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Abstract: 
 
Submicron structured (grain size≈500nm), dense (Bi0.5Na0.5)0.96Ba0.04TiO3 ceramics were 

obtained from sol-gel autocombustion nanopowders by hot-pressing (700-950⁰C) and 

subsequent recrystallization (1000-1050⁰C). Electromechanical coefficients were obtained by 

analysis of the resonance spectra of thin disks using Alemany et al. software. The real part of 

the room temperature set of coefficients of the best performing materials (εσ
33=(416 –16 i), 

d31= (-22.68 + 0.55 i)pC/N-1, kt= 44.5%, kp=21.1% ) can be compared with those of coarse-

grained ceramics and d33 (95 pC.N-1) is higher. Shear related coefficients were obtained from 

thickness poled and length excited plates (εσ
11= (402 –89i), d15=(108.3 – 21.4 i) pC.N-1 and 

k15=39.2%). At the depolarization temperature, Td=153⁰C, the dielectric loss, tanδ(T), of poled 

samples shows a maximum and the planar resonance virtually vanishes. Shear resonance of 

thickness-poled plates and weak planar electromechanical resonance are observed above Td.

The relaxor behaviour extends up to the isotropization point, Ti=238⁰C. This can be understood 

as due to the coexistence of the room temperature ferroelectric phase in the stability range of 

the low temperature non-polar phase at zero field, between Td and Ti.

PACS: Dielectric materials, oxides, 77.84.Bw; piezoelectric materials, 77.84.-s; electromechanical 
resonance, 77.65.Fs; materials treatment effects on Microstructure, 81.40.-z; Structure of crystalline 
solids, 61.66.-f 
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Introduction 

Within the expanding area of the study of lead-free piezoelectrics, the (1- x) 

(Bi0.5Na0.5)TiO3 -xBaTiO3 (BNT-BT) (BNBT100x) solid solution system [1] is being an area of high 

interest due to the peculiarities of its crystal structure [2]. Recently [3,4] it has been found that 

the phase diagram of unpoled ceramics differs from the one of poled ceramics, due to the 

electric-field induced phase transition observed for compositions near the MPB in BNT-based 

solid solution systems [5-8]. The nearly vertical Morphotropic Phase Boundary (MPB) 

composition, at x≈0.06 for unpoled ceramics, can be shifted towards lower x values by the 

action of an electric field [2,7], which induces a ferroelectric phase. Due to these peculiarities, 

the electromechanical properties at the MPB are not as high as expected by similitude with the 

Pb(Zr,Ti)O3 system. Another drawback of the MPB composition for some applications is that 

depoling temperature, at which most of the electromechanical activity vanishes by a 

mechanism still unclear, is low (Td ≈100⁰C) [9]. 

When moving away from the MPB composition towards the (Bi0.5Na0.5)TiO3 side of the 

phase diagram, Td increases approaching that of BNT (Td ≈187⁰C ) [10] and the 

electromechanical coupling factors show higher anisotropy, i.e., higher ratio kt/kp for the 

thickness and radial modes of thin disks, thickness poled [11]. In such a range of compositions, 

the reported electromechanical characterization in the ultrasonic range for x=0.04 (BNBT4) 

ceramics is incomplete, lacking parameters related to shear modes of resonance. Shear 

coefficients have a key importance for 3D modeling of piezoceramics by numerical methods 

[12] due to the increasing number of their applications that are based on shear modes.  

An issue in the preparation of BNBT ceramics is the loss of volatiles (Bi, Na) at the high 

sintering temperatures required (T>1100⁰C), which leads to a.c. losses and d.c. conductivity 

that limits the poling and, consequently, the piezoelectric performance of the ceramics [10]. 

Sol-gel combustion synthesis [13] provides highly reactive nanopowder at moderate synthesis 

temperature (500⁰C). Dense, submicron structured BNBT6 ceramics with good stoichiometry 

and properties that can be compared with those of coarse grain ceramics have been obtained 

by hot-pressing powder produced by sol-gel combustion and further recrystallization at 

T≤1050⁰C [14,15]. Processing of ceramics from nanopowders allows nowadays to obtain fine 

grain ceramics. These are of interest for both the basic studies of size-effects in ferroelectrics 

and for their use as high frequency ultrasonic transducer materials, since they allow the 

miniaturization of the components.  



Submicron structured BNBT4 ceramics from nanopowder, prepared by hot-pressing and 

recrystallization, are studied in this work as candidates for ultrasonic transducer materials. 

Electromechanical characterization in the ultrasonic range is carried out from the resonances of 

thin disks, thickness poled and excited, and thickness-poled shear plates, length excited. 

Alemany et al. software [16,17,18] is here used to analyze the impedance spectra at resonance 

and to calculate complex material coefficients. The thermal evolution of the dielectric 

permittivity and losses, as well as the one of the planar and shear modes of resonance, is also 

determined to evaluate the working range of the material. 

 

Experimental method 

(1-x) (Bi0.5Na0.5)TiO3-xBaTiO3 with x=0.04 (BNBT4) nanometric powder was synthesized 

by a citrate, nitrate sol-gel auto-combustion method, as explained elsewhere [13]. In this 

process, the pure perovskite phase is directly obtained by heating the gel at 500ºC. Pellets of 

the powder of 15 mm diameter and 1 mm thickness were obtained by uniaxial pressure 

forming followed by cold isostatic pressing at 200 MPa. A combination of hot-pressing at low 

temperature (700-950⁰C for 2h, at 20MPa in air, using heating and cooling rates of 3⁰C.min-1)

and subsequent recrystallization at higher temperature (1000 and 1050⁰C for 1-2h in air) has 

been applied to sinter the green pellets. The BNBT4-1 to 3 ceramics studied were obtained with 

variable grain size and density to determine the microstructure leading to the optimum 

properties. Ceramics were characterized using X-ray diffraction (XRD, Siemens D500) and 

scanning electron microscopy (FEG-SEM, NOVA NANOSEM 230 with beam deceleration 

module) and their density was obtained by Archimedes method. Computer assisted 

quantitative microstructural characterization (MIP45 Digital Image System) was carried out by 

analysis and measurements of images of SEM and optical microscopy (OM, Leitz Laborlux 12 

MES/ST). Both mean grain and pore size (<G> and <P>) of the ceramics were determined as the 

equivalent diameter to a circular shape (Deq=4(S/π)1/2, where S=grain or pore surface area) and 

from the analysis of the measured lognormal distributions of equivalent diameter [19] that also 

provides the corresponding standard deviations (σG and σP). 

Sintered disks were ground to a thickness (t) to diameter (D) ratio below 1/20 (typically 

t=0.7 mm and D=15 mm) and Ag electrodes were attached at their major faces for the electric 

poling and for the impedance measurements at the radial and thickness resonance modes. 

Rectangular plates of lateral dimensions (L,w) to thickness (t) aspect ratio below 1/10 (typically 

t=0.7 mm and L,w= 8-9 mm) were also cut from the sintered ceramic disks, electroded and 



thickness poled. Poling electrodes were mechanically removed and a new pair of electrodes 

was applied on two of their perpendicular faces for the impedance measurements. 

Owing to the reduced d.c. ceramic conductivity, it was possible to carry out poling of 

disks and plates in a silicone oil bath at Tp=150-180⁰C up to fields of 45 kV.cm-1. Hot-poling took 

place for 30 minutes and the samples were cooled to room temperature with the field applied. 

The d33 piezoelectric coefficient was measured in a Berlincourt-meter.  

Piezoelectric coefficients of ferroelectric ceramics are currently calculated using 

standard methods [20,21] from the measurements of complex impedance data at the 

electromechanical resonances. To overcome the well-known limitations of standard methods 

when dealing with material losses, alternative methods have been developed and will be used 

in this work. Fine-tuning of the thickness of the shear plates was carried out to minimize the 

coupling of the fundamental shear mode with other plate modes [12].  

Complex impedance measurements at resonance were carried on using a HP4192A 

impedance analyzer controlled via a GPIB-PCIIA (National Instruments) interface board. 

Alemany et al. software [16,17,18] was used here for the calculation of the complex 

piezoelectric, elastic and dielectric coefficients in each mode of resonance, as well as for the 

determination of the corresponding electromechanical coupling factors and frequency 

numbers. After the calculation of the complex parameters, the resonance spectrum is 

reconstructed as an accuracy test of the final set of calculated coefficients, quantified by the 

regression factor (R2) of such reconstruction.  

Impedance measurements as a function of the temperature were carried out at various 

frequencies in the range between 1kHz and 1MHz with a HP4194A analyzer. The heating and 

cooling rates were 2⁰C/min. From these experimental data and the geometric factor 

thickness/area, the relative dielectric permittivity ε*= ε´-iε´´, and dielectric losses, tanδ= ε´´/ ε´ 

were obtained. This experimental set-up was also used for determination of the resonance 

spectra as a function of temperature. 

 

Experimental results 

Fig.1 shows the XRD patterns of the unpoled ceramics. All of them have a single phase 

distorted perovskite type structure to the resolution of the technique. Peaks are indexed for a 

R3c rhombohedral symmetry, BNT-like, in hexagonal description (JCPDS file #70-9850). 

However, due to proximity to the MPB, signs of mixed phases [7] are observed in the unpoled 

samples. Fig. 2 shows, as an example, two selected 2θ ranges in the XRD patterns of the BNBT4-



1 ceramic, around 40°2θ the doublet (006),(202) and around 46.5°2θ the (024) peak, before 

and after  poling. A clear field-induced phase transition with change of crystal symmetry is not 

observed in any of the ceramics, but the (024) peak becomes sharper, i.e., the rhombohedral 

character is enhanced. The texture change due to domain orientation during poling is observed 

by the change in relative intensity in the (006),(202) doublet. These changes are in agreement 

with recently reported results [7]. 

The results of the quantitative characterization of the microstructure of the samples 

(relative density and number of objects measured in the micrographs, average values and 

standard deviation of the distributions) are reported in Table I. Fig. 3 shows the  SEM images 

from which the values of average grain size, shown in Table I, were calculated. Fig. 4 shows an 

example of the intermediate steps in the quantitative microstructural analysis and size 

distributions of grain (from SEM images) and pore (from OM images). 

Fig. 5 shows the resonance spectra (resistance and conductance peaks, real parts of the 

complex impedance, Z*=R+iX, and admittance, Y*=G+iB, respectively) of the radial or planar (Fig. 

5(a)) and thickness (Fig. 5(b)) modes of, thickness poled and excited, thin disk and the shear 

mode of, thickness-poled and length excited, shear plate (Fig. 5(c)) of BNBT4-2 ceramic. Both 

the experimental (symbols) and reconstructed spectrum (lines) are shown for each resonance. 

Table II summarizes the relative density, range of grain size, d33 from Berlincourt-meter 

and the piezoelectric (h33, e33, d31, g31), elastic (c33
D, c11

D, s11
E, s12

E, s66
E) and dielectric (εS

33, ε
σ

33)

linear coefficients, including all losses, which are calculated from the measured radial and 

thickness resonances of thin disks. The Poisson ratio, electromechanical coupling factors (kp, kt)

and frequency numbers (Np, Nt) are shown in Table II. Similarly, Table III summarizes the 

material data (e15, d15, h15, g15, c11
D,s55

E, εS
11, ε

σ
11, k15, N15) obtained from the shear resonance of 

thickness poled plates. Tables II and III show also published data for dense BNBT6 and BNBT4 

ceramics obtained by different processing routes [11, 22, 23] and for BNT ceramics [10]. 

Fig. 6 shows the real part of the relative dielectric permittivity and the dielectric loss as a 

function of the temperature for the BNBT4-1 sample. Results are shown for the unpoled 

ceramic, both measuring on heating and cooling, as well as for the poled ceramic measured on 

heating and for the thermally depoled ceramic measured on cooling. The observed differences 

can be discussed in terms of the structural changes induced by the poling field. 

Fig. 7 shows for BNBT4-2 the evolution with the temperature of conductance peak, 

characteristic frequencies and electromechanical coupling factors of the planar resonance of a 

thin disk and the shear resonance of a thickness-poled plate. 



Discussion 

I. Electromechanical properties at room temperature 

As shown in Tables I to III, the properties of dense and submicron structured BNBT4-2 

and 3 ceramics are in good agreement with previously reported values for coarser grained 

BNBT4 ceramics prepared at higher temperatures [11]. BNBT4-1 ceramic shows similar grain 

size, but lower relative density (Table I) and, therefore, higher porosity, than BNBT4-2 and 3. 

This results in higher compliance and mechanical and dielectric losses, as well as lower coupling 

coefficients (Table II). The optimum set of properties is found for the combination of submicron 

grain size and low porosity of BNBT4-2 (Tables II and III). This can be understood as a 

consequence of a good stoichiometry, arising from the low processing temperatures, and 

homogeneous microstructure (Figs. 1 and 3) that reduces conductivity and losses and allows 

efficient poling at relatively high temperature.  

BNBT4-2 and 3 ceramics show values of the properties in between those of BNBT6 and 

BNT composition. The dielectric permittivity (εσ
33) is lower than in BNBT6 and higher than in 

BNT; the thickness coupling factor and electromechanical anisotropy are higher (kt/kp= 2.2) 

than in BNBT6 (kt/kp= 1.5), approaching the value of BNT, whereas d33 piezoelectric coefficient 

is higher than in BNT, approaching the value of BNT6 (Table II). 

The comparison of the data obtained in submicron structured ceramics from 

nanopowder evidences that the dielectric losses, as well as the piezoelectric e33, d31, g31 are 

lower for the BNBT4 composition than for the BNBT6. Also, when comparing real values of all 

elastic sE
ij coefficients and the frequency numbers it is observed that BNBT4 ceramic is similar 

to BNBT6 from the mechanical point of view, but the losses are also lower. 

Table III shows the characterization for the shear mode in which, again, we found that 

values of BNBT4 properties are intermediate from those of BNBT6 and BNT. The free 

permittivity (εσ
11), the shear coupling factor and the d15 piezoelectric coefficient of BNBT4 are 

higher than those of BNT, approaching the values of BNBT6. 

Besides these interesting properties and just as an example among the many studies on 

doping BNBT ceramics to enhance electromechanical performance, CaO/MnO co-doping [24] 

has shown efficiency in increasing d33, kp and kt . At the same time the depolarization 

temperature is almost unchanged, the sinterability increases and the grain size of the ceramics 

is reduced. Therefore, routes for further improvement of the properties of pure BNBT4 

ceramics for ultrasonic transduction purpose by doping are avaliable. 

 



II. Temperature evolution of the permittivity and electromechanical properties 

The curves of the real part of the dielectric permittivity as a function of temperature 

have a maximum at Tm= 275⁰C and are dispersive up to ~238⁰C on heating and ~225⁰C on 

cooling (Fig. 6). This upper limit temperature for the dispersive region is often ascribed in BNT-

based compositions [1] to TR-T, the transition temperature from the room temperature 

ferroelectric (rhombohedral) (FE(R)) phase to the antiferroelectric (tetragonal) (AFE(T)) phase 

by similitude with BNT. However, it resembles more to the isotropization point (Ti) of the 

optical properties of  BNT (TR-T <Ti< Tm), which is associated to a local maximum in the first 

derivative of the real part of the dielectric permittivity vs. temperature curve dε´/dT [25]. Early 

interpretation of Ti on cooling involved the percolation phenomena of the AFE regions that 

begin to form at Tm within the ferroelastic twins formed in the paraelectric-ferroelastic (PE-

Felas) phase, stable above Tm. This ferroelastic twins originates on cooling from the 

paraelectric-paraelastic (PE-Pelast) cubic phase, stable above 540⁰C for pure BNT. The 

percolation of the AFE regions creates long-range AFE order in the crystal. On heating, the 

complete separation of AFE regions at Ti can only take place when a critical density of PE-Felast 

interlayer takes place. This requires a higher temperature, thus the observed thermal hysteresis 

of Ti. It is clear that the temperature of formation on cooling and destruction on heating of the 

long range ordered AFE phase will correspond to the most unstable state of the crystal and thus 

to a dε´/dT local maximum. The AFE character of the BNT-based compositions is under 

discussion. The term Low Temperature Non-Polar at Zero Field phase (LTNPZF), which would 

account with the pinched hysteresis loops characteristic of the phase taking place above TR-T,

seems more appropriated [26]. The depolarization temperature for BNBT4 is the temperature 

at which the ferroelectric long-range order and macroscopic ferroelectric properties disappear, 

TR-T or, more properly, TFE-LTNPZF. A recent work [3] has coined the term antiferroelectric-relaxor, 

which will account with the dielectric dispersion found in the range of stability of this phase, 

between TFE-LTNPZF and Ti.

On heating of the poled sample, Td = TFE-LTNPZF is revealed by the sharp jump in the real 

part of the permittivity and the maxima of the losses at ~153⁰C for BNBT4 (Fig. 6), in good 

agreement with previous results from depolarization current [11]. Whereas there are not 

differences in the curves of the real part of the permittivity versus temperature measured on 

cooling , the difference between measurements on heating of the samples before and after 

poling is clear, being εσ
33´(poled) > ε´(unpoled) in the interval between Td= TFE-LTNPF and Ti (Fig. 

6). 



As shown in Fig. 7, for Td ≈150⁰C we found fs ≈ fp in the resonance spectrum of the planar 

mode as a function of the temperature. The electromechanical coupling factor calculated using 

standard methods vanishes at Td. However, a weak resonance spectrum was observed up to 

higher temperatures and it is possible to obtain kp ≠0 up to T≈230⁰C using Alemany et al. 

software (Fig. 7). This residual macroscopic piezoelectricity indicates that, although the long-

range FE order disappear at Td , it may exist a medium-range order [27] by coexistence of FE 

clusters in the LTNPZF phase above Td, also reflected in the differences of the permittivity 

before and after poling between TFE-LTNPF and Ti. Such a medium-range order progressively 

disappears as the temperature increases towards Ti. For BNT [28] and BNT-BKT-BT [5] ceramics 

a weak piezoelectric activity above TFE-LTNPZF=200⁰C and 177⁰C, respectively, was also previously 

reported. 

When the shear resonance is studied in a similar manner, the observed depolarization 

temperature, as defined by the point in which fs ≈ fp, is found at a higher temperature (T d
SH

 ≈

175⁰C) (Fig. 7). The electromechanical anisotropy here observed reveals the complexity of the 

depolarization process of these samples. This anisotropy could arise from a texture developed 

during hot-pressing or by a mechanism of progressive dissapearance of the FE clusters that 

reduces first the polarization extension mechanisms and, at higher temperature, the 

polarization rotation mechanisms associated to the shear mode. Dielectric anisotropy has been 

reported for BNT ceramics [10]. The full explanation of the mechanism underlying these effects 

exceeds the purpose of this work and demands additional structural information. It is clear, 

however, from the results in Fig. 7 that the working range of BNBT4 ceramics extends to higher 

temperatures than the currently reported Td when the applications are based on shear 

resonances.    

 

Conclusions  

Submicron structured, dense (Bi0.5Na0.5)1-xBaxTiO3 ceramics with x=0.04 were obtained 

and studied as candidates for lead-free ultrasonic transducer materials. For BNBT4 ceramics, 

the free permittivity (εσ
33, εσ

11), the kt and k15 coupling factors and electromechanical 

anisotropy (kt/kp) are higher than for BNBT6. The d33, d31 and d15 piezoelectric coefficient are 

higher in BNBT4 than in BNT, approaching the values for BNT6. The comparison of ceramics 

from sol-gel auto-combustion nanopowder also evidences that BNBT4 ceramics have lower 

dielectric, mechanical and piezoelectric losses than BNBT6 ceramics. BNBT4 has higher 

depolarization temperature than BNBT6, which is T d ≈150⁰C when determined from dielectric 



loss measurements in poled samples and thermal evolution of the radial mode spectrum. 

Finally, an electromechanical anisotropy was observed during the thermal depolarization. The 

depolarization temperature from the evolution of the shear mode spectrum is found to be 

Td
SH≈175⁰C. 
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Figure captions 
 
Fig. 1. XRD pattern of BNBT4 ceramics. 
 
Fig. 2. Selected peaks of the XRD pattern of the BNBT4-1 (HP700⁰C-2h+1050⁰C-1h)  ceramic 
before and after poling : (a) around 40°2θ  the doublet (006),(202) and (b) around 46.5°2θ the 
(024) peak. 
 
Fig. 3. SEM micrographs of ceramic surfaces polished and quenched from 800⁰C to room 
temperature: (a) BNBT4-1 (HP700⁰C-2h+1050⁰C-1h), (b) BNBT4-2 (HP800⁰C-2h+1050⁰C-1h) and 
(c) BNBT4-3 (HP950⁰C-2h+1000⁰C-2h). 
 
Fig. 4. Steps of the process of quantitative microstructural characterization of the BNBT4-2 
(HP800⁰C-2h+1050⁰C-1h) ceramics: original grey level images from microscopy, objects 
identified in the corresponding digital images for the measurement of their areas and 
lognormal distributions of grain (Figs. (a)-(c)) and pore (Figs. (d)-(f)) equivalent diameters. 
 
Fig. 5. Resonance spectra of BNBT4-2 ceramic thin disk (Figs. (a) and (b)) and shear plate (Fig. 
(c)). Experimental (symbols) and reconstructed (lines) spectra after calculation of coefficients by 
Alemany et al. software are shown for all resonances.  
 
Fig. 6. BNBT4-1 ceramic: dielectric permittivity, real part and losses, of unpoled samples on 
heating and cooling (Figs. (a) and (b)) and after poling (Figs. (c) and (d)) on heating and on 
cooling of the thermally depoled sample. Arrows indicate the increasing measurement 
frequency (1, 2, 5, 10, 50, 100, 200, 500 and 1000 kHz). 
 
Fig. 7. Thermal dependence of the conductance peaks (Figs. (a) and (b)) and of the 
characteristic frequencies and electromechanical coupling factors for the radial mode of a 
thickness poled and excited thin disk (Fig. (c)) and the shear mode of a thickness-poled and 
length excited shear plate (Fig. (d)) of BNBT4-2.  
 

Table captions 
 
Table I. Results of the quantitative characterization of the ceramic microstructure: density and 
characteristics of the lognormal distributions of equivalent diameters of grains (from SEM 
images) and pores (from OM images). 
 
Table II. Piezoelectric, elastic and dielectric parameters, electromechanical coupling factors and 
frequency numbers, obtained from measurement of the planar (P) and thickness (T) resonances 
of thin disks of BNBT4 ceramics, poled and excited in thickness. Data from the literature are 
also shown for comparison.  
 
Table III. Piezoelectric, elastic and dielectric parameters, as well as electromechanical coupling 
factors and frequency numbers, obtained from the shear resonance of plates of BNBT4 
ceramics, thickness poled and length excited. Data from the literature are also shown for 
comparison.  
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Fig. 1. 
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Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5 
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Fig. 6
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Fig. 7.  
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