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Abstract

In numerous contexts, one has to forecast a full curve from some ex-
planatory variables. For that purpose, one aims at deriving simultane-
ous confidence bands. In this article theoretical and numerical results
on the maximum of Gaussian sequences are used to construct those
simultaneous confidence bands.

Keywords : Gaussian vectors, maximum of Gaussian sequences, simulta-
neous confidence bands, thresholding, load curve.

1 Introduction

In curve prediction, one is generally interested in deriving simultaneous
confidence bands: regions in which the entire curve lies with some given
probability. Simultaneous confidence bands have been widely studied in
the literature and the topic has known an incredible expansion since the
first articles published in the early fifties. The first studies have been con-
ducted in the context of linear models by Tukey [26] and [24]. In the last
paper, the construction of the simultaneous confidence bands relies on the
Fisher distribution and the confidence region is an ellipsöıd. The principle
of Scheffé’s method has been also generalized to non linear regression and
usually relies on Bootstrap and asymptotic results (see e.g. the articles of
Claeskens et al. [4], Hall [10] and the references therein). These techniques
have been also extended and adapted for various problems (see e.g. estima-
tion of distribution [3,11], probability functions [5], elements of the spectral
density matrix of autoregressive processes [23], approximation of an integral
by Monte Carlo method [14]...). Here we introduce a new technique based
on the maximum of Gaussian processes whose distribution is estimated by a
MCQMC algorithm proposed by Alan Genz ( [8,9]) on one hand and Sidak’s
inequality on the other hand, which seems to be new.

We implement this technique in the numerical context of load curve pre-
diction: power producers like EDF, the electrical French group, use the
information contained in the load curves of their customers to plan elec-
tricity production and to offer them an appropriate tarification. Since this
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information is not available for all the clients, EDF needs to estimate these
load curves from a learning sample. To appreciate the accuracy of these
estimations we are interested in deriving precise simultaneous confidence
bands. For that purpose, we construct a model (involving three main pa-
rameters, one of which is the weekly cycle) to represent precisely the load
curves from explanatory variables. After a linear regression of the curves
on the explanatory variables, we use the proposed technique. Obviously,
this technique may apply to any context in which one need to estimate the
evolution of some observed quantity during the time by giving simultane-
ous confidence bands. As a consequence, the construction of such bands
represents a great challenge in numerous and various applied domains and
particularly in industry (e.g. signal detection by Hall et al. [12] or Macskassy
et al. [18]) or biology (e.g. Zouhourian et al. [27])...

The article is organized as follows. Section 2 describes the general framework
and the procedure to construct the estimates and to derive the simultaneous
confidence bands. Section 3 is dedicated to the computation of the maximum
of the absolute value of a Gaussian series. Section 4 presents the framework
of the EDF context, while numerical results are given in Section 5. The
article ends with conclusion and prospects in Section 6.

2 Estimation of curves in high dimension using
explanatory variables

In this section, we consider a family of curves Rk(x) ∈ R associated to the
individual k (k = 1, . . . ,K) and for a generic time x, integer in X = 1, . . . ,x.
In the EDF context detailed in Section 4, it can be for example

• the entire (annual) load curve (LCk(t))t of the customer k, k = 1, . . . ,K,
over time t = 1, . . . , 17520. t represents any half-hour in the year.

• the centered and standardized week load curve (Sk(h))h of this cus-
tomer, over time h = 1, . . . , 336. h represents any half-hour in the
week.

• the mean of every week load curve (Mk(w))w of this customer, over
time w = 1, . . . , 52. w represents any week in the year.

2.1 Linear regression

We assume that each curve Rk(.) belongs, up to an error term, to some
linear functional space i.e.

Rk(x) =
∑
j∈J

aj
kφj(x) + εk(x) (k = 1, . . . ,K) (1)
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where εk(x) is an extra term assumed to be a Gaussian white noise and
(φj)j∈J is an orthonormal basis. We denote J = card(J ).

We do not observe directly the coefficients aj
k but

ãj
k = aj

k + βj
k, k = 1, . . . ,K, j = 1, . . . , J, (2)

where (βj
k) is an extra error term.

Moreover we suppose that to each individual are associated P explanatory
variables and that for each j a linear regression model is used:

aj
k =

P∑
p=1

αj
pVk,p + ηj

k = V (k)αj + ηj
k, k = 1, . . . ,K, (3)

where V = (Vk,p)(k=1...K,p=1...P ) is the matrix of the regression model and
V (k) the k-th row of V . Thus we have J = card(J ) linear models of the
form (3) that can be rewritten as

aj = V αj + ηj , for j = 1, . . . , J. (4)

Eventually,

ãj
k = V (k)αj

k + ηj
k + βj

k, k = 1, . . . ,K, j = 1, . . . , J. (5)

Remark 1 • In most cases, the model will contain a constant: Vk,1 ≡ 1.

• We assume that the errors of the J models, defined by (3), are in-
dependent with different variances. Since εk(x) is a Gaussian white
noise, the errors of the J models, defined by (5), are also independent
with different variances σ2

j .

• Linear regression is only an example; more complicated models, as
nonlinear regression, can be studied at the cost of the use of some
asymptotic results.

Let α̂j
p the least square estimator of αj

p, j = 1, . . . , J and p = 1, . . . , P . The
estimation of aj

k is then given by:

âj
k =

P∑
p=1

α̂j
pVk,p = V (k)α̂j . (6)

with Var((âj
k)k=1,...,K) = σ2

j V (V ′V )−1V ′ and obviously an estimation or a
prediction of the response Rk(x) is

R̂k(x) =
∑
j∈J

âj
kφj(x), (7)
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with
Var

(
R̂k(x)

)
=

∑
j∈J

φ2
j(x)σ2

j

(
V (V ′V )−1V ′)

k,k
, (8)

where
(
V (V ′V )−1V ′)

k,k
is the (k, k)th element of

(
V (V ′V )−1V ′). Note that

R̂k(x) is an unbiased estimator of Rk(x).

2.2 Non simultaneous confidence bands

Each estimation σ̂2
j of the variance σ2

j will be considered as exact because of
the size of the samples. The construction of a non simultaneous confidence
interval for Rk(x) relies on the following fact

Zk(x) :=
R̂k(x) − Rk(x)√∑J

j=1 φ2
j (x)σ̂2

j (V (V ′V )−1V ′)k,k

∼ N (0, 1),

thanks to the CLT. As a consequence, if zα is the α quantile of the standard
Gaussian distribution, we have for each (x, k)

|Zk(x)| < z1−α/2 ⇔ Rk(x) ∈ R̂k(x)±z1−α/2

√√√√ J∑
j=1

φ2
j (x)σ̂2

j (V (V ′V )−1V ′)k,k.

with probability 1− α and we get confidence intervals for Rk(x) as x varies
which are not simultaneous.

2.3 Simultaneous confidence bands

In this section, our aim is to construct simultaneous confidence bands for
each individual k i.e. to determine for the given k ∈ K a fractile function
F k

1−α(x) such as

P

{
∀x ∈ X : Rk(x) ∈

[
R̂k(x) ± F k

1−α(x)
]}

= 1 − α.

Different techniques to build simultaneous confidence bands are encountered
in the literature as mentioned in the introduction; e.g. Scheffé method which
is not tractable in our framework since we do not require simultaneous con-
fidence bands both in k and x. We propose in this section a new technique
based on the supremum of Gaussian random variables, see Section 3.

Under the previous hypothesis and with the same notation, for all k, remind
that (Zk(x))x defines a Gaussian centered and standardized sequence with
covariance given by:

Cov
(
Zk(x), Zk(x′)

)
=

∑J
j=1 φj(x)φj(x′)σ̂2

j√∑J
j=1 φ2

j (x)σ̂2
j

∑J
j=1 φ2

j(x′)σ̂2
j
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So if we are able to derive the value S1−α such that

P

(
sup

x=1,...,x
|Zk(x)| ≤ S1−α

)
= 1 − α,

we will get simultaneous confidence bands as required. The distribution of
the supremum of a Gaussian process is of great interest but very few exact
theoretical results can be found in the literature.

3 The computation of the maximum of the abso-
lute value of a Gaussian series

In the following Z1, . . . , Zn consist of n observations of a centered Gaussian
series which is not necessarily stationary but has a constant variance. With-
out loss of generality, we assume that this variance is 1. We are interested
in the distribution of the variables

M∗
n := sup

i=1,...,n
|Zi| or Mn := sup

i=1,...,n
Zi.

3.1 Classical inequalities

In this section we review classical bounds. The first one developed by
Knowles in his 1987 Stanford dissertation is based on the work of Naiman
[22] and Hotelling [13] on the volume of tubes. Define the correlation be-
tween Xj−1 and Xj by ρj and the length of the sequence (X1, . . . ,Xn) by
L :=

∑n
j=2 arccos(ρj). The length-based bound on P{Mn ≥ y} is then

P{Mn ≥ y} ≤ 1 − Φ(y) + e−y2/2 L

2π
(9)

(where Φ is the distribution function of a standard Gaussian variable) and
usually beats the crude Bonferroni bound (Miller [19]) which is known to be
rough:

P{Mn ≥ y} ≤ n(1 − Φ(y)). (10)

The following bound (called W in the sequel) is a natural improvement of
the length-based one and have been developed by Efron [7]. It still involves
the correlation between two successive variables:

P{Mn ≥ y} ≤ 1 − Φ(y) + φ(y)
n∑

j=1

Φ(yLj/2) − 1/2
y/2

(11)

where Lj = arccos(ρj) and φ is the density function of a standard Gaussian
variable.
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Finally, Sidak’s inequality [25] (called Sidak in the sequel) applies in any
context (in particular when the correlation structure is unknown) and shows
that under weak conditions the independent case is the worst case in the
sense that

P{M∗
n ≤ y} ≥ (2Φ(y) − 1)n (12)

So using the critical value for an independent sequence will always lead to
a conservative test.

For very large n one must use an efficient version of the quantile function
of the normal distribution. This is in general easy and it is the case for
example in Matlab with the function norminv.

3.2 n ≤ (say) 500 or 1000: almost exact calculation by MC-
QMC

In such a case the MCQMC Matlab program QSIMVNV written by Genz [8]
allows the direct calculation of Gaussian probability over hyper-rectangle for
dimension up to 500-1000. It consists of transforming the integral into an in-
tegral over the hyper-cube [0, 1]n and then using quasi-Monte-Carlo (QMC)
integration with lattice rule. In a final step the procedure is randomized
using a Monte-Carlo quasi-Monte-Carlo (MCQMC) method. See Genz [8]
or Azäıs and Genz [1] for more details. The routine QSIMVNV provides an
estimation of its numerical error.

3.3 Asymptotic band from extreme value

It is well known [17] that under very weak assumptions, for stationary se-
quences,

P
(
an(Mn − bn) ≤ y

) → exp(− exp(−y)) as n → +∞ (13)

with

{
an := (2 log n)

1
2

bn := (2 log n)
1
2 − 1

2(2 log n)−
1
2 (log log n + log 4π) .

Using symmetry, a bound can be deduced for M∗
n using the α/2 bound for

Mn. These results can be easily extended to non-stationary series using
the tools of Azäıs and Mercadier [2] (In fact this paper considers the more
complicated case of random processes). The quality of this approximation
is considered in Section 3.4.

Note that in the case where n is very large, the considered levels are very
high and some small deviation from normality can heavily affects the results.
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Figure 1: For the AR(1) series with correlation 0.9, comparison of the 5%
critical values computed with Sidak, W and the exact algorithm (from top
to bottom) as a function of the length of the series.

Remark also that the crude approximation
√

2 log n is often used in practice.

3.4 Numerical experiment

The first application considers the comparison of the exact calculation of
Genz with Sidak and W for an AR(1) series with parameter 0.9. Here
the correlation between two successive variables can easily be determined.
Figure 1 compares the 5% critical values as a function of n. It shows clearly
that the exact calculation provides an improvement for small values and
that improvement decreases with the size. Moreover W is more accurate
than Sidak. Table 1 gives three examples.

Table 1: Numerical experiment

value of n 10 500 900
Exact bound 2.56 3.74 3.90

Sidak 2.80 3.88 4.02
difference 0.24 0.14 0.12

W 2.64 3.79 3.93
difference 0.08 0.05 0.03
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Figure 2: For the 5% critical value, comparison of Extreme, Sidak, W (with
ρ = 0.8) and

√
2 log(n) (from top to bottom) for large values of n

The interpretation of Figure 2 is not easy since the true result is not known
and may depend on the particular covariances of the processes. Neverthe-
less we believe that this dependence is small because the extreme result
(Extreme) shows it is true asymptotically. The main points are

• Sidak is better than Extreme since it controls the level and is smaller
than Extreme.

• There is some coherence between Extreme, W and Sidak and we be-
lieve that for most processes the true result is close to these three. As
a consequence the

√
2 log n approximation seems very crude.

• Our conclusion is that for very large n, Sidak and W are the safer
choices and give very similar results. In the application section we
have chosen Sidak for simplicity.

4 Application to the EDF load curves

4.1 General settings

As mentioned in the Introduction, we apply the technique presented in the
article in the context of EDF load curves prediction. A load curve is a
chart showing the amount of electrical energy that a customer uses over the
course of time. Power producers like EDF, the electrical French group, use
this information to plan how much electricity they need to make available
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at a given time. But this load curve is only available for customers with
automated meter reading. For the others, it must be estimated by EDF in
order to know their profitabilities and offer them an appropriate setting of
prices. In this EDF context, different approaches have been already stud-
ied: a non parametrical approach developed by Misiti et al. [20], a wavelet
analysis by Misiti et al. [21].

To achieve this prediction problem, we used a data set of 917 customers
containing for each of them their annual load curve valued every half-hour
(which corresponds to 17520 points) and some explanatory variables (17
exactly). These explanatory variables are of different nature: qualitative
(activity sector, geographical localization...) and quantitative (total an-
nual consumption, ratio of consumption summer/winter, ratio rush/slack
hours...). Customers are in general firms and will be denoted as ”individu-
als” in the sequel. We split data into a learning sample of 832 individuals
and a test sample of 85 individuals. These sizes have been chosen heuristi-
cally.

For the sake of simplicity, we remove the index k of individual in the se-
quel.

4.2 The decomposed model

In this paragraph, we describe a model, called ”decomposed” model, that
takes into account the weekly cycles and lies on three main quantities:

• the centered and standardized week load curve (S(h))h of the given
customer;

• the mean of this week load curve (M(w))w;

• the standard deviation of this week load curve (σ(w))w .

More precisely, the decomposed model consists first in constructing a typical
week for each of the individuals: for a given individual k and a half-hour h
of the week, the value of the typical week at time h is simply the median
of all the values of the load curve of the individual k at the same half-hour
h of the week. The obtained curve is centered and standardized and the
reconstruction is then done by multiplying the typical week by a standard
deviation and adding it a mean level. We explain that procedure more pre-
cisely in the rest of the section. ”Time” is here measured in half an hour.

First of all, let us introduce some notation (recall that k is fixed and thus
removed for clarity):

• LC(t) the entire load curve at time t = 1, . . . , T = 17520,
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• w(t) = 1, . . . , 53 and h(t) = 1, . . . , 336 are respectively the index of the
week and the intra week time associated to Time t. Note that in year
2002, the first and last weeks, with index 1 and 53, are incomplete and
contain respectively 6 and 2 days. For these weeks h(t) varies from 1
to 288 and from 1 to 96 respectively.

• CTot :=
∑17520

t=1 LC(t) the total consumption which is known.

Each load curve is decomposed in the following manner

• To work on the rescaled profiles of the annual load curves (without
dimension), it is normalized by dividing by the total annual consump-
tion. We denote by RS1(t) the remaining signal.

• The mean of every week

M(w) =
1

336

∑
w(t)=w

RS1(t)

(with obvious modification for the first and last weeks) is subtracted

RS2(t) = RS1(t) − M(w(t))

• Each week is standardized. We compute first the empirical variance
of week w

σ2(w) =
1

336

∑
w(t)=w

(RS2(t))2

and we define
RS3(t) =

1
σ(w(t))

RS2(t)

• A typical centered and standardized week is computed

S(h) = median{RS3(t), h(t) = h}
In fact a small modification of this formula is done to consider bank
holidays as Sundays (see [15] for more details).

Eventually the reconstruction is performed in the following way

LC(t) = [S(h(t))σ(w(t)) + M(w(t))] CTot + ν(t) (14)

for t = 1, . . . , 17520.

Formula (14) must be considered as a decomposition of each observed curve
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LC and not as an estimation in the statistical sense. We assume only that
the resulting noise ν, which is due to the replacement of the week by the
median, is Gaussian and with constant variance and decaying covariances.
In practice, this assumption is approximately satisfied since ν(t) is in general
small. This decomposition has shown to be efficient in previous studies at
EDF see e.g. [15].

Remark 2 For the functions Rk = S(h), σ2(w) and M(w), we use a pre-
liminary compression on the Fourier basis. Fourier basis has been chosen
because of the periodicities that are encountered in the problem. We choose
the coefficients, globally for all individuals, by a hard thresholding procedure
to get model (1). Since this technique is not the purpose of the current paper,
the reader should refer to [6] for details and other references therein.

4.3 Estimation and simultaneous confidence bands of the
load curve

• To have a comparison scale (which is not the main point of this article),
we also consider the model with no decomposition called the global
model. In this model, the method is based on

– a compression of (LC(t))t:

LC(t) =
J∑

j=1

ajφj(t) + ε(t) =: LC(t) + ε(t)

First, LC(t) is estimated by L̂C(t) following the procedure de-
tailed in Section 2.1. Second, we estimate the variance of ε(t)
by

σ2
ε =

1
K

K∑
k=1

{
1

T − 1

T∑
t=1

[
LCk(t) − LCk(t)

]2

}
.

We suppose moreover this estimation exact because it is based
on 832 × 17520 observations.

– the fact that
L̂C(t) − LC(t)

Var
(
L̂C(t)

) ∼ N (0, 1),

where Var
(
L̂C(t)

)
is the expression (8).
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As a consequence for any individual,

LC(t) − L̂C(t) =
[
LC(t) − L̂C(t)

]
+ ε(t)

has the variance Var
(
L̂C(t)

)
+ σ2

ε . And we are able to construct
confidence bands:⎡⎣L̂C(t) ± S1−α

√∑
j∈J

φ2
j(t)σ

2
j (V (V ′V )−1V ′)k,k + σ2

ε

⎤⎦
where S1−α is simply 1.96 in the case of non simultaneous confidence
intervals and is given by Sidak (Section 3.1, equation (12)) in the case
of simultaneous confidence bands.

• For the decomposed model, we use the decomposition (14) and set

LC(t) =
[
S(h(t))σ(w(t)) + M (w(t))

]
CTot + ε(t).

Now we apply the method of Section 3.2 (MCQMC/Genz method for
n = x = 336, 53 and 53 respectively) to every component, namely

S, σ,M

with level α/3, to derive estimation, lower and upper bounds for these
quantities. Recall that CTot is known. We then plug these bounds
into decomposition (14)to get upper and lower bounds of LC(t) :

LC(t) ∈
[
L̂C(t) ± f1−α(t)

]
with probability greater than 1−α. Then we estimate the variance of

ε(t) = LC(t) − LC(t)

and we use Sidak to get

|ε(t)| = |LC(t) − LC(t)| ≤ σεBSidak,

where BSidak is the bound obtained following procedure of Section 3.1.
For any individual, we construct a simultaneous confidence region of
the form

|L̂C(t) − LC(t)| ≤ f1−α(t) + σεBSidak.

Prediction quality and covering ratios
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To evaluate the accuracy of the predictions, we define an error criterion
weighted by the energy cost w. For each individual, we compute a quadratic
relative error normalized by the typical price curve of energy:

Err =

∑
t

∣∣∣∣w(t)
(
LCpredicted(t) − LCreal(t)

)∣∣∣∣2∑
t

∣∣w(t) LCreal(t)
∣∣2

Err is the error done for an individual whose real load curve is LCreal, pre-
dicted curve is LCpredicted and w represents a possible weighting (e.g. by
prices).

To evaluate the prediction performance on the test sample, we define two
covering rates: for the simultaneous confidence bands (SCB),

SCR :=
#{k : the entire curve is in the SCB}

#{k} ;

and for the non simultaneous confidence bands (NSCB),

NSCR :=
#{(k, t) : LCk(t) ∈ NSCB}

#{(k, t)} .

Moreover, for ρ ∈ [0, 1], we define SCR(ρ) as the ratio of load curves having
at least a percentage ρ of their points in the simultaneous confidence bands.
Obviously, with these definitions SCR = SCR(1).

5 Numerical results

5.1 Learning sample

In this section, we present briefly a few results.

Decomposed model
In the study of typical weeks S, hard thresholding suggests us to achieve
99% of the variance which corresponds to keep the 105 best frequencies (i.e.
210 best coefficients). We plot in Figure 3 the typical week of individual 11,
its estimation and confidence bands (simultaneous and non simultaneous).
One can find the same type of figure for other individuals in [16].

We determine estimate and confidence bands for the other components in
the same way. The construction of the estimates of the entire curve is then
done in a natural way using the equation of reconstruction (14) given in
Section 4.2. Concerning the confidence bands, the operation is more tricky.
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Figure 3: Estimation of the typical week S of individual 11 and associated
confidence bands : the typical week is represented by the thick line, its
estimation is the central curve and on both sides of this curve the confidence
bands (the closest are the non simultaneous bands and the largest are the
simultaneous bands)
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The three quantities being non negative, we multiply the lower and upper
confidence bounds for each of the components studied following the same
equation (14). Nevertheless, in that way the level is not conserved; thus in
order to have a global confidence level of 1−α, we need to construct for each
of the components confidence bands with a confidence level of 1−α/3. The
same kind of procedure is valid for the simultaneous confidence intervals.

Remark 3 We estimate the 210+53+53=316 parameters (after compres-
sion) with 832×17=14144 data (that is about 45 data by parameter) which
appears to be completely reasonnable.

Global model
First of all the load curves are normalized by the total consumption, cen-
tered and standardized. Remind that in the global model, we study the
entire load curves with 17520 points; there is no decomposition.

Compression phase We proceed as explained in Section 4.2 and the test of
significance suggests us to keep 55% of the variance which corresponds to
keep the 15 best frequencies (i.e. 30 best coefficients) and to a reduction
factor of more than 580.

Regression phase Once the compression has been done, we proceed to the
regression phase on the conserved coefficients. Finally, the estimates of the
centered standardized load curves are given by:

L̂Ck(t) =
∑
j∈J

âj
kφj(t).

where J represents the set of the coefficients kept after compression. Since
the dimension of the curves is too large leading to the failure of Genz al-
gorithm, the confidence bands are constructed using the asymptotic result
given in Section 3.3.

Comments and comparison of the results
We plot the different results in Figures ?? (load curve and estimations) and
5 (load curves and confidence bands) of individual 11 on [200, 600] (for the
sake of clarity) for the decomposed and the global models.
We remark that the estimation given by the decomposed model seems to
be more accurate than the other one and fits better the load curve shape
and so do the simultaneous confidence bands. More precisely, if we com-
pare for example the medians of the errors, the decomposed model provides
better estimates than the global model with 55% (model suggested by hard
thresholding and significance tests techniques). On top of that, the decom-
posed model is more efficient, easy to compute and last but not least less
consuming in terms of cost of simulation.
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Figure 4: Comparison between the two models on the interval [200,600] (load
curve in thick line, estimations in dashed line for the decomposed model and
in solid line for the global model)
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Figure 5: Comparison between the two models on the interval [200,600]
(load curve in thick line, simultaneous confidence bands in dashed line for
the decomposed model and in solid line for the global model)
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Table 2: Errors for the test sample

Models Median error Mean error ± 5% conf. interval Error range
Decomposed model 0.0826 0.1218 ± 0.0260 [0.0077,0.6860]

Global model 0.1047 0.1335 ± 0.0264 [0.0071,0.7185]

Table 3: Covering rates for the test sample

Model SCR(1.00) SCR(0.99) SCR(0.95) SCR(0.90)
Decomposed 56/85 82/85 84/85 85/85

Global 49/85 73/85 83/85 84/85

5.2 Test sample

We summarize the different results obtained for the test sample in Table 2
and Table 3. In terms of error, the decomposed model provides better results
than the global model (corresponding to a gain about 0.27% for the median
error). Concerning the covering ratios, remind that SCR(ρ) represents the
ratio of individuals having 100ρ% of their curve in the SCB. For instance, 56
out of the 85 individuals of the test sample have their whole curve contained
in the SCB for the decomposed model; 83 have 95% of their curve in the
SCB for the global model.

We have to pay somewhere all the assumptions we have made to get our
confidence bands. Table 3 shows that if we tolerate the curve to be out
of the bound in 1% of the case, we get for the test sample a covering rate
82/85 which is consistent with the nominal value. In our opinion it justifies
a posteriori our assumptions.

6 Conclusion and prospects

We have presented a method which is new in the sense that it is a combina-
tion of Sidak’s inequality and numerical computation for Gaussian vectors.
The method is easy to implement using few line Matlab programs. It has
shown to be efficient in our problem of curve prediction for load curves.
Moreover there is no doubt that the techniques developed here can be ap-
plied to many situations when one wants to predict a set of curves using a
basis of functions.
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