Jean-Michel Hufflen
email: hufflen@lifc.univ-fcomte.fr

Płonie Ognisko W Lesie

Przy Ogniu Zaś Drużyna Gawędę

Introducing L A T E X users to XSL-FO *

Keywords: XML, XSLT Czuj, czuj, czuwaj, Czuj, czuj, czuwaj

come

Introduction

This talk aims to introduce L A T E X users to XSL-FO. [START_REF] Tveit | Request for Comments: 3066. Tags for the Identification of Languages[END_REF] Both have common points, in the sense that they are not WYSISWYG. [START_REF] Amman | Comprendre XSLT[END_REF] In both cases, users prepare a source file that is processed and the result is a file that can be send to a laser printer. [11, § 18] lists some implementations of processors of XSL-FO texts. Among them, we personally experienced:

• PassiveT E X [10, p. 180]: this is an adaptation of T E X in order to process XSL-FO texts, but incomplete; the result may be a DVI 3 or PDF [START_REF] Hufflen | Introduction to XSLT[END_REF] file;

• Apache FOP [START_REF] Hufflen | Advanced Techniques in XSLT[END_REF] [3], written in Java, is more complete; the result may be a PDF of PostScript file, other formats being possible.

XSL-FO is an XML [START_REF] Hufflen | Writing Structured and Semantics-Oriented Documents[END_REF] format that aims to describe high-quality print outputs. As we will see, this format is very verbose, but it is not devoted to * Title in Polish: Wprowadzenie do XSL-FO dla żytkowników L A T E X-a [START_REF] Tveit | Request for Comments: 3066. Tags for the Identification of Languages[END_REF] EXtensible Stylesheet Language-Formatting Objects. [START_REF] Amman | Comprendre XSLT[END_REF] What You See Is What You Get. This expression qualifies interactive word processors.

3 Device-Independent File. [START_REF] Hufflen | Introduction to XSLT[END_REF] Portable Document Format. [START_REF] Hufflen | Advanced Techniques in XSLT[END_REF] Formatting Objects Processor. [START_REF] Hufflen | Writing Structured and Semantics-Oriented Documents[END_REF] EXtensible Markup Language. Readers interested in an introductory book to this formalism can consult [12]. direct use. Usually, XSL-FO texts result from applying an XSLT [START_REF] Mittelbach | The L A T E X Companion[END_REF] stylesheet to an XML text, as we will see. Thus this approach clearly separates presentation and contents. An XML text specifies contents, an XSL-FO text specifies presentation. However, we begin with a text directly typed in XSL-FO to give the broad outlines of this language, then we show an example of an XSLT program that generates such a text. We end with some words about internationalisation. Reading this article requires only basic knowledge of XML and XSLT.

1 Getting started

Basic notions

The notion equivalent to a document class of L A T E X consists of a page model, an example being given in Figure 1. Here, this page model is very simple: only one page, specified by the fo:simple-page-master element. It specifies a paper format and its margins, where anything cannot be printed. It also defines regions, as shown in Figure 2. You can define several single page models, and another element, fo:page-sequence-master, allows the combination of single or repeatable pages. Repeatable pages may <?xml version="1.0" encoding="ISO-8859-1"?> <fo:layout-master-set xmlns:fo="http://www.w3.org/1999/XSL/Format"> <!--xmlns:fo declares a prefix for the namespace associated to xsl-fo texts. --> <fo:simple-page-master master-name="page-simple" page-height="297mm" page-width="210mm" margin-top="10mm" margin-bottom="20mm" margin-left="25mm" margin-right="25mm"> <fo:region-before extent="30mm"/> <!--Declaration of the header, footer, left and right --> <fo:region-after extent="30mm"/> <!--margin. These usual terms have been viewed as too --> <fo:region-start extent="30mm"/> <!--related to left-to-right writing, that is why a --> <fo:region-end extent="30mm"/> <!--terminology based on 'before', 'after', 'start', 'end' --> <fo:region-body/> <!--has been preferred. The body is defined as the page's --> <!--rest. See Figure 2. --> </fo:simple-page-master> </fo:layout-master-set> vary w.r.t. the position, that is, you can alternate two models for even and odd pages, define a separate model for initial and final pages, . . . Figure 4 shows a complete text. We will see that page models are not specified by including a file like in L A T E X. If you wish a page model to be shared among several XSL-FO texts, an external entity is to be used [12, pp. 50-52]. This implies the introduction of a 'dummy' DOCTYPE tag. [START_REF] Montero | XSL-FO in der Praxis[END_REF] We see that an XSL-FO text is rooted by an fo:root element, whose children are a page model and a page sequence. A page sequence defines what is written and where. In Figure 4, a static content -a song's title, followed by the number of the current pageis related to any page foot, whereas a flow allows the specification of a text possibly printed on regions belonging to several successive pages. A flow is bound to a region by means of the flow-name attribute, referring to the region-name attribute's value of an element for a region. There are default conventions: for example, the definition of the 'body' region given in Figure 1 Blocks may be nested and most of attributes are inherited. As an example, let us consider the second block of the flow. It defines some attributes related to fontsfont-family and font-sizethese attributes being inherited in the nested block containing the Polish and English words for 'Polish song' ('Polska piosenka'). The result can be viewed at Figure 3. The fo:inline element allows some attributes to be redefined without opening a new block: it corresponds to changing some parameters -font style or size, etc. -inside the same paragraph in L A T E X. In fact, we can consider that fo:block elements, due to this recursive character, are equivalent to both the \par command and the minipage environment of L A T E X. The possible values associated with most of font attributes are given in Table 1. In comparison with L A T E X where the family, weight, style, and variant of a font are expressed by combinations of commands being the same syntax, '\text...{...}', the attributes of XSL-FO are more 'typed'. That may be seem quite artificial to a L A T E X user, but emphasises all the possible combinations.

The start-indent attribute specifies the distance from the start-edge of the box surrounding the contents to the start-edge of the contents itself. The end-indent attribute is analogous, but endedges are considered. The vertical spacing between successive blocks is controlled by the two attributes space-before and space-after. The specification of stretcheable lengths in L A T E X [7, § A. look at the first stanza given in Figure 4, the vertical spacing before this block is ideally 11pt long, at least 10pt long, at most 12pt long, according to the values of the components optimum, minimum, and maximum of the space-before attribute. Just putting: space-before="11pt" sets the three components of the space-before attribute to this length. Putting: space-before="11pt" space-before.minimum="10pt" only redefines the minimum component, the two others being 11pt long.

Going throughly into this notion, XSL-FO provides two other components for the specification of spacing. The conditionality component controls whether a space-specifier has effect at the beginning or end of a reference area -e.g., the beginning (resp. end) of a page for the space-before (resp. space-after) attribute of the fo:block element, or the beginning (resp. end) of a line for the space-start (resp. start-end) attribute of the fo:inline element. The possible values for this conditionality component are discard (by default) and retain. The precedence component can either be an integer or the keyword force. It determines what happens when the end of a reference area conflicts with the next one. If the precedence component is set to force, this will override any other space specifiers that conflict with it.

Let us shortly mention two attributes for blocks or inline texts: text-decoration is used to draw a line above, below, or through a text [16, § 7.17.4], baseline-shift is used for subscripts and superscripts. Since XSL-FO only aims to give nice layout to a text, there is no real way to do computations on this text. For example, the fragment: \iflanguage{polish}{Polska piosenka}{% Polish song} (cf. [7, § 9.2.1] about the \iflanguage command) cannot be transcribed into an XSL-FO text. However, some usual transformations can be put into action by means of the text-transform attribute, whose values may be none (by default), capitalize, uppercase, lowercase. Let us notice that using this attribute is somewhat deprecated because these operations do not make sense in internationalisation issues.

Other attributes prevent the breaking of a text into lines, columns, and pages when blocks are typeset: keep-with-next, keep-with-previous, and keep-together. Each of these three attributes has three components: within-line, within-column, and within-page. The associated values are auto (by default), that is, no constraint, always, or an integer expressing the strength of this property. This integer can be compared to the optional argument of the L A T E X commands \pagebreak and \linebreak.

<?xml version="1.0" encoding="ISO-8859-2"?> <!DOCTYPE root [<!ENTITY layout SYSTEM "layout.fo"> <!ENTITY refren-1 "Czuj, czuj, czuwaj,">]> <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"> &layout;

<fo:page-sequence master-reference="page-simple" font-family="serif" font-size="12pt" text-align="left"> <fo:static-content flow-name="xsl-region-after"> <fo:block text-align="center" line-height="14pt" color="green" font-size="10pt" font-family="serif"> Płonie ognisko (<fo:page-number/>) </fo:block> </fo:static-content> <fo:flow flow-name="xsl-region-body" xml:lang="po"> <fo:block font-family="sans-serif" font-size="18pt" font-variant="small-caps" padding-top="3pt" text-align="center" color="white" background-color="blue" space-after="15pt" line-height="24pt"> Płonie ognisko </fo:block> <fo:block font-family="sans-serif" font-size="14pt" space-after="18pt" border-style="solid" border-width="0.5mm" border-color="blue" padding="4mm" start-indent="80mm" end-indent="4mm"> <fo:block text-align="right"> Polska piosenka <fo:inline font-style="italic" xml:lang="en">(Polish song)</fo:inline> </fo:block> </fo:block> <fo:block space-before.minimum="10pt" space-before.optimum="11pt" space-before.maximum="12pt"> Płonie ognisko w lesie, </fo:block> <fo:block>Wiatr smętną piosnkę niesie.</fo:block> <fo:block>Przy ogniu zaś drużyna</fo:block> <fo:block>Gawędę rozpoczyna</fo:block> <fo:block ...> <!--Like above for the stanza's first line. --> &refren-1; </fo:block> <fo:block>&refren-1;</fo:block> <fo:block>Rozlega się dokoła,</fo:block> <fo:block>&refren-1;</fo:block> <fo:block>&refren-1;</fo:block> <fo:block>Najstarszy druh zawoła.</fo:block> <fo:block ...>Przestańciesię już bawić</fo:block> <fo:block>I czas swój marnotrawić.</fo:block> <fo:block>Niechj każdy z was się szczerze,</fo:block> <fo:block>Do pracy swej zabierze</fo:block> ... <!--The refrain again. --> </fo:flow> </fo:page-sequence> </fo:root>

XSLT and XSL-FO together

The Polish song given in Figure 4 has already been specified as a 'pure' XML text in [6, Fig. 1]. We reproduce it as Figure 5. Then we give an XSLT stylesheet that yields the text of Figure 4 when it is applied to the XML text of Figure 5. That shows how XSL-FO texts should be built: by derivation from XML texts by applying a stylesheet. The use of two namespaces [12, pp. 41-45] given by prefixes, [START_REF] Musciano | HTML & XHTML: The Definitive Guide[END_REF] HyperText Markup Language. Readers interested in an introduction to this language can refer to [9].

xmlns:xsl and xmlns:fo, clearly separates what is evaluated ('<xsl:.../>') when the XSLT program is running, and what results from this operation ('<fo:.../>'). Finally, let us notice that XSL-FO does not provide a way to build a table of contents automatically, but doing this task is easy when an XSLT program is used [10, pp. 149-150].

3 Some words on internationalisation XSL-FO provides properties -that is, attributesfor specifying hyphenation properties [16, § 7.10]. These attributes includes the specification of a country, a language, a hyphenation character, etc. In practice, the predefined attribute xml:lang -see the two occurrences of this attributes in Figure 4 is treated as a shorthand and used to set the country and language properties [16, § 7.31.24]. This attribute characterizes the language of a content by a two-letter language, optionally followed by a twoletter country code, as specified in [1].

XSL-FO is not limited to languages using the latin alphabet and can deal with any writing mode. The writing-mode attribute can be set to:

• lr-tb, for 'left-to-right, top-to-bottom' (by default),

• rl-tb, for 'right-to-left, top-to-bottom',

• tb-rl, for 'top-to-bottom, right-to-left',

• or more [16, § 7.29.7]. It specifies two directions: the first is the inlineprogression-direction which determines the direction in which words will be placed and the second is the block-progression-direction which determines the direction in which blocks and lines are placed one after another. The inline-progression-direction for a sequence of characters may be implicitly determined using bidirectional character types for those characters from the Unicode Character Database [13] and the Unicode bidirectional algorithm [13, Annex 9].

<?xml version="1.0" encoding="ISO-8859-2"?> <!DOCTYPE poem0 SYSTEM "poem0.dtd" [<!ENTITY refren-1 "<verse>Czuj, czuj, czuwaj,</verse>">]> <poem0> <preamble><title>Płonie ognisko</title></preamble> <body> <stanza> <verse>Płonie ognisko w lesie,</verse> <verse>Wiatr smętną piosnkę niesie.</verse> <verse>Przy ogniu zaś drużyna</verse> <verse>Gawędę rozpoczyna</verse> </stanza> <stanza label="refren"> <!--label is an optional attribute being type ID.

--> &refren-1;&refren-1;

<!--Syntactical replacement.

--> <verse>Rozlega się dokoła,</verse> &refren-1;&refren-1; <verse>Najstarszy druh zawoła.</verse> </stanza> <stanza> <verse>Przestańciesię już bawić</verse> <verse>I czas swój marnotrawić.</verse> <verse>Niechj każdy z was się szczerze,</verse> <verse>Do pracy swej zabierze</verse> </stanza> <stanza> <!--A stanza is a non-empty list of verses, but can be a repetition of a previous stanza, in which case we use the resume element with a required attribute, ref.

The value associated with this IDREF attribute unambiguously identifies a subtree. --> <resume ref="refren"/> </stanza> </body> </poem0>

Going further

Of course, we have not shown all the features of XSL- FO, we have just wanted to show that the bases were analogous to L A T E X's, even if methods for advanced features diverge. We hope you are now able to write simple texts in XSL-FO. If you wish to go thoroughly into learning it, the reference is the W3C 10 recommendation of the latest version (1.1) [16]. [10] is more didactic, but is based on XSL-FO's Version 1.0, although the differences are very slight for simple examples. [2, ch. 8] and [8] are very didactic, too, and may be of interest for French-or German-speaking people, but have the same drawback.

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has written the Polish translation of the abstract. [START_REF] Pawson | XSL-FO[END_REF] World Wide Web Consortium.

<?xml version="1.0"?> <!DOCTYPE stylesheet [<!ENTITY layout SYSTEM "layout.fo">]> <xsl:stylesheet version="1.0" id="poemfr0-2-fo" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format"> <xsl:output method="xml" indent="yes"/> <xsl:param name="polish-song-en" select="'Polish song'"/> <xsl:param name="polish-song-po" select="'Polska piosenka'"/> <xsl:strip-space elements="*"/> <!--Rule blank nodes out. --> <xsl:template match="poem0"> <fo:root> &layout; <!--The contents of this file is inserted 'verbatim' into the result of the xslt program. --> <xsl:variable name="the-title" select="preamble/title"/> <xsl:call-template name="put-footer"> <xsl:with-param name="the-string" select="the-title"/> </xsl:call-template> <fo:page-sequence master-reference="page-simple" font-family="serif" font-size="12pt" text-align="left"> <fo:flow flow-name="xsl-region-body" xml:lang="po"> <xsl:call-template name="put-title"> <xsl:with-param name="the-title" select="$the-title"/> </xsl:call-template> <xsl:apply-templates select="body"/> </fo:flow> </fo:page-sequence> </fo:root> </xsl:template> <xsl:template match="body"><xsl:apply-templates/></xsl:template> <xsl:template match="stanza"> <xsl:choose> <xsl:when test="resume"><xsl:apply-templates select="id(resume/@ref)"/></xsl:when> <xsl:otherwise> <xsl:apply-templates select="verse [1]"> <xsl:with-param name="first-line-p" select="true()"/> </xsl:apply-templates> <xsl:apply-templates select="verse[position() > 1]"/> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="verse"> <xsl:param name="first-line-p" select="false()"/> <!--'false' is the default value. --> <fo:block> <xsl:if test="$first-line-p"> <xsl:attribute name="space-before.minimum">10pt</xsl:attribute> <xsl:attribute name="space-before.optimum">11pt</xsl:attribute> <xsl:attribute name="space-before.maximum">12pt</xsl:attribute> </xsl:if> <xsl:value-of select="."/> </fo:block> </xsl:template> <xsl:template name="put-footer"> <xsl:param name="the-string"/> <fo:static-content flow-name="xsl-region-after"> <fo:block text-align="center" line-height="14pt" color="green" font-size="10pt" font-family="serif"> <xsl:value-of select="concat($the-string,' (')"/><fo:page-number/><xsl:text>)</xsl:text> </fo:block> </fo:static-content> </xsl:template> <xsl:template name="put-title"> <xsl:param name="the-title"/> <fo:block font-family="sans-serif" font-size="18pt" font-variant="small-caps" padding-top="3pt" text-align="center" color="white" background-color="blue" space-after="15pt" line-height="24pt"> <xsl:value-of select="$the-title"/> </fo:block> <fo:block font-family="sans-serif" font-size="14pt" space-after="18pt" border-style="solid" border-width="0.5mm" border-color="blue" padding="4mm" start-indent="80mm" end-indent="4mm"> <fo:block text-align="right"> <xsl:value-of select="concat($polish-song-en,' ')"/> <fo:inline font-style="italic" xml:lang="en"> <xsl:value-of select="concat('(',$polish-song-po,')')"/> </fo:inline> </fo:block> </fo:block> </xsl:template> </xsl:stylesheet>

Figure 1 :

 1 Figure 1: Example of a page model in XSL-FO.

Figure 2 :

 2 Figure 2: Regions defined by XSL-FO.

Figure 3 :

 3 Figure 3: The text formated.

Figure 4 :

 4 Figure 4: Complete source of the text of Figure 3.

Figure 5 :

 5 Figure 5: Example of a Polish song as an XML text.

Figure 6 :

 6 Figure 6: The same result by means of an XSLT stylesheet.

Figure 7 :

 7 Figure 7: The same result by means of an XSLT stylesheet (Figure 6 continued).

Table 1 :

 1 Possible values for most of font attributes.For example, if there is a fo:block element with a keep-with-next attribute set to always, there cannot be a page break between this block and the preceding one. If you want to force breaking in such situations, use the attributes break-before and break-after, whose values are auto (by default), column, page, even-page, and odd-page. See[10, pp. 70-72] for more details.

	Attribute	Default value	Other values
	font-family serif	sans-serif
	font-size		Absolute sizes: xx-small, x-small, medium, large, x-large, xx-large
			Relative sizes: smaller, larger
			Lengths: e.g., 10pt
	font-stretch normal	wider, narrower, ultra-condensed, extra-condensed, condensed
			semi-condensed, semi-expanded, expanded, extra-expanded, ultra-expanded
	font-weight normal	bold, bolder, lighter
	font-style normal	italic, reverse-normal, reverse-oblique
	font-variant normal	small-caps

1.3 Additional elements

Now we mention some additional functionalities of XSL-FO, in order to give an idea of its expressive power. It provides elements to express lists, analogous to L A T E X's, rooted by the fo:list-block element

[10, pp. 102

]. The way to specify tabulars is analogous to HTML's,

[START_REF] Musciano | HTML & XHTML: The Definitive Guide[END_REF]

the most used element to do that being fo:table

[10, pp. 104-110]

. Footnotes are put by means of the fo:footnote element [10, pp. 154-155], analogous to the \footnote command. Cross references are allowed like in L A T E X by means of the fo:basic-link element

[10, pp. 146- 148]

, hyper-link references to external documents are also possible. The notion of floating objects is known within XSL-FO: see [16, § 6.12.2] about the fo:float element. Last, let us notice that there is no mathematical mode in XSL-FO, but this language provides elements and attributes for building indexes

[16, § 7

.24], analogous to what is used within L A T E X's theindex environment (cf.

[7, § 11.1]

).

EXtensible Stylesheet Language Transformations. Several introductory talks to this language have already been given at BachoT E X conferences[START_REF] Hufflen | Introduction to XSLT[END_REF][START_REF] Hufflen | Advanced Techniques in XSLT[END_REF]. The reference is[START_REF]W3C: XSL Transformations (XSLT). Version 1.0. W3C Recommendation[END_REF].TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting