding obvious subset of F(x) we have just defined. To upper bound σ F1 (x) we use [4, Theorem 1] which asserts that for any ε > 0 one has

Proof. Let A 1 (y) be the sum we want to evaluate. By the properties of the Kronecker symbol, we have the equality

that now involves a Legendre symbol. By the fact that the sum over n varying in any interval of length 4d of the symbols 4d n equals zero, we can express, using partial summation, the above infinite series as a finite sum with a small enough error term:

uniformly for d ≤ y. Inserting this equality in the definition of A 1 (y) and splitting the sum according to whether n is a square or not, we get the equality

2 ) . In the above equality the sum MT 1 (y) which will appear as the main term, is the following

whereas Err 1 (y) is defined by

We first consider Err 1 (y). We want to prove that it behaves as an error term. More precisely we want to show:

2 ) (y → ∞).

To do so, we split the double sum in (47) in O(log 2 y) subsums Err 1 (D, N ) where the sizes of d and n are controlled:

with D ≤ y/2 and N ≤ y 2 /2. Our purpose is to prove that in all these cases we have

Of course the trivial bound is Err 1 (D, N ) ≪ D The sum Err 1 (y) is a particular case of double sum of Legendre or Kronecker symbols which is nowadays quite common in analytic number theory. For instance, we have ([6, Prop.10]): Lemma 4. For every A > 0, there exists c(A) > 0, such that, for every bounded complex sequences (α m ) and (β n ), for every M and N satisfying the inequalities M , N ≥ max(2, log A (M N )) one has the inequality

However in the definition (49) of Err 1 (D, N ), the variable n is not squarefree. To circumvent this difficulty we decompose n = ℓ 2 n ′ where now n ′ is squarefree and we consider two cases. Either ℓ ≤ N We shall now benefit from the oscillations of the character d → d n when d runs over squarefree integers d ≡ 3 mod 4 as follows. Our argument uses the following rather standard lemma, which can be found in [20, formula (1)].

Lemma 5. The following equality

2 ), holds uniformly for x ≥ 2, k ≥ 1 and ℓ coprime with k.

Applying Lemma 5 to each of the reduced classes ℓ modulo 4n such that ℓ ≡ 3 mod 4 and summing over these ℓ, we obtain the equality (53)

Integrating by part and summing over n ∼ N , we easily see that (50) also holds under the condition (52). As a conclusion the proof of ( 48) is now complete. We now deal with MT 1 (y). From Lemma 5 we deduce that for any given A > 0 the formula

holds as z → ∞ uniformly for t odd satisfying t ≤ z A . By a partial summation and comparison with an integral we have

Inserting this formula in the definition (46) and summing over every odd t ≤ y yields:

.

The above infinite series admits an expansion as an Euler product

Putting together (45), ( 48) and (54) we complete the proof of Lemma 3.

The second lemma we need in order to evaluate the sums in (44) is the following.

Lemma 6. Let 0 < γ < 1/2 and, for any y 0, let F2 (y) be defined as in (43). Then there exists c(γ) > 0, such that as y → ∞ one has

Furthermore, for every 1/4 > γ 0 > 0, the above asymptotics is uniform for γ 0 ≤ γ ≤ 1 2γ 0 . Proof. The proof is very similar to the proof of Lemma 3. The main difference being that (53) is replaced by the following consequence of the classical Siegel-Walfisz Theorem (55)

which holds for any constant A > 0. Note that the upper bound contained in (55) is only interesting if n ≤ log 2A D. This exactly fits the constraint we have on the summation over n (see (52)). The corresponding main term will have the shape (see (46))

Inverting summations, we first sum over p (where we use a variant of ( 16)), then over m and finally over t, as in the proof of (54). We note in passing that c(γ) could be given an explicit value.