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A TWO-STEP BRANCHING SPLITTING MODEL UNDER COST

CONSTRAINT FOR RARE EVENT ANALYSIS

AGNÈS LAGNOUX-RENAUDIE,∗ Université Toulouse 2

Abstract

This paper deals with the splitting method first introduced in rare event

analysis. In this technique, the sample paths are split into R multiple copies at

various stages to speed up simulation. Given the cost, the optimization of the

algorithm suggests to take all the transition probabilities equal; nevertheless, in

practice, these quantities are unknown. In this paper, we present an algorithm

in two steps that copes with that problem.
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1. Introduction

The study of rare events is an important area in the analysis and prediction of major

risks as earthquakes, floods, air collision risks, etc. Studying the major risks can be

taken up by two main approaches which are the statistical analysis of collected data

and the modelling of the processes leading to the accident. The statistical analysis

of extreme values needs a long observation time since the very low probability of the

events considered. The modelling approach consists first in formalizing the system
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Université Toulouse 2

31058 Toulouse France

URL : http://www.lsp.ups-tlse.fr/Fp/Lagnoux

Phone number : +33 (0)5 61 50 46 11

Fax : +33 (0)5 61 55 60 89

1



2 Agnès Lagnoux-Renaudie

considered and then in using mathematical ( [?] and [?]) or simulation tools to obtain

some estimates.

Analytical and numerical approaches are useful, but may require many simplifying

assumptions. On the other hand, Monte Carlo simulation is a practical alternative

when the analysis calls for fewer simplifying assumptions. Nevertheless, obtaining

accurate estimates of rare event probabilities, say about 10−9 to 10−12, using traditional

techniques require a huge amount of computing time.

Many techniques for reducing the number of trials in Monte Carlo simulation have

been proposed, like importance sampling (see e.g. [?] and [?]) or trajectory splitting.

In this technique, we suppose there exists some well identifiable intermediate system

states that are visited much more often than the target states themselves and behave

as gateway states to reach the rare event. Thus we consider a decreasing sequence of

events Li leading to the rare event L:

L = LM+1 ⊂ LM ⊂ · · · ⊂ L1 .

Then P(L) is given by

P(L) = P(L|LM )P(LM |LM−1) · · ·P(L2|L1)P(L1), (1)

where on the right hand side, each conditioning event is ”not rare”. For the applications

we have in mind, these conditional probabilities are in general not available explicitly.

Instead we know how to make evolve the particles from level Li to the next level Li+1

(e.g. Markovian behavior).

The principle of the algorithm is at first to run simultaneously several particles

starting from the level Li; after a while, some of them have evolved ”badly”, the other

have evolved ”well” i.e. have succeeded in reaching the threshold Li+1. Then ”bad”

particles are moved to the position of the ”good” ones and so on until L is reached. In

such a way, the more promising particles are favoured; unfortunately that algorithm

is hard to analyse directly because of the interaction introduced between particles and

may be difficult to apply. Examples of this class of algorithms can be found in [?] with

the ”go with the winners” scheme, in [?,?] in the context of the approximate counting

and in [?,?,?] in a more general setting.

Nevertheless, all these algorithms lie on a common base, simpler to analyse and
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called branching splitting model. In this technique, we make a {0, 1} Bernoulli trial

to check whether or not the set event L1 has occured. In that case, we split this trial

in R1 Bernoulli subtrials, and for each of them we check again whether or not the

event L2 has occured. This procedure is repeated at each level, until L is reached. If

an event level is not reached, neither is L, then we stop the current retrial. Using N

independent replications of this procedure, we have then considered NR1 · · ·RM trials,

taking into account for example, that if we have failed to reach a level Li at the i-th

step, the Ri · · ·RM possible retrials have failed. Clearly the particles reproduce and

evolve independently.

An unbiased estimator of P(L) is given by the quantity

P̂ =
NL

N
∏M
i=1Ri

, (2)

where NL is the total number of trajectories having reached the set L. Considering that

this algorithm is represented by N independent Galton-Watson branching processes

(Zn)n, as done in [?], the variance of P̂ can be then derived and depends on the

probability transitions and on the mean numbers (mi) of particles successes at each

level. Lead by the heuristic presented in [?, ?], an optimal algorithm is derived by

minimizing the variance of the estimator for a given budget (computational cost),

defined as the expected number of trials generated during the simulation, where each

trial is weighted by a cost function.

The optimization of the algorithm [?] suggests to take all the transition probabilities

equal to a constant P0 and the numbers of splitting equal to the inverse of this constant.

We then deduce the number of thresholds M and finally N is given by the cost.

This result is not surprising since it means that the branching processes are critical

Galton-Watson processes. In other words, optimal values are chosen in such a way

to balance the loss of variance from too little splitting and the exponential growth in

computational effort from too much splitting.

Some pratical problems arises while applying the optimal algorithm in concrete

models issued from reality. First, the optimal splitting number can be non integer.

In [?], the author proposes three algorithms to face this problem. Then, for the appli-

cations we have in mind, the thresholds Li are fixed but the conditional probabilities

are unknown as said before (instead we know how to make evolve the particles from
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level Li to the next level Li+1). Moreover, we assume here that they lie in some

compact [a, b] ⊂]0, 1[. This hypothesis is essential: otherwise, nothing can be done

algorithmically. In practice, it is generally implicit but nothing is said about it.

We propose here an algorithm in two phases based on the branching splitting model:

the first one is a learning phase in which we sample ρN particles. The algorithm pro-

ceeds as in the classical branching splitting method with splitting numbers (R0
i )i=1···M

chosen arbitrarly at the beginning. In the second phase, we runN−ρN particles that we

make evolve as in the first phase but with splitting numbers estimators of the optimal

splitting numbers (Ri)i=1···M ; the estimators being obtained during the first learning

phase and following the optimal rule given in [?]. Since the complexity of the formulas,

we will simply lead an asymptotic study when the cost C goes to infinity. Assuming

the transition probabilities lie in a compact implies that the cost by particle is bounded

below and above which allows us to lead the survey when N goes to infinity. A precise

analysis shows that we shall dedicate asymptotically µsC
2/3 particles to the learning

phase and C/Copt − µsC
2/3 to the second phase, where Copt is a constant defined in

Section 4.1 and µs is derived by the optimization of the algorithm; i.e. assuming that

the number of particles generated during the learning phase behaves like µα(C)C1−α,

we shall take α = 1/3. Moreover, we note that N is linear in C, and so dedicating

µsC
2/3 particles to the first phase amounts to dedicate it λsN

2/3 particles, for some

λs depending on µs.

The paper is organized as follows. Sections 2 recalls quickly the general settings

and first results of the branching splitting model. We present, in Section 3, some

useful analytical results. In section 4, we study the two-step branching splitting model

and derive optimal parameters. Section 5 implements the two-step algorithm on an

approximate Ornstein-Uhlenbeck process. Finally in Section 6, we conclude and discuss

the merits of this approach and potential directions for further researches.

2. Previous results and general settings

2.1. Optimal branching splitting model

As said in the Introduction and following [?], we consider N independent Galton-

Watson branching processes (Z
(i)
n )n≥0, i = 1, · · · , N where for each i, Z

(i)
n is the
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number of particles derived from the i-th particle (Z
(i)
0 =1) that have reached the level

Ln. Then, letting Ri the sampling number at level i,

P̂ :=
1

N

N∑

i=1

Q̃i, where Q̃i =
Z

(i)
M+1

R1 · · ·RM
. (3)

To lighten notation, we will consider only the case N = 1 in the following, i.e. we will

consider the process (Zn)n≥0 with Z0 = 1. We have the following relation

Zn+1 =

Zn∑

j=1

X(j)
n (4)

where for each n, the random variables (X
(j)
n )j≥1 are i.i.d. with common law a binomial

distribution with parameters (Rn, Pn+1) for n ≥ 1 and a Bernoulli distribution with

parameter P1 for n = 0. The reader is referred to Harris [?], Lyons [?] and Athreya

and Ney [?] for more details on Galton-Watson and branching processes.

Let introduce the following quantities

r0 = 1, ri = R1 · · ·Ri, i = 1 · · ·M,

p0 = 1, pi = P1 · · ·Pi, i = 1 · · ·M + 1,

m0 = P1, mi = Pi+1Ri, i = 1 · · ·M,

where ri represent the weight of a praticle having reached Li, pi the probability to

reach Li starting from 0 and mi the mean number of offsprings of an individual at i-th

generation. Integrating N , the variance of P̂ is given by (see [?] for details)

var(P̂ ) =
P(L)2

N

M∑

i=0

(
1

pi+1
− 1

pi

)
1

ri
. (5)

In [?], the three steps minimization of the variance of P(L) for a given budget C

defined as the mean number of particles generated during the simulation

C = N
M∑

i=0

ripi (6)

leads to the optimal parameters of the algorithm: first we derive the optimal N and the

optimal splitting numbers Ri, then the optimal transition probabilities Pi and finally
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the optimal number M of thresholds. In the case where the transition probabilities are

fixed, the first step of the optimization leads to

Ri =

√
1

PiPi+1

√
1 − Pi+1

1 − Pi
for i = 1 · · ·M (7)

N =
C
√

1/P1 − 1
∑M+1
i=1

√
1/Pi − 1

(8)

Using these relations, the variance has the following expression

var(P̂ ) =
P(L)2

N

(
1

P1
− 1

) M∑

i=0

ripi =
P(L)2

N2

(
1

P1
− 1

)
C (9)

2.2. Settings

2.2.1. The two-step branching splitting model In this paper, the transition probabilities

are considered as unknown but belong to some interval [a, b] ⊂]0, 1[. In practice, one

can propose values for a and b by a specific knowledge of the process or by a previous

learning simulation when the are unknown. Choose arbitrarly M + 1 numbers P 0
i in

[a, b], let

R0
i =

1√
P 0
i P

0
i+1

√
1 − P 0

i+1

1 − P 0
i

for i = 1 · · ·M

and introduce the following notation

r00 = 1, r0i = R0
1 · · ·R0

i , i = 1 · · ·M.

Remark 2.1. Moreover, the analytical complexity of the calculation prevents us to

make a precise analysis and we are lead to derive only asymptotic results when the cost

C goes to infinity. But the fact that the Pi’s lie in the compact [a, b] ⊂]0, 1[ implies

that the ratio C/N is bounded above and below allowing us to make the asymptotic

study while N goes to infinity. Note also that the total number of particles is in reality

a random variable: in practice, a given budget is fixed at the beginning and we sample

particles until the budget is consumed; hence the randomness of N .

We propose here an algorithm in two phases: the first one is a learning phase in

which the splitting numbers are (R0
i )i=1···M while the second one uses estimators of

(Ri)i=1···M obtained in the learning phase. More precisely, we have N particles that we
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split in two groups of ρN and N−ρN particles respectively and the two-step branching

splitting model proceeds as follows:

Phase 1 : We sample ρN particles. The particles having reached L1 are split into

R0
1 subtrials that we make evolve from L1. The particles having reached L2 are split

into R0
2 subtrials that we make evolve from L2 · · · And so on until L is reached.

From step i (i = 1 · · ·M + 1), we get an estimator P̂
(1)
i of Pi (fraction of successful

particles starting from Li−1). To exploit all the information we possess, we improve the

algorithm replacing P̂
(1)
i by P̃

(1)
i := a∨ P̂ (1)

i ∧ b during the simulation, since Pi ∈ [a, b].

This substitution have the convenient consequence to prevent us from any premature

stop of the algorithm. Without this assumption, the possibility of the particle dying

remains that can be controlled probabilistically (see Section 3). After a premature

stop of the algorithm, one can start a new simulation. Nevertheless, one must take

into account the cost induced by this first aborted phase since we work for a given

fixed effort. Now let for all i = 1 · · ·M ,

R̃i =
1√

P̃
(1)
i P̃

(1)
i+1

√√√√1 − P̃
(1)
i+1

1 − P̃
(1)
i

,

they represent the splitting numbers of the second phase.

Phase 2 : We sample N − ρN particles. The particles having reached L1 are split

into R̃1 subtrials that we make evolve from L1. The particles having reached L2 are

split into R̃2 subtrials that we make evolve from L2 · · · And so on until L is reached.

From step i (i = 1 · · ·M + 1), we get an estimator P̂
(2)
i of Pi that we change into

P̃
(2)
i := a ∨ P̂ (2)

i ∧ b during the simulation.

In the following, the truncated estimators will be denoted with a tilde ∼ and the

others with a hat ∧.

Assumptions:

1. A first analytical survey leads us to restrict ourselves to the case when

- ρN →
N→+∞

+∞,
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Figure 1: The two-step branching splitting model

- N − ρN →
N→+∞

+∞,

- ρN = o(N − ρN ).

2. Moreover, as said in Remark 2.1, the calculation being too complex to make a

precise analysis, we will lead an asymptotic study when the cost C (and so when

N) goes to infinity. We aim at optimizing the algorithm in the parameters. After

analysis, we prove that the optimum is attained when

(ρN
N

)2

≈ 1

ρN
, while N → ∞

More precisely, to have a better understanding on what happens and to clarify

the analysis, we restrict ourselves to the case where ρN is asymptotically of the

form λN1−α with λ depending on N and we aim at optimizing the algorithm in

α, N and λ. Then we prove that the optimum is attained for α = 1/3: indeed,

for α < 1/3, λ −→
N→∞

0, for α = 1/3, λ −→
N→∞

cst and for α > 1/3, λ −→
N→∞

∞.
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Notation: Let

F2i = σ
(
P̃

(1)
1 , · · · , P̃ (1)

i , P̃
(2)
1 , · · · , P̃ (2)

i

)
and F2i+1 = F2i ∨ σ

(
P̃

(1)
i+1

)

and we note, in the following, Ek for E (•|Fk) and vark for var (•|Fk).

2.2.2. Estimators of the Pi’s To exploit all the information given during the simulation,

we use both algorithms to estimate the transition probabilities: Pi+1 is estimated by

the fraction of successful particles in each generation in phase 1 and in phase 2. More

precisely, for i = 0 · · ·M , Pi+1 is estimated by

P̃i+1 =
total nb of successes in Li+1

total nb of particles generated from Li
=

λ
Nα r

0
i p̃

(1)
i+1 + (1 − λ

Nα )r̃ip̃
(2)
i+1

λ
Nα r

0
i p̃

(1)
i + (1 − λ

Nα )r̃ip̃
(2)
i

with 



p̃
(1)
0 = 1, p̃

(1)
i = P̃

(1)
1 · · · P̃ (1)

i for i = 1 · · ·M + 1

p̃
(2)
0 = 1, p̃

(2)
i = P̃

(2)
1 · · · P̃ (2)

i for i = 1 · · ·M + 1

r̃0 = 1, r̃i = R̃1 · · · R̃i for i = 1 · · ·M

It corresponds to the minimal variance estimator among the estimators linear com-

bination of P̃
(1)
i and P̃

(2)
i .

Finally, P(L) is estimated by the product of these fractions:

P̃ = P̃1 · · · P̃M+1 =: p̃M+1

and noting that

P̃i+1 =
p̃
(2)
i+1

p̃
(2)
i

[
1 +

λ

Nα

(
p̃
(1)
i+1r

0
i

p̃
(2)
i+1r̃i

− 1

)]
/

[
1 +

λ

Nα

(
p̃
(1)
i r0i

p̃
(2)
i r̃i

− 1

)]

we have the following result

Proposition 2.1. P(L) is estimated by

P̃ = p̃
(2)
M+1

∏M+1
i=1

{
1 + λ

Nα

(
p̃
(1)
i r0i−1

p̃
(2)
i r̃i−1

− 1

)}

∏M
i=1

{
1 + λ

Nα

(
p̃
(1)
i r0i
p̃
(2)
i r̃i

− 1

)} (10)
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3. Mathematical tools

In this section, we present the technical tools used for the rest of the analysis: we

give two results concerning the truncated estimators used during the algorithm. First

a precise bound of the truncation probabilities of a sum of i.i.d. Bernoulli random

variables is presented; then we state a result on the expectation of truncated estimators.

Lemma 3.1. Let P̂ a random variable having the following expression

P̂ =
1

N

N∑

i=1

Beri

where Beri are i.i.d. Bernoulli random variables with parameter P .

1. First, letting l(x) = log

[(
1−x
1−P

)1−x (
x
P

)x
]
, we have

P(P̂ ≤ a) ≤ exp {−Nl(a)}

P(P̂ ≥ b) ≤ exp {−Nl(b)}

2. Let f , g two functions defined on ]0, 1[, C2 on [a, b] and P̃ = a ∨ P̂ ∧ b. Then

E

(
f(P̃ )

)
= f(P ) +

P (1 − P )

2N
f ′′(P ) + o(

1

N
)

As a consequence,

var
(
f(P̃ )

)
=

P (1 − P )

N
f ′(P )2 + o(

1

N
)

cov
(
f(P̃ ), g(P̃ )

)
=

P (1 − P )

N
f ′(P )g′(P ) + o(

1

N
)

The proof of this technical lemma is postponed to Appendix A. One can easily gener-

alize these results to the functions of two variables by duplication.

4. Asymptotic optimal algorithm

4.1. Asymptotic expressions for the cost and the variance

In this section, we want to derive the optimal algorithm by minimizing the variance of

the estimator for a given simulation cost. As mentioned in Remark 2.1, we will lead an
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asymptotic survey while N goes to infinity and derive an asymptotic optimal algorithm

by minimizing the variance for a given budget. First, we give asymptotic expressions

for the cost and the variance; then we deduce an asymptotic optimal algorithm and we

end the section explaining how to proceed practically.

Thus, we first need to derive asymptotic expressions of the (average) simulation cost

and the variance of the estimator. An accurate analysis of the optimization problem

shows that we must do an asymptotic expansion at the second order for the learning

phase (i.e. at the second order in ρN ) while we simply need the first order for the

second phase (i.e. at the first order in N −ρN i.e. N). The proofs of the two following

theorems being technical and complex are postponed to Appendix B and C.

Assuming that asymptotically, ρN as the form λN1−α as said previously, the (average)

cost (which is defined as the mean number of particles generated during the simulation

as done in Section 2) is given by

C = λN1−α
M∑

i=0

Ri0E

(
p̃
(1)
i

)
+ (N − λN1−α)

M∑

i=0

E

(
r̃ip̃

(2)
i

)
(11)

Remember that we aim at deriving the expression of the cost as the given budget goes

to infinity. We remark that

C

N
=

λ

Nα

M∑

i=0

Ri0E(p̃
(1)
i ) +

(
1 − λ

Nα

) M∑

i=0

E(r̃ip̃
(2)
i )

and since Pi ∈ [a, b] ⊂]0, 1[ for all i = 1 · · ·M +1, the right hand side is bounded above

and below; as a consequence, we can verify that as announced in the Introduction,

N → ∞ while C → ∞

and C is linear in N . Now using repeatedly Lemma 3.1, we derive

Theorem 4.1.

C = N

[
Copt +

B1

λN1−α
+B2

λ

Nα
+ o

(
1

Nα

)
+ o

(
1

N1−α

)]
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with




B1 = 1
2

∑M
i=1 ripi

[
3/4

P1(1−P1)
− 2 + 2

∑i−1
k=1

1−Pk+1

r0
k
pk+1

+ 3/4−Pi+1

r0i pi+1(1−Pi+1)

]

B2 =
∑M
i=1 pi(r

0
i − ri)

and Copt the (average) particle-cost generated in the optimal model, given by

M∑

i=0

ripi

Using the notation introduced previously, the variance of the estimator is given by

Theorem 4.2.

var(P̃ ) =
P(L)2

N

[
Vopt +

1

λN1−α
A1 +

λ

Nα
A2 +

λ2

N2α
A3 + o

(
1

N1−α

)
+ o

(
1

N2α

)]

with 



A1 = 1
2

∑M
i=1

[
Pi+1−1/4
r0i rip

2
i+1

− 1
4
ripi
P 2

1

]

A2 =
(

1
P1

− 1
)∑M

i=1 pi(ri − r0i )

A3 =
(

1
P1

− 1
)∑M

i=1
pi
ri

(r0i − ri)
2

and Vopt the renormalized particle-variance of the optimal model, given by

M∑

i=0

(
1

pi+1
− 1

pi

)
1

ri
=

(
1

P1
− 1

)
Copt, (12)

coming from equation (9).

4.2. Optimization of the algorithm

We remind the reader that our goal is to optimize the algorithm in the parameters N ,

α and λ. We first prove the following lemma:

Lemma 4.1. Let F and G two real-valued functions. Suppose that

F (λ,N) ∼
N→∞

1

N
+
f1(λ)

N1+α
+

f2(λ)

N1+2α
+
f3(λ)

N2−α
,

G(λ,N) ∼
N→∞

N −N1−αf1(λ) +Nαf4(λ).

Then minimizing F for a fixed G = Gf asymptotically amounts to minimize the

function of λ
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• f3 + f4 for α > 1
3 ,

• f2 − α(f1)
2 for α < 1

3 ,

• f2 + f3 + f4 − (f1)
2 for α = 1

3 ,

N being given by the equation G = Gf .

The proof of this lemma is postponed to Appendix D. As a consequence, we get the

following proposition:

Proposition 4.1. Minimizing the variance for a given cost leads to take α = 1
3 and

to the solution

λs =



Copt

(
A1 +B1

(
1
P1

− 1
))

2 (A2B2 +A3Copt)




1
3

,

N being given by the cost.

Proof. From equation (9) and the expressions of A2 and B2, the following relation

A2Copt +B2Vopt = 0 (13)

is clearly satisfied. As a consequence, the variance and the cost (after a renormalization

by Vopt and Copt respectively) have the form of functions F and G in Lemma 4.1 which

allows us to state that minimizing the variance for a given cost C amounts to minimizing

the functions

• for α > 1
3 , 1

λ

[
A1

Vopt
+ B1

λCopt

]
which leads to λs = +∞.

• for α < 1
3 , λ2

[
A3

Vopt
+ α A2B2

VoptCopt

]
which leads to λs = 0.

• for α = 1
3 ,

A1
λ

+A3λ
2

Vopt
+ B1

λCopt
+λ2 A2B2

VoptCopt
which leads to λs =

[
Copt

(
A1+B1

(
1
P1

−1
))

2(A2B2+A3Copt)

] 1
3

.

Finally one must take

α =
1

3
,

N is given by the cost and the solution of the optimization problem by

λs =



Copt

(
A1 +B1

(
1
P1

− 1
))

2 (A2B2 +A3Copt)




1
3
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Remark 4.1. We insist on the fact that equation A2Copt+B2Vopt = 0, allowing us to

apply Lemma 4.1, directly comes from the particular choice of the Ri’s, as the solutions

of a particular optimization problem and this leads to α = 1
3 . Otherwise, we certaintly

would not have had this relation between the constant A2 and B2 and the optimal α

would simply have been 1
2 , as one can expect to a priori. This emphasizes on the fact

that it is really worth to choose the transition probabilities as close as possible to the

optimals.

Remark 4.2. If we take arbitrarly the optimal Ri for the learning phase, we are lead

to the solution

λs = +∞

that matches the intuition: if the optimal splitting numbers are used from the start

then introducing an extra Monte Carlo stage cannot be advantageous.

4.3. Guidelines to proceed practically

In practice, we are given a fixed budget to consume during the simulation which

amounts to fix the total number N of particles generated during the simulation. We

will sample ρN = λsN
1−α during the learning phase and N − ρN to the second. The

optimization analysis suggets us to take

α =
1

3
and λs =



Copt

(
A1 +B1

(
1
P1

− 1
))

2 (A2B2 +A3Copt)




1
3

.

Recall that the transition probabilities Pi are unknown and thus we can not evaluate

explicitly λs. Nevertheless, these conditional probabilities are bounded above and

below; thus we can determine a lower bound λs(min) (but also an upper bound

λs(max)) of λs. As a consequence, we will proceed as follows:

• First phase-learning phase:

We first sample λs(min)N2/3 particles, proceeding as in the classical branch-

ing splitting method with splitting numbers (R0
i )i=1···M that have been chosen

arbitrarily at the beginning. Then we estimate the transition probabilities, the
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optimal splitting numbers and so the optimal λs by λest. We finally continue to

sample particles until the total number of trials generated during the first phase

attained λestN
2/3.

• Second phase:

We run N − ρN particles that we make evolve as in the first phase but here

we use estimators of (Ri)i=1···M obtained during the first learning phase and

following the optimal rule given in [?], as explained previously.

5. Approximate Ornstein-Uhlenbeck process

We aim at study the process called approximate Ornstein-Uhlenbeck process and gov-

erned by the following stochastic differential equation:

dXt = −µ(Xt)Xtdt+ σ(Xt)dWt (14)

where the unknown drift is such that

0 < µ1 ≤ µ(x) ≤ µ2 <∞.

In the numerical application, we will take the drift constant on disjoint intervals.

Reminber that the general Ornstein-Uhlenbeck process is governed by the following

stochastic differential equation:

dXt = −µXtdt+ σdWt (15)

The Ornstein-Uhlenbeck process is recurrent and excursions above large values are

rare; which is also the case for the approximate Ornstein-Uhlenbeck process. Here, we

want to estimate the probabilities that the approximate Ornstein-Uhlenbeck process

reaches some high levels starting from x > 0 and before returning to 0. When the

drift is known, one can easily determine these probabilities. But with an unknown

drift, its estimation is really expensive in terms of simulation. Here, since we just want

to estimate the levels of excursions, there is no need to estimate µ and the two-step

branching splitting algorithm appears to be a promising and efficient way to solve the
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problem.

Before leading the numerical application, recall, first, the general settings and results

on the general Ornstein-Uhlenbeck process.

5.1. Analytical study

We recall, in that section, some results on the standard Ornstein-Uhlenbeck process,

governed by the stochastic differential equation:

dXt = −Xtdt+
√

2dWt (16)

(i.e. drift µ equal to 1, variance σ2 to 2). The results for the general Ornstein-

Uhlenbeck process governed by (15) can be easily deduced by a change of variables.

The speed measure m is given by

m(dx) = ρ(x)dx = e−µx
2/σ2

dx

and the infinitesimal generator L by

L(f)(x) = f ′′(x) − µxf ′(x) = f ′′(x) +
σ2

2

ρ′(x)

ρ(x)
f ′(x)

Let L0, x and L such as L0 < x < L. Suppose X0 = x, note H(x) =
∫ x
L0

dy
ρ(y) and

TL0,L the first leaving time of [L0, L]:

TL0,L = inf{t ≥ 0 : Xt /∈ [L0, L]}

One can easily verify that TL0,L is a stopping time and noting that H solves L(f) = 0,

we have 



Px(XTL0,L
= L) = H(x)

H(L)

Px(XTL0,L
= L0) = H(L)−H(x)

H(L)

Ex(TL0,L) = ML0,L(x) = −
∫ x

L0

R(t)

ρ(t)
dt+

H(x)

H(L)

∫ L

L0

R(t)

ρ(t)
dt (17)

How to position the thresholds to have constant transitions The optimization

of the algorithm leads to take the transition probabilities equal i.e. if the thresholds
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are noted Li, we want to solve in Li+1 once Li having be fixed

PLi(XTL0,Li+1
= Li+1) =

H(Li)

H(Li+1)
= θ

for some θ. Then, for large values of i, we aim at having

PLi(XTL0,Li+1
= Li+1) = θ ⇔ H(Li) = θH(Li+1) ∼ θ[H(Li) + (Li+1 − Li)H

′(Li)]

⇔ Li+1 − Li ∼ e−L
2
i /2H(Li)(

1

θ
− 1)

⇔ Li+1 − Li ∼
1

Li
(
1

θ
− 1) since H(Li) ∼

x→∞

ex
2/2

x

If for example θ = 1/2, the previous calculation suggests to take

Li+1 = Li +
1

Li

and we deduce an equivalent of Ln for large values of n:

Ln ∼
n→∞

√
2n

from the following lemma

Lemma 5.1. Let (un)n a real-valued sequence such that

u0 > 0 and ∀n ∈ N, un+1 = un +
1

uαn

with α > −1. Then un ∼
n→∞

[n(1 + α)]1/(α+1).

Proof. We only give a sketch of the proof of this classical analytical result. First,

(un) diverges which comes from monotonicity and a fixed point argument. Then we

look for a constant β > 0 such that uβn+1 − uβn converges. Finally, the result comes

easily.

Cost of transition Now we deduce the asymptotic behavior of the cost of transition

i.e. the cost for a particle starting from x to reach the next level (x+ 1
x ) or 0:

Ex(T0,x+ 1
x
) ∼
x→+∞

(1 − e−1) log(x)

Proof. We have

Ex(T0,x+ 1
x
) = −

∫ x

0

R(t)

ρ(t)
dt+

∫ x+ 1
x

0
R(t)
ρ(t) dt

∫ x+ 1
x

0
1
ρ(t)dt

∫ x

0

1

ρ(t)
dt (18)
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Write R(t) = R(∞) − D(t) with D(t) =
∫∞

t
ρ(u)du; multiplying each side of the

equation by
∫ x+ 1

x

0
dt
ρ(t) , we get

Ex(T0,x+ 1
x
)

∫ x+ 1
x

0

dt

ρ(t)
=

∫ x

0

dt

ρ(t)

∫ x+ 1
x

0

R(t)

ρ(t)
dt−

∫ x+ 1
x

0

dt

ρ(t)

∫ x

0

D(t)

ρ(t)
dt

= −
∫ x

0

dt

ρ(t)

∫ x+ 1
x

x

D(t)

ρ(t)
dt+

∫ x+ 1
x

x

dt

ρ(t)

∫ x

0

D(t)

ρ(t)
dt

Using classical estimates, we are lead to the required result.

Remark 5.1. That result justifies our hypothesis that the costs of transition are

asymptotically constant.

This type of results can also be deduced for the approximate Ornstein-Uhlenbeck

process; but the analysis is quite more complicated.

5.2. Numerical application

We suppose the unknown drift is constant equal to µi on disjoint intervals and on each

interval i

µi ∈ [µ1
i , µ

2
i ].

We determine arbitrarly a ”mean” drift constant on disjoint intervals taking on each

interval i, µ0
i = (µ1

i + µ2
i )/2. We then determine the thresholds Li such that the

transition probabilities are equal to p and the optimal sampling numbers for that

mean drift . Now we sample ρN processes according to

dXt = −µ(Xt)Xtdt+ σdWt, (19)

that we discretize in

Xn+h = −(µh− 1)Xn + σG,

where h is the discretization step and G have the N (0, h) distribution. The sampling

numbers used during that learning phase are the optimal sampling numbers for the

mean drift previously determined. We get in that way estimates of the transition

probabilities that allows us to estimate the optimal sampling numbers. We then sample

N − ρN processes according to the discretization of (19) with the estimated sampling
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numbers.

Remark 5.2. Simulation procedure

Due to the discretization of the process and since the drift is not constant, a bias is

introduced at each change of regime of the drift. We propose here a procedure to reduce

that bias. Let (mi)i the levels of drift changes, (Xn)n the studied process. Suppose

Xn such that mi−1 < Xn < mi, then Xn evolve according to (19) with drift µi and

Xn+1 = Xn − µihXn + σ
√
hZ

where Z is a realization of the N (0, 1) distribution.

If Xn+1 < mi, there is no problem: the process evolves from Xn according to (19) with

drift µi and the next point Xn+1 is still in the same regime of drift. And the simulation

is simply continued. On the other hand, if Xn+1 > mi, we should have changed the

drift between Xn and Xn+1 which introduces the bias mentioned at the beginning of

the remark. Thus we solve the second degree equation in Xn+1

Xn+1 = Xn − µi(mi −Xn) + µi+1(Xn+1 −mi)

Xn+1 −Xn
hXn + σ

√
hZ

Finally, Xn+1 is the obtained solution.

Application We aim at estimate the probability that the process governed by (19)

(with σ = 0.3) and starting from x = 0.1 reaches level L = 4 before going to L0 = 0.

The values of the different parameters are reported in the following tabular

[mi,mi+1] µi µ1
i µ2

i µ0
i [mi,mi+1] µi µ1

i µ2
i µ0

i

[0, 1/2] 0.05 0.05 0.06 0.055 [1/2, 1] 0.06 0.06 0.07 0.065

[1, 3/2] 0.07 0.07 0.08 0.075 [3/2, 2] 0.09 0.08 0.09 0.085

[2, 5/2] 0.09 0.09 0.10 0.095 [5/2, 3] 0.11 0.10 0.11 0.105

[3, 7/2] 0.11 0.11 0.12 0.115 [7/2, 4] 0.12 0.12 0.13 0.125

which corresponds to the target probability

Px(XTL0,L
= L) = 1.67679e− 08

The thresholds for that mean drift and p = 0.2 are given by
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L1 0.4778339279 L2 1.406139441 L3 2.073610760 L4 2.480952409

L5 2.785321189 L6 3.039774162 L7 3.257152634 L8 3.453693339

L9 3.632850394 L10 3.795331329 L11 3.949233228 L12 4

The following table presents the results obtained with different methods, N (= 104,

105 or 106) processes generated at the beginning and 50 iterations. The abbreviations

TSBSM, TSBSMimp, OSBSMimp, SALO and AACG mean respectively Two Steps

Branching Splitting Model, Two Steps Branching Splitting Model improved with Re-

mark 5.2, One Step Branching Splitting Model improved with Remark 5.2, Sequential

Algorithm introduced by F.LeGland and N.Oudjane in [?] and Adaptive Algorithm

introduced by F.Cérou and A.Guyader in [?].

Nb of part. Estimation Error Lgth CI 95% Simul. cost

TSBSMimp 104 *** *** *** ***

TSBSMimp 105 1.69e-08 1.21e-10 2.12e-09 1.19e+09

TSBSMimp 106 1.68e-08 1.21e-12 1.21e-09 1.19e+10

TSBSM 105 1.75e-08 7.68e-10 1.72e-09 1.21e+09

OSBSMimp 105 1.66e-08 1.32e-10 4.30e-09 1.30e+10

SALO H = 102 1.89e-08 2.16e-09 4.08e-09 9.02e+07

SALO H = 103 1.75e-08 7.61e-10 1.72e-09 9.18e+08

SALO H = 104 1.67e-08 1.27e-10 4.07e-10 6.45e+09

AACG p = 1/4 105 1.05e-08 6.23e-09 2.06e-08 9.30e+08

AACG p = 1/3 105 1.14e-08 5.41e-09 1.66e-08 1.60e+09

AACG p = 1/2 105 1.22e-08 4.61e-09 2.56e-08 1.90e+09

AACG p = 2/3 105 1.98e-08 3.04e-09 2.97e-08 2.20e+09

AACG p = 3/4 105 1.86e-08 1.86e-09 2.86e-08 2.30e+09

In this technique, we run trajectories between two successive thresholds (which are given at the

beginning of the simulation) until some number of successes H is reached.

In this technique, we run N trajectories until 0 is reached. The thresholds are then defined during

the simulation in such a way that exactly a proportion p of these trajectories have succeeded to

reach the level. To have a constant population, the trajectories that have failed are resampled on the

successful ones.
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6. Conclusion

We proposed in this paper a two-step algorithm based on the branching splitting

model. A precise analysis shows that we shall dedicate asymptotically µsC
2/3 particles

to the learning phase and C/Copt−µsC2/3 to the second phase, where Copt is a constant

and µs is derived by the optimization of the algorithm; i.e. assuming that the number

of particles generated during the learning phase behaved like µC1−α, we should take

α = 1/3.

This result directly comes from the particular choice of the splitting numbers Ri’s,

solutions of an optimization problem. In whatever other algorithm i.e. if the Ri’s

are not taken in such a way, the optimal α would simply be equal to 1/2, as one

can expect to a priori. This emphasizes on the importance of choosing the transition

probabilities and the splitting numbers as close as possible to the optimals and to have

good estimates of the parameters chosen a priori. It also insists on the interest of having

an adaptive algorithm in multiple phases that would be more efficient: evaluating at

each step the parameters and continuing simulation according to these estimates. But,

in such an algorithm, the calculation using martingale techniques rapidly become even

more complex than those of this paper (see e.g. Appendix A and B). Moreover, to show

that the adaptive algorithm works better than the one presented here would really be

difficult and the gain resulting of such an approach really hard to quantify.

In terms of efficient algorithm, the best thing to do would be to estimate and to

increment not only the splitting numbers but also the transition probabilities and then

to move, before each phase, the thresholds according to these evaluations. But the

precise analysis become more and more complex. Moreover such an algorithm lies on

the hypothesis that one can move practically the thresholds which is in general not the

case in practical settings.

Finally, it would also be worth to analyse non markovian models, multi-dimensional

models and not only uni-dimensional models. In the formers, the probability to reach

some level Li+1 starting from level Li depends on the entry point in Li. Such studies

would be interesting and worth to analyse but once again really hard to lead.
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Appendix A. Proof of Lemma 3.1

In this section, we want to prove Lemma 3.1. The first part of the lemma is clearly

well-known and directly comes from the Chernoff’s bounding method and optimization.

Then, first of all,

E

(
f(P̃ )

)
= E

(
f(P̂ )1P̂∈[a,b]

)
+ E

(
f(P̃ )1P̂∈[a,b]c

)

But, since P̃ ∈ [a, b] and f is bounded on [a, b] by some constant Mf ,

E

(
f(P̃ )1P̂∈[a,b]c

)
≤ MfP

(
P̂ /∈ [a, b]

)
≤ 2Mf exp {−Nh(a, b)}

by the first part of Lemma 3.1 and with h(a, b) = min{l(a), l(b)}.

Then, one can notice that

E

(
P̂
)

= P, var
(
P̂
)

=
P (1 − P )

N
, E

((
P̂ − P

)3
)

=
P (1 − P )

N2
(1 − 2P )

and E

((
P̂ − P

)4
)

=
P (1 − P )

N2

[
(P 3 + (1 − P )3)

1

N
+ (1 − 1

N
)P (1 − P )

]
.

and since f is C2 on [a, b], by a Taylor expansion,

f(P̂ )1P̂∈[a,b] =


f(P ) +

(
P̂ − P

)
f ′(P ) +

(
P̂ − P

)2

2
f ′′(P ) + o

((
P̂ − P

)2
)

1P̂∈[a,b]

and so

E

(
f(P̂ )1P̂∈[a,b]

)
= E


f(P ) +

(
P̂ − P

)
f ′(P ) +

(
P̂ − P

)2

2
f ′′(P ) + o

((
P̂ − P

)2
)



− E





f(P ) +

(
P̂ − P

)
f ′(P ) +

(
P̂ − P

)2

2
f ′′(P ) + o

((
P̂ − P

)2
)

1P̂ /∈[a,b]




The first term in the right hand side is simply

f(P )+E

(
P̂ − P

)
f ′(P )+var

(
P̂
) f ′′(P )

2
+E

(
o
(
P̂ − P

)2
)

= f(P )+
P (1 − P )

2N
f ′′(P )+o(

1

N
)
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Since P ∈ [a, b] and f and its two first derivatives are bounded on [a, b], the second

term in the right hand side is bounded by some constant times P

(
P̂ /∈ [a, b]

)
, itself

bounded by exp {−Nh(a, b)}, allowing us to conclude.

Appendix B. Cost asymptotic expression

In this appendix, we prove Theorem 4.1 giving the asymptotic expression of the cost:

C = N

[
Copt +

B1

λN1−α
+B2

λ

Nα
+ o

(
1

Nα

)
+ o

(
1

N1−α

)]

with B1, B2 and Copt constants given in Theorem 4.1.

Since C is given by (11), one needs to evaluate E(p̃
(1)
i ) (which is obviously pi) and

E

(
r̃ip̃

(2)
i

)
. Now define ϕ(x) =

√
1
x − 1 and ψ(x) =

√
x(1 − x), then R̃i =

ϕ(P̃
(1)
i+1)

ψ(P̃
(1)
i )

.

To derive the formula, we proceed by induction, successive conditionings and uses of

Lemma 3.1. For k = i (resp. k = i− 1 . . . 2), we

• condition by F2k to isolate what happens from Lk and then apply Lemma 3.1

near Pk+1 to the function φ (resp. to ϕ
ψ ) and

P̃
(1)
k+1 = Pk+1 +

1

λN1−αr0kp̃
(1)
k

λN1−αr0kp̃
(1)
k∑

j=1

Ber′j

with Ber′j =
L

Ber (Pk+1) − Pk+1.

• condition by F2k−1 to isolate what happens from Lk−1 after the first phase and

then apply Lemma 3.1 near Pk to the function Id and

P̃
(2)
k = Pk +

1

(N − λN1−α)r̃kp̃
(2)
k−1

(N−λN1−α)r̃kp̃
(2)
k−1∑

j=1

Ber′j

with Ber′j =
L

Ber (Pk) − Pk.
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At step k = i, we get

E

(
r̃ip̃

(2)
i

)
= E

(
r̃i−1

ψ(p̃
(1)
i )

p̃
(2)
i E2i

(
ϕ(P̃

(1)
i+1)

))
= ϕ(Pi+1)

=E

(
r̃i−1

ψ(P̃
(1)
i

)
p̃
(2)
i−1E2i−1

(
P̃

(2)
i

))
=PiE

(
r̃i−1

ψ(P̃
(1)
i

)
p̃
(2)
i−1

)
+o( 1

N1−α )

︷ ︸︸ ︷

E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

)

+
Pi+1(1 − Pi+1)

2λN1−αr0i
ϕ′′(Pi+1) E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

p̃
(1)
i

)

︸ ︷︷ ︸
=
ri−1
ψ(Pi)

+o( 1

N1−α )

+o

(
1

N1−α

)

and then proceeding for k from i− 1 to 2 leads to

E

(
r̃ip̃

(2)
i

)
=

ri
R1

pi
P1
ϕ(P2)E

(
P̃

(2)
1

ψ(P̃
(1)
1 )

)
+

ripi
2λN1−α

i−1∑

k=1

Pk+1(1 − Pk+1)

r0kRkRk+1

ϕ(Pk+2)

pkψ(Pk)

(
ϕ

ψ

)′′

(Pk+1)

+
Pi+1(1 − Pi+1)

2λN1−αr0i
ϕ′′(Pi+1)

ri−1

ψ(Pi)
+ o

(
1

N1−α

)

To derive the required expression, it remains to apply Lemma 3.1 to (x, y) 7→ y
ψ(x) .

Appendix C. Variance asymptotic expression

In this appendix, we prove Theorem 4.2 giving the asymptotic expression of the

variance:

var(P̃ ) =
P(L)2

N

[
Vopt +

1

λN1−α
A1 +

λ

Nα
A2 +

λ2

N2α
A3 + o

(
1

N1−α

)
+ o

(
1

N2α

)]

with A1, A2, A3 and Copt constants given in Theorem 4.2.

To prove the result, we establish a recursive relation between var
(
P̃
)

= var(p̃M+1)

and var(p̃M ) and we conclude by iterating this relation. During the proof, in order

to lighten drafting, we use the symbol ≈ for any asymptotic expansion at the order

1/N (1+α)∧(2−α). Now for k = 1..M , let Zk the ratio between the numbers of particles

having reached level Lk in phases 1 and 2:

Zk =
p̃
(1)
k r0k

p̃
(2)
k r̃k

=:
Zk

R̃k
= Zk

ψ(P̃
(1)
k )

ϕ(P̃
(1)
k+1)

then P̃k = P̃
(2)
k

1 + λ
Nα

(
Zk−1

P̃
(1)
k

P̃
(2)
k

− 1

)

1 + λ
Nα (Zk−1 − 1)

We proceed as in Appendix A by successive conditionings and several applications

of Lemma 3.1. Since the estimate P̃ = p̃M+1 of P(L) is expressed as a product
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P̃1 . . . P̃M+1, conditionings appears to be particularly efficient to deduce the required

recursive relation. A first conditioning by F2M+1 leads to

var
(
P̃
)

= var(p̃M+1)

= var

(
p̃M

p̃
(2)
M r̃M

{
1 + λ

Nα (ZM − 1)
}
{

λ

Nα
p̃
(1)
M+1r

0
M +

(
1 − λ

Nα

)
p̃
(2)
M r̃ME2M+1(P̃

(2)
M+1)

})

+E



[

p̃M

p̃
(2)
M r̃M

{
1 + λ

Nα (ZM − 1)
}

]2{(
1 − λ

Nα

)
p̃
(2)
M r̃M

}2

var2M+1

(
P̃

(2)
M+1

)



≈ P 2
M+1var

(
p̃M

{
1 +

λ

Nα
ZM

(
P̃

(1)
M+1

P̃
(1)
M+1

− 1

)[
1 − λ

Nα
(ZM − 1)

]})

+
PM+1(1 − PM+1)

N

(
1 − λ

Nα

)
E

(
p̃2
M

p̃
(2)
M r̃M

{
1 − 2

λ

Nα
(ZM − 1) + 3

λ2

N2α
(ZM − 1)

2

})

using E2M+1(P̃
(2)
M+1) = PM+1+o

(
1
N

)
and var2M+1

(
P̃

(2)
M+1

)
= PM+1(1−PM+1)

N(1− λ
Nα )p̃(2)M r̃M

+o
(

1
N

)

(by Lemma 3.1) and (1 + x)α ≈
α→0

(1 + αx+ α(α+ 1)/2x2);

≈ P 2
M+1var

(
p̃M

{
1 +

λ

Nα
ZMψ(P̃

(1)
M )E2M

(
f(P̃

(1)
M+1)

)})

+P 2
M+1E

(
p̃2
M

λ2

N2α

[
ZMψ(P̃

(1)
M )

]2
var2M

(
f(P̃

(1)
M+1)

))

+
PM+1(1 − PM+1)

N

(
1 − λ

Nα

)
E

(
p̃2
M

p̃
(2)
M r̃M−1

ψ(P̃
(1)
M )E2M

(
g(P̃

(1)
M+1)

))

where the last step is the result of two conditionings by F2M and with

f(x) =
1

ϕ(x)

(
x

PM+1
− 1

){
1 − λ

Nα

(
ZM

ψ(P̃
(1)
M )

ϕ(x)
− 1

)}

and

g(x) =
1

ϕ(x)



1 − 2

λ

Nα

(
ZM

ψ(P̃
(1)
M )

ϕ(x)
− 1

)
+ 3

λ2

N2α

(
ZM

ψ(P̃
(1)
M )

ϕ(x)
− 1

)2



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1. Calculation of the first term denoted T1: Applying Lemma 3.1 to f , we get

T1 ≈ P 2
M+1var

(
p̃M

{
1 +

1

N

ψ(P̃
(1)
M )ϕ(PM+1)

−1

p̃
(2)
M r̃M−1PM+1

{
1 − λ

Nα

(
2ZM

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)}})

≈ P 2
M+1var (p̃M )

+
1

4N2ϕ(PM+1)2
var

(
p̃Mψ(P̃

(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2ZM

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

+
PM+1

Nϕ(PM+1)
cov

(
p̃M ,

p̃Mψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2ZM

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

The second term (which is in 1
N2 ) being negligible, we only study the term involving

the covariance equals to

E

(
p̃2
M

ψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2ZM

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

−E (p̃M ) E

(
p̃M

ψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2ZM

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})
=: T11 − T12T13

and we show that it is null. The integration procedure being the same for all the

expectations introduced in this proof, we only detail the calculation of E (p̃M ) in order

to lighten drafting:

T12 = E (p̃M ) = E


p̃M−1P̃

(2)
M





1 + λ
Nα

(
ZM−1

P̃
(1)
M

P̃
(2)
M

− 1

)

1 + λ
Nα (ZM−1 − 1)








= E

(
p̃M−1

{
1 +

λ

Nα
(ZM−1 − 1)

}−1

E2M−1

(
uM (P̃

(2)
M )

))

conditioning by F2M−1 and noting uM (x) = x

{
1 + λ

Nα

(
ZM−1

P̃
(1)
M

x − 1

)}
. But by

Lemma 3.1 (the second term being negligible),

E2M−1

(
uM (P̃

(2)
M )

)
= uM (PM ) +

PM (1 − PM )

2N
(
1 − λ

Nα

)u′′M (PM ) + o

(
1

N

)

= PM

{
1 +

λ

Nα

(
ZM−1

P̃
(1)
M

PM
− 1

)}
+ o

(
1

Nα

)
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Let now

vM (x) =



1 − λ

Nα

(
ZM−1

ψ(P̃
(1)
M−1)

ϕ(x)
− 1

)
+

λ2

2N2α

(
ZM−1

ψ(P̃
(1)
M−1)

ϕ(x)
− 1

)2




{
1 +

λ

Nα

(
ZM−1

ψ(P̃
(1)
M−1)

ϕ(x)

x

PM
− 1

)}

and apply Lemma 3.1 to vM to get

E2(M−1)

(
vM (P̃

(1)
M )

)
= vM (PM ) +

PM (1 − PM )

2λN1−α
v′′M (PM ) + o

(
1

N1−α

)
= 1 + o

(
1

N

)
.

Then by a conditioning by F2(M−1), one can deduce

T12 ≈ PME

(
p̃M−1E2(M−1)

(
vM (P̃

(1)
M )

))
≈ PME (p̃M−1) ≈ · · · ≈ pM .

Making successive conditionings and applications of Lemma 3.1, T11 becomes

T11 ≈ PM · · ·P2

RM−1 · · ·R2

ψ(PM )

ϕ(P2)
E

(
P̃ 2

1

ψ(P̃
(1)
1 )

P̃
(2)
1

{
1 − λ

Nα

(
2
P̃

(1)
1 r0M

P̃
(2)
1

ψ(P̃
(1)
1 )

ϕ(P2)
− 1

)})

=
pMψ(PM )

rM−1

[{
1 − λ

Nα

(
2
r0M
rM

− 1

)}
− 1/8

λN1−α

1

P1(1 − P1)

]
+ o

(
1

N1−α

)

by an application of Lemma 3.1 to Φ, defined by

Φ(x, y) = yψ(x)

{
1 + 2

λ

Nα

(
x

y
− 1

)
+

λ2

N2α

(
x

y
− 1

)2
}{

1 − λ

Nα

(
2r0M
ϕ(P2)

xψ(x)

y
− 1

)}
,

to obtain

E

(
Φ
(
P̃

(1)
1 , P̃

(2)
1

))
= Φ(P1, P1) + P1(1 − P1)

{
Φ′′
x(P1, P1)

2λN1−α
+

Φ′′
y(P1, P1)

2N(1 − λ/Nα)

}
+ o

(
1

N1−α

)

= P1ψ(P1)

{
1 − λ

Nα

(
2
r0M
rM

− 1

)}
+ P1(1 − P1)

Φ′′
x(P1, P1)

2λN1−α
+ o

(
1

N1−α

)

In the same way, we get

T13 =
ψ(PM )

rM−1

[{
1 − λ

Nα

(
2
r0M
rM

− 1

)}
− 1/8

λN1−α

1

P1(1 − P1)

]
+ o

(
1

N1−α

)

from which we deduce the nullity of the covariance term. Finally, T1 ≈ P 2
M+1var (p̃M ) .

2. Calculation of the second term denoted T2: Making successive conditionings and
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applications of Lemma 3.1, it comes

T2 ≈ λ

N1+α
(1 − PM+1)PM+1 · · ·P2

r0M
(RM · · ·R2)2ϕ(P2)2

E

(
P̃ 2

1

P̃
(1)
1 ψ(P̃

(1)
1 )2

P̃
′2
1

{
1 − 2

λ

Nα

(
r0M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)})

=
λ

N1+α
(1 − PM+1)pM+1

r0M
r2M

{
1 − 2

λ

Nα

(
r0M
rM

− 1

)}
+ o

(
1

N1+α

)

where the last step comes from an application of Lemma 3.1 to Ψ, defined by

Ψ(x, y) = xψ(x)2
{

1 +
λ

Nα

(
x

y
− 1

)}{
1 − 2

λ

Nα

(
r0M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

)}
,

just keeping the first term.

3. Calculation of the third term denoted T3: Applying Lemma 3.1 to g,

T3 ≈ 1

2λN2−α

PM+1 − 1/4

rMr0M
+
PM+1(1 − PM+1)

N

(
1 − λ

Nα

)
E

(
p̃2
M

p̃
′

M r̃M−1

ψ(P̃
(1)
M )

ϕ(PM+1)


1 − 2

λ

Nα

(
r0M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)
+ 3

λ2

N2α

(
r0M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)2







But the second term of the right hand side becomes after successive conditionings and

applications of Lemma 3.1,

1 − PM+1

N

(
1 − λ

Nα

)
PM+1 · · ·P2

RM · · ·R2ϕ(P2)
E

(
P̃ 2

1

ψ(P̃
(1)
1 )

P̃
′

1

{
1 − 2

λ

Nα

(
r0M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)

+3
λ2

N2α

(
r0M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)2







≈ pM+1(1 − PM+1)

NrM

(
1 − λ

Nα

){
1 − 2

λ

Nα

(
r0M
rM

− 1

)
+ 3

λ2

N2α

(
r0M
rM

− 1

)2
}

− 1 − PM+1

8λN2−α

pM+1

rMP1(1 − P1)

where the last step comes from an application of Lemma 3.1 to Γ, defined by

Γ(x, y) = yψ(x)

{
1 + 2

λ

Nα

(
x

y
− 1

)
+

λ2

N2α

(
x

y
− 1

)2
}

{
1 − 2

λ

Nα

(
r0M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

)
+ 3

λ2

N2α

(
r0M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

)2
}

just keeping the two first terms.

From all these results, we deduce the recursive relation between var (p̃M+1)
(
= var

(
P̃
))
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and var (p̃M )

var
(
P̃
)
≈ P 2

M+1var (p̃M ) +
λ

N1+α
(1 − PM+1)pM+1

r0M
r2M

{
1 − 2

λ

Nα

(
r0M
rM

− 1

)}

+
pM+1(1 − PM+1)

NrM

(
1 − λ

Nα

){
1 − 2

λ

Nα

(
r0M
rM

− 1

)
+ 3

λ2

N2α

(
r0M
rM

− 1

)2
}

+
1

2λN2−α

1

rM

[
PM+1 − 1/4

r0M
− pM+1

4

1 − PM+1

P1(1 − P1)

]

It just remains now to evaluate var (p̃1)
(
= var

(
P̃1

))
to initialize the induction:

applying Lemma 3.1,

var
(
P̃1

)
= var

(
P̃

(2)
1

{
1 +

λ

Nα

(
P̃

(1)
1

P̃
(2)
1

− 1

)})
+ o

(
1

N1−α

)

= P1(1 − P1)

[
∆

′2
x (P1, P1)

λN1−α
+

∆
′2
y (P1, P1)

N
(
1 − λ

Nα

)
]

+ o

(
1

N1−α

)

= P1(1 − P1)

[
1

λN1−α

λ2

N2α
+

(
1 − λ

Nα

)2

N
(
1 − λ

Nα

)
]

+ o

(
1

N1−α

)

=
P1(1 − P1)

N
+ o

(
1

N1−α

)

with ∆(x, y) = y
(
1 + λ

Nα

(
x
y − 1

))
and we conclude by an induction.

Appendix D. Proof of Lemma 4.1

In this section, we want to prove Lemma 4.1. We only detail the case α = 1
3 (the

other results can easily be deduced by the same technique). First, since N is given by

G = Gf and by the asymptotic expression of G, N satisfies

N −N2/3f1(λ) +N1/3f4(λ) ∼ Gf (20)

and so we can consider that

N ∼ Gf + µG
2/3
f + νG

1/3
f = Gf

[
1 +

µ

G
1/3
f

+
ν

G
2/3
f

]

for some functions µ and ν to be determined. But injecting that value in (20), we

finally get

Gf ∼ Gf + [µ− f1(λ)]G
2/3
f +

[
ν + f4(λ) − 2

3
f1(λ)µ

]
G

1/3
f
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from which we deduce that µ = f1(λ) and ν = 2
3f1(λ)2 − f4(λ) and

N ∼ Gf

[
1 +

f1(λ)

G
1/3
f

+
2
3f1(λ)2 − f4(λ)

G
2/3
f

]
.

Now injecting that N in the asymptotic expression of F in Lemma 4.1, we get

F (λ,N) ∼ 1

Gf

[
1 − µ

G
1/3
f

− ν

G
2/3
f

+ µ2 1

G
2/3
f

]
+
f1(λ)

G
4/3
f

[
1 − 4

3

µ

G
1/3
f

]
+

(f2 + f3)(λ)

G
5/3
f

∼ 1

Gf
+

1

G
4/3
f

[f1(λ) − µ] +
1

G
5/3
f

[
(f2 + f3)(λ) − 4

3
µf1(λ) − ν + µ2

]

∼ 1

Gf
+

1

G
5/3
f

[
(f2 + f3)(λ) + f4(λ) − f1(λ)2

]

from which we deduce the required result for α = 1
3 .
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