Jean-Michel Hufflen
email: hufflen@lifc.univ-fcomte.fr

BibT E X, MlBibT E X and Bibliography Styles *

Keywords: Bibliographies, bibliography styles, BibT E X, MlBibT

The first part of this talk about BibT E X will focus on some difficult points related to syntax of bibliography files, e.g., the specification of person and organisation names. In addition, we show how some successors of BibT E X -BibT E X8, Bibulus, MlBibT E X programs -improve them. In a second part, we explain how bibliography styles are built. Some demonstrations of the BibT E X program are given as part of this talk, and some technical points could be made clearer by using some functions belonging to MlBibT E X.

Introduction

This talk is about BibT E X [START_REF] Patashnik | Part of BibT E X's distribution[END_REF], the bibliography processor usually associated with L A T E X. It extends Gabriela Grusza's, also given at the BachoT E X 2006 conference, by going thoroughly into some particular and difficult points: role of braces within bibliographical entries (in .bib files), specification of person and organisation names, test of bibliography styles (.bst files). In addition, we show how some successors of BibT E X -BibT E X8 [10, § 13.1.1], Bibulus [START_REF] Widman | Bibulus-a Perl xml Replacement for BibT E X[END_REF], MlBibT E X 1 [START_REF] Hufflen | MlBibT E X's Version 1.3[END_REF] programs -improve them.

The second edition of The L A T E X Companion [START_REF] Mittelbach | The L A T E X Companion[END_REF] includes a detailed chapter (Ch. 13) about the BibT E X program, with some descriptions of tools that help in managing BibT E X databases (§ 13.4). A less detailed description, but in Polish, can also be found in [1, § 6]. So, we only give the broad outlines of our demonstration in this paper. Sometimes, we use MlBibT E X's functions in order to make clearer some features of BibT E X: displaying bibliographical data as they are processed -by means of xml2 -like syntax -and testing some parts of a bibliography style. MlBibT E X is written in Scheme [START_REF] Kelsey | Revised 5 Report on the Algorithmic Language Scheme[END_REF] and runs with at least three Scheme interpreters: mit Scheme [START_REF] Hanson | the mit Scheme team[END_REF], bigloo [START_REF] Serrano | A Practical Scheme Compiler[END_REF], and PLT Scheme [START_REF] Flatt | plt MzScheme: Language Manual[END_REF][START_REF]MzLib: Libraries Manual[END_REF]. The parts related to xml use sxml3 , Oleg B. Kiselyov's implementation [START_REF] Kiselyov | xml and Scheme[END_REF].

Role of braces

In BibT E X, braces serve two purposes. First, they can be used to surround the value associated with a field name, as shown in Fig. 1. In this case, these braces can be replaced by double quotes (' " '). The use of double quotes inside the value of a field is allowed only if they are surrounded by braces. Second, braces are used to group some characters, that is, to view them as an atomic value. This value does not obey case changes. For example, the word 'Wrocławia' in the title given in Fig. 1 is surrounded by braces, so it remains capitalised even if this title is to be put using lower-case characters. For example, such a specification: TITLE = {The \LaTeX\ Companion} would cause an error if a case change is applied. The correct way to specify such a title is:

TITLE = {The {\LaTeX} Companion}

As another example, let us consider the second entry of Fig. 1 and build a 'References' section using the alpha bibliography style, that is, references are labelled by the first three letters of the author's last name. If we remove the braces surrounding the accented letter, the generated key for 'Paul Béra' will be B\'79, that is, an incorrect key. We have to write B{\'e}ra or B{\'{e}}ra in order for this key to be '[Bér79]'. This 'trick' is less used with BibT E X8 since this program deals with 8-bit codes. So:

Paul Béra

Andrzej Zemiański can be put directly within files encoded w.r.t. Latin 1 and Latin 2). However, BibT E X8 does not deal with Unicode [START_REF]The Unicode Consortium: The Unicode Standard Version 4.0[END_REF], it only knows some ascii 4 extensions like Latin 1, Latin 2, etc. Besides, using several encodings within a same job is impossible. 4 American Standard Code for Information Interchange.

MlBibT E X partially solves this problem. When it parses a .bib file, the result can be viewed as an xml tree: we can display either the list implementing the tree w.r.t. sxml conventions, or a string according to xml syntax. We explain how to do that in Fig. 2, and the two kinds of results are given in Fig. 3 & 4 for the authors' names of Fig. 1. It can be viewed that some T E X commands for accents have been expanded. In fact, the functions belonging to MlBibT E X's kernel could be used with Unicode strings, but as far as we know, the only encoding recognised by most Scheme interpreters is Latin 1. That is why '\'{e}' is expanded, not '\'{n}' 5 . Nevertheless, we hope that this situation is temporary: Scheme's future versions should deal with Unicode. In addition, the expansion of T E X commands will be controlled by pattern specifications, as sketched in [START_REF] Hufflen | MlBibT E X: beyond L A T E X[END_REF].

Person and organisation names

When BibT E X processes the value of an AUTHOR or EDITOR field, it divides a family name into four fields: First (for a first name), von (for a particle), Last (for a last name), Junior and recognizes these components regarding to the following possible syntaxes [11, § 4]:

• First von Last • von Last, First • von Last, Junior, First
As suggested by the cases used within this terminology, the words belonging to the von field are supposed to use only lowercase characters, whereas the words belonging to other fields are supposed to be capitalised. In addition:

• there is at least a Last part, so the last word of a part ending with the Last part belongs to this field, even it uses only lower-case characters;

• BibT E X considers that the First and von parts are as big as possible. Examples:

-Henry Rider

Last

MlBibT E X provides a nicer way to specify the parts of a name using keywords, for example:

((log-output-p-pv 'screen))

; All the messages are not put in the .log file, but displayed at ; the screen. ((bibtexkey-alist-pv 'extend))

; All the bibliographical entries are retained. This expression ; is evaluated if the .tex file contains the command \cite{*}.

(define example-flag ; We use 'example-' as prefix, in order to avoid name conflicts (s-parse-bib-file "example.bib")) ; with the other definitions. As another example, the prefix ; used for the functions transforming .bib entries to sxml ; trees is 's-'. Several .bib files can be processed, in turn.

(define example-sxml-tree (and example-flag ; If parsing succeeds, it results in a non-false value. The value of this (s-get-sxml-mlbiblio-tree)))

; variable example-sxml-tree is the representation in sxml ; of the contents of the example.bib file (see Figure 3).

(write example-sxml-tree) ; write can be replaced by a pretty-print procedure: pp in MIT ; Scheme [3, § 14.5] or bigloo [13, § 4.2], pretty-print in PLT ; Scheme [12, § 32]. (srl:sxml->xml example-sxml-tree) ; Returns the value of example-sxml-tree, as a string,

; according to an xml-like syntax.

((s-preambles-pv 'get))

; Returns the concatenation of all the @preamble commands processed, ; as a string. ((s-string-def-alist-pv 'get) example-string)

; If example-string's value -which must be ; a string -has been defined by a @string command, returns the ; corresponding value. Otherwise, returns #f, the false value.

((sxpath "//author") example-sxml-tree)

; Getting the values of all the AUTHOR fields. The ; argument of sxpath is an XPath [START_REF]W3C: xml Path Language (XPath). Version 1.0. w3c Recommendation[END_REF] expression, the ; result is a list whose elements are the selected nodes. (for-each pp ((sxpath "//author") example-sxml-tree))

; Using a pretty-print function ; (cf. infra) for each selected node.

(for-each (lambda (sxml-subtree)

; Displaying each selected node as a (display (srl:sxml->xml sxml-subtree))) ; string, according to an xml-like syntax. ((sxpath "//author") example-sxml-tree)) first => Federico, last => Moreno Torroba a mixed notation being allowed: Bois Joli, first => Jean, von => de la Fontaine du that is, you can use a keyword for a part that has not been specified yet (you cannot define a part twice). Specific abbreviations of first names can be specified by the abbr keyword:

Henry Rider Haggard, abbr => H. Rider

In BibT E X, the only way to specify an organisation name as author is to give only a Last part. MlBibT E X's keywords allow a nicer way to specify such a name and the key for sorting it: org => Bacho\TeX, sortingkey => BachoTeX Last but not at least, MlBibT E X has two connectors for multiple names of authors or editors: 'and' between co-authors (or co-editors) -like in BibT E X -and 'with' between collaborators. For example:

Frank Mittelbach and Michel Goossens with Johannes Braams with David Carlisle with Rowley, Chris A. with Christine Detig with Joachim Schrod -and see the bibliography of this article -the coauthors are to be put before other collaborators.

There exist several 'tricks' to check if the parts of a name are actually what a user wanted to express: an example is using the display functions of MlBibT E X, as shown in Fig. 3 &4.

((author (name (personname (first "Andrzej") (last "Zemia{\'{n}}ski")))) (author (name (personname (first "Paul") (last "Béra")))))

Figure 3: Displaying authors' names as sxml subtrees.

Test of bibliography styles

The bst language, used within BibT E X to design bibliography styles, is based on handling a stack. This is an old-fashioned language, not modular, that is why there is some attempt to replace it by a more modern one: Perl 6 within Bibulus [START_REF] Widman | Bibulus-a Perl xml Replacement for BibT E X[END_REF], nbst 7 [4], close to xslt 8 [START_REF]W3C: xsl Transformations (xslt). Version 1.0. w3c Recommendation[END_REF] in MlBibT E X. However, this last program provides a compatibility mode that allows to run bst programs (without the multilingual features of MlBibT E X, of course). In addition, we can take advantage of Scheme as an interactive interpreter to run such a program step by step, as shown in Fig. 5. So these MlBibT E X functions can help users learn this language.

Organising the making of a 'References' section

In BibT E X, the whole process of making a .bbl file containing references is controlled by the bibliography style. First, the .aux file is analysed and the declarations of the bibliography style:

ENTRY INTEGERS STRINGS FUNCTION MACRO

are read. Then the .bib files are searched (READ statement of bst) -so all the identifiers used within such files must be defined at this time: macros belonging to the bibliography style and defining month and journal names, or user-defined abbreviations introduced in .bib files by means of @string commands -and the bibliography style is applied, by means of the statements:

SORT EXECUTE ITERATE

The source .tex file is never read by BibT E X.

Such a modus operandi would not be suitable for MlBibT E X. The languages used troughout a document depend on this document, due to the static behaviour of the multilingual packages of L A T E X 2 ε 6 Practical Extraction Report Language. [7] (babel [START_REF] Mittelbach | The L A T E X Companion[END_REF]Ch. 9] or polski [1, App. F]). The process is:

• read the .aux file, • search .bib files (undefined symbols are marked and must be defined later, when the bibliography style is applied): the result is an sxml tree,

• if the compatibility mode is used, read the 'old' bibliography style, proceed like 'old' BibT E X and stop,

• otherwise, search the preamble of the source .tex file for the languages used throughout the document and the way (multilingual packages) to handle them,

• assemble the parts of the bibliography style [START_REF] Hufflen | Making MlBibT E X Fit for a Particular Language. Example of the Polish Language[END_REF],

• apply this bibliography style, analogously to an xslt program.

((log-output-p-pv 'screen)) ; Cf. Fig. 2. ((bbl-output-p-pv 'screen))

; Id.

((b-bst-stack-pv 'reset))

; Resetting the stack. (define current-sxml-tree ...) ; The sxml tree resulting from parsing .bib files (see Fig. 2). (define current-entry ...)

; The sxml subtree for the entry being processed.

(b-process-statement 27 current-sxml-tree current-entry) ; This function uses a token of the ; bst language, the current sxml tree, and the entry being processed. A number is pushed into (b-process-statement 4 current-sxml-tree current-entry)

; the stack. (b-process-statement '+ current-sxml-tree current-entry)

; Example of an operation. ((b-bst-stack-pv 'display))

; Should be a stack whose unique element is 31.

 (MlBibT E X uses an additional field, LANGUAGE, unrecognised by BibT E X.)

Figure 1 :

 1 Figure 1: Examples of bibliographical entries.

Figure 2 :

 2 Figure 2: How to duisplay and check the xml tree that result from parsing a .bib file.

Figure 5 :

 5 Figure 5: Using MlBibT E X to run a bst program step by step.

eXtensible Markup Language.

Scheme implementation of xml. TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

In fact, Polish names are partially expanded: for example, the publisher's name for the zemianski2002 entry would get 'Fabryka S{\l}ów' because 'ó' belongs to the Latin 1 encoding.

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

TUGboat, Volume 0 (2060), No. 0 -Proceedings of the 2060 Annual Meeting

Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has written the Polish translation of the abstract.