Numerical Approximation of the Masser-Gramain Constant to Four Decimal Digits: delta=1.819... - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2013

Numerical Approximation of the Masser-Gramain Constant to Four Decimal Digits: delta=1.819...

Résumé

We prove that the constant studied by Masser, Gramain, and Weber, satisfies 1.819776 < delta < 1.819833, and disprove a conjecture of Gramain. This constant is a two-dimensional analogue of the Euler-Mascheroni constant; it is obtained by computing the radius rk of the smallest disk of the plane containing k Gaussian integers. While we have used the original algorithm for smaller values of k, the bounds above come from methods we developed to obtain guaranteed enclosures for larger values of k.

Dates et versions

hal-00644166 , version 1 (23-11-2011)

Identifiants

Citer

Guillaume Melquiond, Werner Georg Nowak, Paul Zimmermann. Numerical Approximation of the Masser-Gramain Constant to Four Decimal Digits: delta=1.819.... Mathematics of Computation, 2013, 82, pp.1235-1246. ⟨10.1090/S0025-5718-2012-02635-4⟩. ⟨hal-00644166⟩
468 Consultations
0 Téléchargements

Altmetric

Partager

More