Jean-Michel Hufflen

Languages for bibliography styles

Keywords: Bibliographies, bibliography styles, BibT E X, software quality, bst, natbib, jurabib, and latexbib, Tib, XML, XSLT, nbst, Perl, DSSSL

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Three decades ago,1 some programming languages were designed to be universal, that is, to serve all purposes. All of these languages -e.g., PL/1 [25], Ada [START_REF]ANSI: The Programming Language Ada ® Reference Manual[END_REF] -have failed to be accepted as filling this role. Nowadays, only the C programming language [START_REF] Kernighan | The C Programming Language[END_REF] is still used for a very wide range of applications. Present-day programming languages are very diverse and put different paradigms into action: procedural programming, object-oriented programming, functional programming, process-oriented programming, logic programming, . . . In addition, most of these present languages are specialised, that is, designed for particular purposes, even if they are not formally limited to only one class of applications: two good examples are Java [28] and C# [START_REF]Microsoft C# Specifications[END_REF], originally designed for client-server applications. But, if you are building a standalone application using the object-oriented paradigm and are especially interested in the efficiency of the resulting program, it is well-known that a better choice is C ++ [START_REF] Stroustrup | The C ++ Programming Language[END_REF], even if code generated by Java and C# compilers have greatly improved since their first versions.

The purpose of this article is neither a comparison of all programming languages -which would be impossible -nor an absolute comparison of several programming languages -which would not be of interest -but a comparative study of languages used to develop bibliography styles. BibT E X [START_REF] Patashnik | Part of the BibT E X distribution[END_REF] is the bibliography processor most commonly used in conjunction with the L A T E X word processor [START_REF] Mittelbach | The L A T E X Companion[END_REF], so most of the bibliography styles used for L A T E X texts are written using bst, the stack-based language of BibT E X [40, § 13.6]. But other proposals exist, based on other programming paradigms, and this article aims to study the advantages and drawbacks of these approaches. We will not discuss the typographical conventions ruling the typesetting of bibliographiesreaders interested in this topic can consult manuals like [5, § 10], [6, § § 15.54-15.76], [16, pp. 53-54]but are interested only in the development of bibliography styles -from scratch or derived from other existing styles -and the expressive power of languages used to do that.

In Section 2, we recall the main quality factors of software, and show which factors are interesting from a point of view related to bibliography styles. Then BibT E X is studied in Section 3, including some modern use of this program. Other approaches are based on XML, 2 as shown in Section 4. This experience of dealing with several ways to develop bibliography styles has influenced the design of MlBibT E Xfor 'MultiLingual BibT E X', our multilingual reimplementation of BibT E X [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF]: we explain that in Section 5. Reading this article requires only a basic knowledge of BibT E X and a little experience about bibliography styles; we think that our examples should be understandable, 3 even if readers do not know thoroughly the languages used throughout this article.

Criteria

Of course, this section does not aim to replace a textbook about software quality, we just make precise the terminology we use. Then we explain how these notions are applied to bibliography styles.

General point of view

The main reference for the terminology used in software quality is the beginning of [START_REF] Meyer | Object-Oriented Software Construction[END_REF], as recalled in most works within this topic. [START_REF] Meyer | Object-Oriented Software Construction[END_REF]Ch. 1] clearly distinguishes external quality factors, that may be detected by users of a product, and internal factors, that are only perceptible to computer professionals. Here are the main external quality factors: correctness the ability of software products to exactly perform their tasks, as defined by the requirements and specification; robustness the ability of software systems to work even in abnormal conditions; extendability the ease with which products may be adapted to changes of specifications; reusability the ability of products may be combined with others; others being efficiency, portability, verifiability, integrity, ease of use, etc. Internal quality factors include modularity, legibility, maintainability, etc. The factors related to modularity are studied more precisely in [START_REF] Meyer | Object-Oriented Software Construction[END_REF]Ch. 2], they include: modular decomposability the ability for a problem to be decomposed into subproblems; modular composability the ability for modules to be combined freely with each other; modular understandability each module can be separately understood by a human reader; modular continuity a small change in a problem specification results in a change of just a module or few modules. 4

3 Complete texts may be downloaded from MlBibT E X's home page: http://lifc.univ-fcomte.fr/~hufflen/texts/ mlbibtex/hc-styles/. 4 This terminology is related to mathematical analysis: a function is continuous if a small change in the argument will yield a small change in the result.

Tasks of a bibliography processor

Given citation keys -stored in an .aux file when a source text is processed by L A T E X [START_REF] Mittelbach | The L A T E X Companion[END_REF]Fig. 12.1] -a bibliography processor searches bibliography database files for resources associated with these keys, performs a sort operation on bibliographical items, 5and arranges them according to a bibliography style, the result being a source file for a 'References' section, suitable for a word processor. So does BibT E X.

Roughly speaking, a bibliography has to do two kinds of tasks:

• some are related to 'pure' programming, e.g., sorting bibliographical items, while

• others are related to put markup, in order for the word processor to be able to typeset the bibliography of a printed work.

The extendability of such a tool concerns these two kinds of tasks. On the one hand, we should be able to add a new relation order for sorting bibliographical items, since these lexicographical orders are language-dependent [START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF]. On the other hand, we should be able to build a new bibliography style, according to a publisher's specification. This style may be developed from scratch if we do not find a suitable existing style. Or we can get it by introducing some changes to another style, i.e., reusing some parts of the previous style. In addition, finding the parts that have to be changed is related to the notion of modular understandability. Of course, building a new bibliography style is not an end-user's task, but it should be possible by people other than the bibliography processor's developers.

Another notion is related to extending a bibliography processor: improving it so that it is usable with more word processors. If we consider the formats built on T E X [START_REF] Ervin | The T E Xbook[END_REF], L A T E X is still widely used, but more and more people are interested in alternatives, such as ConT E Xt [START_REF] Hagen | ConT E Xt, the Manual[END_REF]. Likewise, some new typeset engines, such as X E T E X [START_REF] Kew | X E T E X in T E X Live and beyond[END_REF] or LuaT E X [START_REF] Hagen | LuaT E X: Howling to the Moon[END_REF], should be taken into account. In addition, it should be possible to put the contents of a bibliography database file on a Web page, that is, to express the information about these items using the HTML language. 6A last example is given by RTF:7 at first glance, deriving bibliographies using the internal markup language of Microsoft Word may seem strange, but such a strategy may cause Word end-users to discover progressively the tools related to T E X.

3 BibT E X

Basic use

How to use BibT E X in conjunction with L A T E X is explained in [40, § 12.1.3], and the .bib format, used within bibliography database files, is detailed in [40, § 13.2]; an example is given in Figure 1. As mentioned above, bibliography styles are written in a stack-based language using postfixed notation. As an example, Figure 2 gives two functions used within the plain style of BibT E X.

BibT E X is indisputably correct8 and robust: as far as we have used it, the bibliographies it derives have satisfactory layout, at least for bibliographies of English-language documents. In addition, it has never crashed during our usage of it, even when dealing with syntactically incorrect .bib files.

FUNCTION {format.title} { title empty

$ { "" } { title "t" change.case$ } if$ } FUNCTION {new.sentence.checkb} { empty$ swap$ empty$ and 'skip$ 'new.sentence if$ } Figure 2: Two functions from BibT E X's plain style.
Extending BibT E X, however, may be very tedious, especially for functionalities related to programming. For example, the only way to control the SORT command consists of using the entry variable sort.key$ [40, Table 13.7]. Some workarounds may allow the definition of sort procedures according to lexicographic orders for natural languages other than English, but with great difficulty. Developing bibliography styles for word processors other than L A T E X has been done, but only for formatters built on T E X, e.g., ConT E Xt [START_REF] Hoekwater | The Bibliographic Module for ConT E Xt[END_REF]. In other cases, this task may be difficult since some features related to T E X are hardwired in some built-in functions of BibT E X, e.g., the use of '~' for an unbreakable space character is in the specification of the format.name$ function [START_REF] Hufflen | Names in BibT E X and MlBibT E X[END_REF]. As an example, there is a converter from .bib format to HTML: BibT E X2HTML [START_REF] Filliâtre | The BIBT E X2HTML Home Page[END_REF]. It uses BibT E X, but most of this translator is not written using BibT E X's language, but in Objective CAML,9 a strongly typed functional programming language including objectoriented features [START_REF] Leroy | The Objective Caml System[END_REF]. Using such a tool -as well as the bibliography styles developed for ConT E Xt's texts [START_REF] Hoekwater | The Bibliographic Module for ConT E Xt[END_REF] -is possible only if end-users do not put L A T E X commands inside the values associated with BibT E X's fields.

We think that the continuity of the bibliography styles written using the bst language is average. Introducing some changes concerning the layout of fragments is easy, e.g., short-circuiting case changes for a title, as shown in [40, § 13.6.3], as well as changing the style of a string by using a command like '\emph{...}'. That is due to the fact that inserting additional strings before or after the contents of a field is easy if this information is at the stack's top and has not been popped yet by means of the write$ function. For the same reason, adding a closing punctuation sign is easy; a shorthand example to do that is the add.period$ function. Often handling a new field is easy, too [40, § 13.6.3]. On the other hand, changing the order of appearance of fields may be tedious.

In addition, it is well-known that there is no modularity within the bst language: each style is a monolithic file. If you develop a new style from an existing one, you just copy the .bst file onto a new file, and apply your changes. Of course, doing such a task requires good 'modular understanding' of the functions belonging to the 'old' style. Sometimes, that is easy -cf. the format.title function given in Figure 2 -while other times, understanding the role of a function is possible only if you know the stack's state -cf. the new.sentence.checkb function in the same figure. 10

Task delegation

Originally, all the predefined bibliography styles provided by BibT E X's generated 'pure' L A T E X texts, in the sense that only basic L A T E X commands were used: the \bibitem command, the thebibliography environment [40, § 12.1.2], and some additional commands for word capitalisation or emphasis. No additional package was required when derived bibliographies were processed by L A T E X.

This situation has changed when the authordate system was implemented by the natbib package and the bibliography styles associated with it [40, § 12.3.2]. Progressively, other bibliography styles have been released, working as follows: BibT E X's output is marked up with L A T E X commands defined in an additional package. Citation and formatting functions can be customised by redefining these commands. In other words, we can say that BibT E X delegates the layout of bibliographies to these commands.

Interface packages

Figure 3 gives an example of using the jurabib bibliography style. The L A T E X commands provided by the jurabib package can be redefined like any L A T E X command, although the best method is to use the \jurabibsetup command, as shown in [40, § 12.5.1]. A similar approach is used within the amsxport bibliography style [START_REF] Downes | The amsrefs L A T E X Package and the amsxport BibT E X Style[END_REF] and the bibliography styles usable with ConT E Xt [START_REF] Hoekwater | The Bibliographic Module for ConT E Xt[END_REF].

This modus operandi is taken to extremes by the biblatex package [START_REF] Lehman | The biblatex Package. Programmable Bibliographies and Citations[END_REF]. In such cases, BibT E X is used only to search bibliography database files and sort references. The advantage: end-users can customise the layout of bibliographies without any knowledge of the bst language. But BibT E X still remains used to sort references, and this task is not easily customisable, as mentioned above.

Tib

In fact, this notion of task delegation already existed in Tib [START_REF] Alexander | T ib: a T E X Bibliographic Preprocessor[END_REF], a bibliography processor initially designed for use with Plain T E X, although it can also be used with L A T E X. An example of a bibliography style file used by Tib is given in Figure 4: it consists of some Tib commands -e.g., 'f' for 'citations as footnotes'followed by some definitions of T E X commands for typesetting citation references and bibliographies' items. That is, Tib delegates a bibliography's layout to these commands. Let us recall that the bibliography database files searched by this processor do not use the .bib format, but rather the Refer format, 11an example being given in Figure 5.

Extending bst

The following works allow bibliography style writ-ers to compile bst styles, and annotate or extend the result. As far as we know, they are not widely used. If we consider a style already written in bst and to be adapted, this approach allows more ambitious changes. However, they do not propose a new methodology for designing such styles, so taking maximum advantage of the target languages is difficult for style designers.

BibT E X ++

BibT E X ++ [START_REF] Keryell | BibT E X ++ : Towards Higher-Order BibT E Xing[END_REF] allows a bst style file to be compiled into Java classes [28]. As an example, the new.sentence.checkb function (cf. Fig. 2) is compiled into the Java function new_sentence_checkb given in Figure 6. BibT E X ++ can also run native bibliography styles developed in Java, from scratch or derived from the compilation of 'old' styles. Other functionalities, such as the production of references for programs other than L A T E X, can be implemented by means of plug-ins. There are six steps in BibT E X ++ 's process: for example, parsing a .bst file is the fourth one. After each step, there is a hook, as a callback that allows this process to be customised.

cl-bibtex

cl-bibtex [START_REF] Köppe | A BIBT E X System in Common Lisp[END_REF] is based on ANSI 12 Common Lisp [START_REF] Graham | ANSI Common Lisp. Series in Artificial Intelligence[END_REF].

It includes an interpreter for the bst language, and public void new_sentence_checkb(String s0, String s1) { int i0, i1 ; i1 = BuiltIn.empty(s1) ; i0 = i1 ; i1 = BuiltIn.empty(s0) ; i0 = and(new Cell(i0),i1) ; if (i0 <= 0) new_sentence() ; } (define-bst-primitive "if$" ((pred (boolean)) (then (symbol body)) (else (symbol body))) () :interpreted (bst-execute-stack-literal (if pred then else)))

Figure 7:

Implementation of if$ in cl-bibtex.
can also compile a BibT E X style file into a Common Lisp program, as a starting point for customising such a style, by refining the corresponding Common Lisp program. As a short example, we show in Figure 7 how the if$ function of BibT E X is implemented.

4 Using XML-like formats Over the past several years, XML has become a central formalism for data interchange, so some projects are based on an XML-like language representing bibliographical items.

Converters

Several converters from the .bib format into an XMLlike format have been developed: the bib2xml program [START_REF] Putnam | Bibliography Conversion Utilities[END_REF], and the converter used as part of the BibT E XXML project [START_REF] Vidar | BIBT E X as XML Markup[END_REF]. MlBibT E X uses such a converter, too, and the result of the conversion of the second bibliographical entry of Figure 1 is given in Figure 8; the conventions used throughout such XML texts are a revision of the specification given in [10, § B.4.4].

The main difficulty of these tools is related to the L A T E X commands put inside the values associated with BibT E X fields. The bib2xml converter expands the commands for accents and diacritical signs into the corresponding single letters belonging to the Unicode encoding [START_REF]The Unicode Consortium: The Unicode Standard Version 5.0[END_REF], but just drops out the '\' characters that open the other commands. MlBibT E X's converter processes more commandse.g., \emph, \textbf -but of course, the way of dealing with user-defined commands should be defined by end-users [START_REF] Hufflen | MlBibT E X Meets ConT E Xt[END_REF].

XSLT

XSLT 13 is the language used for the transformation of XML texts. Building a 'References' section is a particular case of transformation. This point is true for L A T E X source files as well as verbatim texts or HTML pages. Figure 9 shows how multiple authors or editors connected by an empty and tag can be processed, the result being a source text for L A T E X. More ambitious examples of using XSLT for typesetting texts are given in [START_REF] Stayton | DocBook-XSL[END_REF].

We have personally written many XSLT programs serving very diverse purposes. This language allows good modularity and reusability of fragments of existing programs. It allows users to write robust programs, too. As for developing bibliography styles, it offers good continuity, except for multilingual extensions. It was difficult to add information for a natural language without directly modifying an existing style. More precisely, that was difficult with the first version (1.0) [START_REF]W3C: XSL Transformations (XSLT). Version 1.0. W3C Recommendation[END_REF], but has been improved in XSLT 2.0 where using modes has been refined [50, § 6.5]. Likewise, the expressive power of the xsl:sort element has been improved in this new version [50, § 13].

Extending XSLT functionalities often consists of calling external functions written using a more 'classical' programming language such as C or Java. That is possible, but not in a portable way, because it depends on the programming languages accepted by each XSLT processor. In practice, this point mainly concerns new lexicographical order relations within bibliography styles.

nbst

nbst 14 is the language used within MlBibT E X for specifying bibliography styles. As explained in [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF] this language is close to XSLT, and introduces a kind of inheritance for natural languages' specification. First, we look for a template whose language attribute matches the current language, and second a more general template, without the language attribute.

MlBibT E X is written in Scheme [START_REF] Kelsey | Revised 5 Report on the Algorithmic Language Scheme[END_REF], and XML texts are represented using the SXML 15 format [START_REF] Kiselyov | XML and Scheme[END_REF]. Roughly speaking, this format uses prefixed notation, surrounded by parentheses -as in any Lisp dialect -for tags surrounding contents. As an example, the result of parsing the bibliographical entries of Figure 1 is sketched in Figure 10. Dealing directly with Scheme functions is needed when new languagedependent lexicographical order relations are to be 15 Scheme implementation of XML.

(*TOP* (*PI* xml "version=\"1.0\" encoding=\"ISO-8859-1\"") (mlbiblio ... (book (@ (id "murphy-mullaney2007")) (author (name (personname (first "Warren") (last "Murphy"))) (and) (name (personname (first "James") (last "Mullaney")))) (title "Choke Hold") (publisher "Tor") (year "2007") (month (nov)) (number "2") (series "The New Destroyer") (address "New-York") (note "The original series...")))) added [START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF]. nbst texts can call functions directly written in Scheme, as well.

Perl

Perl 16 [51] can be used for bibliography styles, as is done by Bibulus [START_REF] Widman | Bibulus-a Perl XML Replacement for BibT E X[END_REF], this program being based on the bib2xml converter [START_REF] Putnam | Bibliography Conversion Utilities[END_REF]. The resulting bibliography styles are compact, modular, and easily extensible. The modularity of Bibulus styles can be illustrated by the \bibulus command that can be used in place of the \bibliographystyle command: \bibulus{citationstyle=numerical, surname=comes-first, givennames=initials, blockpuctuation=.} Multilingual features are processed by means of substitutions, which can easily be incorrect: for example, a month name precedes the year in English, but follows the year in Hungarian. So a rough substitution of an English month name is insufficient. 17 Last but not least, Bibulus is not very easy to use, it is presently accessible only to developers.

DSSSL

DSSSL 18 [27] was initially designed as the stylesheet language for SGML 19 texts. Since XML is a subset of SGML, stylesheets written using DSSSL can be applied to XML texts. DSSSL is rarely used now, (define (process-and-closing-period) (let ((the-string (string-trim-right (data (current-node)))))

; Get the contents and leave trailing ; space characters. (literal (if (check-for-closing-sign? the-string)

; Checking if the-string ends with '.', '?', or '!'. the-string (string-append the-string period-string))))) (define (author-xor-editor node-list) (let ((author-node-list (select-elements node-list "author")) (editor-node-list (select-elements node-list "editor"))) (make sequence (cond ((node-list-empty? author-node-list) (if (node-list-empty? editor-node-list) (error "Neither author, nor editor!") (make sequence (process-node-list editor-node-list) (literal ", editor.")))) ((node-list-empty? editor-node-list) (make sequence (process-node-list author-node-list) (if (check-for-closing-sign? (string-trim-right (data author-node-list))) (empty-sosofo) (literal period-string)))) (else (error "Both author and editor!"))) (literal " ")))) (define (b-if$ sxml-mlbiblio-tree current-entry-plus)

;; sxml-biblio-tree is the complete tree of all the entries to be processed, current-entry-plus the annotated ;; tree of the current entry.

(let* ((i2 ((b-bst-stack-pv 'pop)))

; "Else" part. (i1 ((b-bst-stack-pv 'pop)))

; "Then" part. (i0 ((b-bst-stack-pv 'pop)))) ; Condition. (if (integer? i0) (b-process-sequence (if (positive? i0) i1 i2) sxml-mlbiblio-tree current-entry-plus) (begin ((msg-manager 'bst-type-conflict) 'if$ i0) #t))))

Figure 13: Implementing if$ within MlBibT E X's compatibility mode.

but the example we show illustrates how a functional programming language can implement a bibliography style. More examples can be found in [10, § 7.5]. Figure 11 gives some excerpts of a stylesheet that displays the items of a bibliography by labelling them with their own keys. The core expression language of DSSSL is a side-effect free subset of Scheme. As shown in Figure 11, processing elements uses patternmatching:

(element name E) (element (name 0 name) E 0)
the E expression specifies how to process the name element, unless this element is a child of the name 0 element, in which case the E 0 expression applies. The choice of the accurate expression is launched by functions such as process-matching-children, process-children, and process-node-list.

Expressions like E or E 0 consist of assembling literals by means of the make form, using types predefined in DSSSL: paragraph, sequence, . . . The generic type of such results is called sosofo20 w.r.t. DSSSL's terminology.

Figure 12 illustrates this style of programming by showing some specific details: how to implement BibT E X's add.period$ function, and the switch between author and editor elements for a book. This stylesheet can be run by the jade21 program; as shown in [10, § 7.5.2], the T E X-like typeset engine able to process such results is JadeT E X.

Fragments of DSSL stylesheets can be organised into libraries, so this language is modular. Most of the implementations of it are robust, efficient, but they are neither extensible, nor easy to use, because we have to make precise a predefined backend. For example, if jade is used to process the complete stylesheet given in Figures 11 &12, the possible backends are tex (resp. rtf), in which case the result is to be processed by JadeT E X (resp. Microsoft Word or OpenOffice). Deriving texts directly processable by L A T E X or ConT E Xt is impossible.

5 The application to MlBibT E X When we designed MlBibT E X's present version, we had had much experience in programming DSSSL and XSLT stylesheets. We thought that a language close to DSSSL would provide more expressive power for developing, but would be accessible only for programmers. A language close to XSLT is better from this point of view, provided that an extension mechanism is given for operations related to pure programming, e.g., the definition of new relation orders [START_REF] Hufflen | Managing Order Relations in MlBibT E X[END_REF]. In addition, performing some operations may be more difficult than in bst, e.g., the add.period$ functionality.

The only solution is to provide an initial library legible from a point of view related to methodology [START_REF] Hufflen | Bibliography Styles Easier with MlBibT E X[END_REF]. A compatibility mode is needed in order to ease the transition between old and new bibliography styles [START_REF] Hufflen | BibT E X, MlBibT E X and Bibliography Styles[END_REF] -Figure 13 shows how the if$ function is implemented within this mode, in comparison with the implementation of cl-bibtex, given in Figure 7. This progressively led us to the architecture described in [START_REF] Hufflen | MlBibT E X Architecture[END_REF].

We can be objective about MlBibT E X only with difficulty. However, several points seem to us to confirm our choices. First, XSLT has succeeded as a language able to deal with XML texts, much more so than DSSSL with SGML texts. Second, the need for a classical programming language: using the whole expressive power of Scheme -and not a subset as in DSSSL -allowed us to program efficiently, by using advanced features of Scheme. Third, our experience with ConT E Xt [START_REF] Hufflen | MlBibT E X Meets ConT E Xt[END_REF] seems to confirm the extendability of our tool.

Conclusion

Table 1 summarises our experience with the languages we have described above. Of course, this synthesis is not as objective as benchmarks would have been. It is just a study of the effort we have made for developing bibliography styles, and a professional view of the results we have found.

To end, let us make a last remark about what is done in MlBibT E X: the separation of functionalities related to programming, written in Scheme, and specifications of layout, given in an XSLT language. Analogous combinations exist, the most widely used are a logic programming language, like Prolog, 22 called within a C (or similar) program. This modus operandi allows programmers to use a very specialised language only when it is suitable. There is an analogous example within T E X's world: LuaT E X. Functionalities related to typesetting are performed by commands built into T E X, whereas other functions are implemented by means of the Lua language [START_REF] Ierusalimschy | Programming in Lua[END_REF]. So T E X is used as the wonderful typesetting engine that it is, and functionalities difficult to implement with T E X's language23 are delegated to a more traditional programming language.

BibT E X is still a powerful bibliography processor, but the main way to extend it easily concerns the layout of the bibliographies. That was sufficient some years ago, but not now with the use of Unicode, new processors like X E T E X, and new languages like HTML.

Acknowledgements

I have been able to write this article because I have had much occasion to become familiar with the languages and applications mentioned above. For example, some years ago, a colleague asked me to help him with a DSSSL program because I knew Scheme: that was my first contact with this language and SGML, before XML came out. Another time, a friend who used Plain T E X asked me a question about Tib, although I had merely heard of the name of this program, and I discovered it in this way. So I was thinking about all these people when I was writing this article, and I am grateful to them. Many thanks to Karl Berry: as usual, he is a conscientious proofreader and 'figure-positioner'.

 Murphy and James Mullaney}, TITLE = {Choke Hold}, PUBLISHER = {Tor}, ADDRESS = {New-York}, SERIES = {The New Destroyer}, NUMBER = 2, NOTE = {The original series has been created by Richard Sapir and Warren Murphy}, YEAR = 2007, MONTH = nov}

Figure 1 :

 1 Figure 1: Bibliographical entries in the .bib format.

Figure 3 :

 3 Figure 3: BibT E X's output as used by the jurabib package.

Figure 5 :

 5 Figure 5: Entries using the Refer format.

Figure 6 :

 6 Figure 6: A bst function compiled into Java.

Figure 9 :

 9 Figure 9: Dealing with authors or editors in XSLT.

Figure 10 :

 10 Figure 10: Using the SXML format.

Figure 12 :

 12 Figure 12: Some auxiliary functions implemented in DSSSL.

 The footl.tib file.

	#	
	# standard footnote format (latex)
	#	
	# if titles are desired in loc. cit. references, see note in stdftl.ttx
	#	
	#	include word-definition file (journals and publishers)
	I TMACLIB amsabb.ttz
	f	footnotes
	L	use ibid and loc cit
	C0	empty citation string
	O	for multiple citations use ordering of reference file
	%The lines below are copied verbatim into the output document as TeX commands.
	%First the file Macros.ttx is \input with Macros and default settings.
	%The control string \TMACLIB is just a path.
	%The \footnote macro is from LaTeX
	%	
	\input \TMACLIB stdftl.ttx %macros for formatting reference list
	\Refstda\Citesuper %set general formats for reference list and citations
	\def\Lcitemark{\footnotemark}\def\Rcitemark{}
	\def\Citecomma{,\footnotemark}
	\def\LAcitemark{\addtocounter{footnote}{1}\arabic{footnote}}
	\def\RAcitemark{}
	\def\LIcitemark#1\RIcitemark{\def\Ztest{ }\def\Zstr{#1}}
	Figure 4: %A |srd|
	%T The Gap into Power: A Dark and Hungry God
	Arises	
	%P HarperCollins
	%S The Gap
	%N 3	
	%D 1993	
	%E |srd|	
	%T Strange Dreams
	%I Bantam-Spectra
	%D 1993	
	%A Warren Murphy
	%A James Mullaney
	...	
	%O November 2007. The original series...
	The 'srd' abbreviation should be defined by means of
	the following Tib command:
		D srd Stephen Reeder Donaldson

 XML-like format used in MlBibT E X.

	<book id="donaldson1993a">
	<editor>
	<name>
	<personname>
	<first>Stephen Reeder</first>
	<last>Donaldson</last>
	</personname>
	</name>
	</editor>
	<title>Strange Dreams</title>
	<publisher>Bantam Spectra</publisher>
	<year>1993</year>
	</book>
	Figure 8:

 ,

	<xsl:template match="author">
	<xsl:apply-templates/><xsl:text>. </xsl:text>
	</xsl:template>
	<xsl:template match="editor">
	<xsl:apply-templates/>
	<xsl:text>, </xsl:text>
	<xsl:choose>
	<xsl:when test="count(*) > 1">
	<xsl:text>\bbled</xsl:text>
	</xsl:when>
	<xsl:otherwise>\bbleds</xsl:otherwise>
	</xsl:choose>
	<xsl:text>. </xsl:text>
	</xsl:template>
	<xsl:template match="name | personname">
	<xsl:apply-templates/>
	</xsl:template>
	<xsl:template match="first">
	<xsl:value-of select="concat(.,' ')"/>
	</xsl:template>
	<xsl:template match="last">
	<xsl:value-of select="."/>
	</xsl:template>
	<xsl:template match="and">
	<xsl:choose>
	<xsl:when
	test="following-sibling::and or
	following-sibling::and-others">
	<xsl:text>, </xsl:text>
	</xsl:when>
	<xsl:otherwise>
	<xsl:text> \bbland\ </xsl:text>
	</xsl:otherwise>
	</xsl:choose>
	</xsl:template>

Table 1 :

 1 -like . . . except for multilingual features, in XSLT 1.0. Languages for bibliography styles: synthesis.

		BibT E X	XSLT	DSSSL	Bibulus
	Correctness	✔			
	Robustness	✔	✔	✔	
	Extendability	✘	✔	✘ ✔/✘
	Reusability	✔/✘			
	Modularity	poor	✔	✔	✔
	Continuity	average	✔ a	✔	✔
	Efficiency	✔		✔	
	Ease of use	✔	average ✘	✘

a

That is, at the time of T E X's first version. . . Let us recall that we are celebrating T E X's 30th birthday.

EXtensible Markup Language. Readers interested in an introductory book to this formalism can refer to[START_REF] Ray | Learning XML[END_REF].TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

. . . unless the bibliography style is unsorted, that is, the order of items is the order of first citations. In practice, most bibliography styles are 'sorted'.

HyperText Markup Language.[START_REF] Musciano | HTML & XHTML: The Definitive Guide[END_REF] is a good introduction to this language.

[START_REF] Clocksin | Programming in Prolog[END_REF] Rich Text Format. A good introductory book to this markup language is[START_REF] Burke | RTF Pocket Guide[END_REF].

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

When the word 'correct' is used in software engineering, it is related to the existence of a formal specification -i.e., a mathematical description -of the behaviour, and the program should have been proved correct w.r.t. this specification. Here we adopt a more basic and intuitive sense: the program's results are what is expected by end-users.

Categorical Abstract Machine Language. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

This function is used when the decision of beginning a new sentence within a reference depends on the presence of two fields within an entry.

The pybibliographer program can be used as a converter from the .bib format to the Refer format: see[40, § 13.4.5] for more details.

American National Standards Institute. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

eXtensible Stylesheet Language Transformations.

New Bibliography STyles.

Practical Extraction Report Language.

The same criticism holds for the babelbib package[START_REF] Harders | Mehrsprachige Literaturverzeichnisse: Anwendung und Erweiterung des Pakets babelbib[END_REF].

Document Style Semantics Specification Language.

Standard Generalised Markup Language. Now it is only of historical interest. Readers interested in this metalanguage can refer to[START_REF] Bradley | The Concise SGML Companion[END_REF].TUGboat, Volume 0 (2060), No. 0 -Proceedings of the

Annual Meeting

Specification Of a Sequence Of Flow Objects.

James Clark's Awesome DSSSL Engine. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

A good introductory book to this language is[START_REF] Clocksin | Programming in Prolog[END_REF].

Some examples can be found in[START_REF] Denis | Anatomie d'une macro[END_REF].

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN"> <style-sheet> <style-specification id="hcs"> <style-specification-body> (root (let ((margin-size 1in)) ; DSSSL uses quantities, analogous to T E X's dimensions. (make simple-page-sequence ;; An identifier ending with the ':' characters is a key, bound to the following value. page-width: 210mm page-height: 297mm left-margin: margin-size right-margin: margin-size top-margin: margin-size bottom-margin: margin-size header-margin: margin-size footer-margin: 12mm center-footer: (page-number-sosofo) (process-children)))) (element book (make-reference (lambda (current-children) ; Function to be applied as soon as the general (make sequence ; framework for a reference has just been built: cf. the (author-xor-editor current-children) ; definition of our make-reference (process-matching-children "title") ; function below. (process-seriesinfo current-children) (apply sosofo-append (map process-matching-children '("publisher" "address" "month" "year" "note"))))))) (element author (process-author-or-editor))

; The same for editor elements. (element name (process-children-trim))

; The same for number elements. (element personname (processing-matching-children "first" "von" "last" "junior")) (element first (ending-with space-literal)) (element last (process-children-trim)) (element and (if (node-list-empty? (select-elements (follow (current-node)) "and"))

(literal " and ") comma-space-literal)) (element (book title) (make sequence font-posture: 'italic (process-and-closing-period))) (element year (process-and-closing-period))

; The same for series and note elements. (element month (make sequence (process-children) space-literal)) (element jan (literal "January")) ... ; Other month elements skipped. (element publisher (ending-with comma-space-literal))

; The same for address elements. ... ;; Definitions for particular literals and strings: (define comma-space-literal (literal ", ")) (define period-string ".") (define space-literal (literal " ")) ;; General framework for references' layout: (define make-reference (let ((biblioentry-indent 20pt)) (lambda (process-f) (make paragraph first-line-start-indent: (-biblioentry-indent) font-size: 12pt quadding: 'justify space-before: 10pt start-indent: biblioentry-indent (literal "[" (attribute-string "id") "] ") (process-f (children (current-node))))))) ;; Some utility functions: (define (process-author-or-editor) (process-matching-children "name" "and")) (define (ending-with literal-0) (make sequence (process-children-trim) literal-0)) ... </style-specification-body> </style-specification> </style-sheet>