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RARE EVENT SIMULATION

AGGGNNNÈÈÈSSS LAAAGGGNNNOOOUUUXXX
Laboratoire de Statistique et Probabilités

Université Paul Sabatier
31062 Toulouse Cedex 4, France

E-mail: lagnoux@cict.fr

This article deals with estimations of probabilities of rare events using fast simu-
lation based on the splitting method+ In this technique, the sample paths are split
into multiple copies at various stages in the simulation+ Our aim is to optimize the
algorithm and to obtain a precise confidence interval of the estimator using branch-
ing processes+ The numerical results presented suggest that the method is reason-
ably efficient+

1. INTRODUCTION

The analysis of rare events is of great importance in many fields because of the risk
associated with the event+ Their probabilities are often about 10�9 to 10�12+ One
can use many ways to study them: The first is statistical analysis, based on the
standard extreme value distributions, but this needs a long observation period ~see
Aldous @1# !; the second is modeling, which leads to estimating the rare event prob-
ability either by an analytical approach ~see Sadowsky @10# ! or by simulation+

In this article we focus on the simulation approach based on the Monte Carlo
method+ Nevertheless, a crude simulation is impractical for estimating such small
probabilities: To estimate probabilities of order 10�10 with acceptable confidence
would require the simulation of at least 1012 events ~which corresponds to the occur-
rence of 100 rare events!+

To overcome these limits, fast simulation techniques are applied+ In particular,
importance sampling ~IS! is a refinement of Monte Carlo methods+ The main idea
of IS is to make the occurrence of the rare event more frequent+More precisely, IS
consists of selecting a change of measure that minimizes the variance of the esti-
mator+Using another method based on particles systems,Cerou,Del Moral, Legland,
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and Lezaud @3# gave theoretical results on the convergence of this kind of algo-
rithm+ In this article, we deal with the RESTART ~REpetitive Simulation Trials
After Reaching Thresholds! algorithm presented by Villen-Altamirano and Villen-
Altamirano @11# and based on splitting+ The basic idea of splitting is to partition the
space state of the system into a series of nested subsets and to consider the rare
event as the intersection of a nested sequence of events+ When a given subset is
entered by a sample trajectory, random retrials are generated from the initial state
corresponding to the state of the system at the entry point+ Thus, the system trajec-
tory has been split into a number of new subtrajectories+ However, the analysis of
the RESTART model presents numerous difficulties because of the lack of hypoth-
esis and the complexity of formulas+

In this article we build a simple model of splitting for which we are able to
derive precise conclusions+ It is based on the same idea: Before entering the rare
event A, there exists intermediate states visited more often than A by the trajectory:
A � BM�1 � BM � {{{� B1+ Let Pi � P~Bi 6Bi�1!, i � 2, + + + ,M �1, and P1 � P~B1!+
The fact that a sample trajectory enters Bi is represented by a Bernoulli trial+ Every
time a sample trajectory enters a subset Bi , i �1, + + + ,M, it is divided in a number Ri

of subtrajectories starting from level i +More precisely, we generate N random vari-
ables with common law Bernoulli Ber ~P1! and check whether the subset B1 is
reached+ If so, we duplicate the trials in R1 retrials of Ber~P2! and check whether
the subset B2 is reached+ Thus,

P � P~A!� P1{{{PM�1 (1)

and an unbiased estimator of P is

ZP :�
1

N (i�1

N

ZPi �
NA

NR1{{{RM

, (2)

where ZPi are independent and identically distributed ~i+i+d+!, NA is the number
of trials that reach A during the simulation, and N is the number of particles ini-
tially generated+ An optimal algorithm is chosen via the minimization of the vari-
ance of ZP for a given budget+ For this, we have to describe the cost of a given
simulation: Each time a particle is launched, it generates an average cost that is
assumed here to be a function h of the transition probability+ Therefore, the ~aver-
age! cost is

C � N(
i�0

M

ri h~Pi�1!Pi 60 , (3)

where ri � R1{{{Ri , i � 1, + + + ,M, r0 � 1, and Pi 60 � P1{{{Pi , i � 1, + + + ,M � 1, and
P0 60 � 1+ Then the optimal algorithm is described by
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Pi � P 10~M�1!, i � 1, + + + ,M � 1,

Ri �
1

Pi

, i � 1, + + + ,M,

N �
C

~M � 1!h~P 10M�1 !
, (4)

and M is given by M � @ ln P0y0#� 1 or M � @ ln P0y0# , where y0 is the solution of
Eq+ ~30!+ The optimal sampling number is independent of the budget and this for-
mer only determines the optimal number of independent particles first generated+
In the special case of h � 1,

M � @�0+6275 ln P #� 1 or M � @�0+6275 ln P # ,

Ri � 5, and Pi �
1

5
+ (5)

Thus, the optimal sampling number and the optimal transition probabilities are
independent of the rare event probability+ For example, if P � 10�12 and C � 103 ,
M � 16, Pi � 0+2, Ri � 5, and N � 59+

Example 1.1: To analyze the behavior of the different implementations described
earlier, we perform a simulation experiment using these methods+ We consider a
queuing network and we want to estimate the occupancy of the finite buffer queu-
ing system M0M010C0+ The results are presented in Figure 1+As expected and since
we proceed for a given cost C ~C � 104!, the crude simulation stops after a few
iterations, the number of samples run at the beginning being not sufficient+ How-
ever, note that splitting simulation and theoretical analysis give very close results+

Example 1.2: This model can be applied to approximate counting ~see Jerrum and
Sinclair @7# and Diaconis and Holmes @5# !+ Given a positive real vector a � ~ai !i�1

n

and a real number b, we want to estimate the number of 0–1 vectors x � ~xi !i�1
n s+t+

a{x :� (
i�1

n

ai xi � b (6)

For more details, see Section 3+2+

Remark 1.1: Hereafter we will take all the Ri equal to R and all the Pi equal to
P0 � 10R+ Thus, RP0 � 1+

The aim of the article is to give a precise confidence interval of ZP+ The bound
involving the variance of ZP and given by the Markov inequality is not precise enough+
Therefore, as done in the theory of large deviations, we introduce the Laplace trans-
form of ZP1, which can be rewritten as E~el ZP1 !� P0 fM ~e

l0RM

!� 1 � P0, where fM
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is the Mth functional iterate of a Bin~R,P0! generating function ~g+f+!+ The elemen-
tary theory of branching processes leads to precise bounds of fM and to a precise
confidence interval that we can compare to the confidence interval if we only use
the variance+ For example, for P �10�9 , C �108 , and a� 0+02, the variance gives
a bound about 10�2 and the Laplace transform gives a bound approximating 10�12+

The article is organized as follows+ Section 2 describes the importance split-
ting model, presents our model and goals ~the analysis of the behavior of the prob-
ability P of a rare event!, and introduces an estimator ZP of P+ Section 3 is dedicated
to the optimization of the algorithm+ In Section 4 we obtain a precise confidence
interval of the estimator via branching processes+ Finally, in Section 5 we conclude
and discuss the merits of this approach and potential directions for further researches+

2. IMPORTANCE SPLITTING MODEL

Our goal is to estimate the probability of a rare event A corresponding, for example,
to the hit of a certain level L by a process X~t !+ The main hypothesis is to suppose
that before entering the target event, there exists intermediate states visited more

Figure 1. Comparison between the different methods: queuing theory model+ Level
of confidence 950100+
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frequently than A by the trajectory+ Thus, define a sequence of sets of states Bi such
as A � BM�1 � BM � {{{� B1, which determines a partition of the state space into
regions Bi–Bi�1 called the importance regions ~as represented in Figure 2!+ In gen-
eral, these sets are defined through a function F called the importance function
from the state space to R such that for all i , Bi � $F� Ti % for some value Ti called
thresholds, with T1 � T2 � {{{ � TM � L+

In this model a more frequent occurrence of the rare event is achieved by per-
forming a number of simulation retrials when the process enters regions where the
chance of occurrence of the rare event is higher+ The fundamental idea consists of
generating N Bernoulli Ber~P1! and check whether the subset B1 is reached+ If so,
we duplicate the trials in R1 retrials of Bernoulli Ber~P2! and check whether the
subset B2 is reached+ If none of the higher levels is reached, the simulation stops+

Thus, by the Bayes formula,

P~A! � P~A6BM !P~BM 6BM�1!{{{P~B2 6B1!P~B1! (7)

:� PM�1 PM{{{P2 P1+ (8)

Then P is the product of M � 1 quantities ~conditional probabilities! that are easier
to estimate and with more accuracy than the probability P of the rare event itself,
for a given simulation effort+

The estimator ZP of P defined in ~2! can be rewritten as

ZP �
1

NR1{{{RM
(

i0�1

N

(
i1�1

R1

{{{ (
iM�1

RM

1i0 1i0 i1{{{1i0 i1{{{iM , (9)

Figure 2. Splitting model+
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where 1i0 i1{{{ij represents the result of the j th trial+ In that case,

ZPi0 �
1

R1{{{RM
(

i1�1

R1

{{{ (
iM�1

RM

1i0 1i0 i1{{{1i0 i1{{{iM + (10)

Moreover, we define P~A! as the probability of reaching A and we suppose that the
process forgets the past after reaching a level; this happens as soon as the process is
Markov+

3. STUDY OF THE VARIANCE AND OPTIMIZATION

3.1. Variance of the Estimator

First, note that ZP is unbiased since

E~ ZP ! � E� NA

NR1{{{RM
�

�
1

NR1{{{RM
(

i0�1

N

(
i1�1

R1

{{{ (
iM�1

RM

E~1i0 1i0 i1{{{1i0 i1{{{iM !� P+ (11)

As done in @11# , the variance of the estimator ZP is derived by induction and the
variance for k thresholds is given by

var~ ZP ~k! ! �
~P1{{{Pk�1!

2

N �(
i�0

k 1

ri
� 1

Pi�160

�
1

Pi 60
�� , (12)

where ZP ~k! represents the estimator of P in a simulation with k thresholds+
Clearly, the formula holds in straightforward simulation ~i+e+, when k � 0!,

since ZP is a renormalized sum of i+i+d+ Bernoulli variables with parameter P+
To go from k to k � 1, assume ~12!; thus, we have to prove that this formula

holds for k � 1 thresholds+ First, note that for all X and Y random variables, which
are independent given the set B and X s~B!-measurable, we have

var~XY ! � var~X !var~Y !� var~X !E~Y !2 � var~Y !E~X !2+ (13)

Now let

Xi0 � 1i0 , Zi0 �
1

R1{{{Rk�1
(

i1�1

R1

{{{ (
ik�1�1

Rk�1

1i0 i1{{{1i0 i1{{{ik�1
+ (14)

The random variables Xi0 are i+i+d+ with common law Ber~P1!, and conditionally at
the event B1, Xi0 and Zi0 are independent+ Note that each Zi0 is the estimator of P in
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a model with k thresholds, T2 to Tk�1 for the trajectory issued from the success of
Xi0 + Thus,

E~Z! � P2{{{Pk�2 , (15)

and by the induction hypothesis,

var~Z! � ~P2{{{Pk�2 !
2�(

i�1

k�1 1

R1{{{Ri
� 1

Pi�161

�
1

Pi 61
�� + (16)

So applying ~13! with X; Ber~P1! and Z; Zi0 , we have

var~ ZP ~k�1! ! :�
1

N 2
var�(

i0�1

N

Xi0 Zi0� (17)

�
P1

N
@var~Z!� ~1 � P1!E~Z!

2 # (18)

�
~P1 P2{{{Pk�2 !

2

N �(
i�0

k�1 1

ri
� 1

Pi�160

�
1

Pi 60
�� + (19)

Thus, for M thresholds,

var~ ZP ! �
P 2

N �(
i�0

M 1

ri
� 1

Pi�160

�
1

Pi 60
�� + (20)

Remark 3.1: The induction principle has a concrete interpretation: If in a simula-
tion with M steps, the retrials generated in the first level are not taken into account
except one that we call the main trial, we have a simulation with M � 1 steps+

3.2. Optimization of the Parameters

As stated in Section 1, our aim is to minimize the variance for a fixed budget, giv-
ing optimal values for N,R1, + + + ,RM , P1, + + + ,PM�1, and M+ Therefore, we have to
describe the cost of a given simulation: Each time a particle is launched, it gener-
ates an average cost function h+We assume the following:

• The cost h for a particle to reach Bi starting from Bi�1 depends only on Pi

~not on the starting level!+
• h is decreasing in x ~which means that the smaller the transition probability

is, the harder the transition is and the higher the cost is!+
• h is nonnegative+
• h converges to a constant ~in general, small! when x converges to 1+

The ~average! cost is then

C � E~Nh~P1!� R1 N1 h~P2 !� R2 N2 h~P3 !� {{{� RM NM h~PM�1!!, (21)
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where Ni is the number of trials that have reached threshold i + Finally,

C � N(
i�0

M

ri h~Pi�1!Pi 60 + (22)

Example 3.1: We want to study the model of the simple random walk on Z starting
from zero that we kill as soon as it reaches the level �1 or k ~success if we reach k,
failure otherwise!+

So let Xn be such that X0 � 0 and Xn � (i�1
n Yn , where $Yn% is a sequence of

random variables valued in $�1,1% with P~Yn � 1! � P~Yn � �1! � 1
2
_ and define

Tk � inf $n � 0 : Xn � �1 or k% +
One can easily check that Xn and Xn

2 � n are martingales+ By Doob’s stopping
theorem, E~XTk

!� 0 and E~XTk

2 !� E~Tk!, which yields

p :� P~XTk
� k!�

1

k � 1
and E~Tk !� k �

1

p
� 1 (23)

~i+e+, the cost needed to reach the next level is ~10p!�1 if p is the success probability!+

To minimize the variance of ZP, the optimal values are derived in three steps:

1+ The optimal values of N,R1, + + + ,RM are derived when we consider that
P1, + + + ,PM�1 are constant ~i+e+, the thresholds Bi are fixed!+

2+ Replacing these optimal values in the variance, we derive the optimal tran-
sition probabilities: P1, + + + ,PM�1+

3+ Replacing these optimal values in the variance, we derive M, the optimal
number of thresholds+

Optimal values for N,R1, + + + + ,RM+ Using the method of Lagrange multipliers,
we get

Ri �
ri

ri�1

� � h~Pi !

h~Pi�1! �
1

Pi Pi�1
�1 � Pi�1

1 � Pi

, i � 1, + + + ,M, (24)

N �
1

Mh~P1!

CM10P1 � 1

(
i�1

M�1

Mh~Pi !� 1

Pi

� 1

+ (25)

Optimal values for P1, + + + + ,PM�1+ Thus, the variance becomes

var~ ZP ! �
P 2

C
�(

i�1

M�1

Mh~Pi !� 1

Pi

� 1�2

+ (26)

Proceeding as previously under the constraint P � P1{{{PM�1, we obtain that all of
the Pi ’s satisfy 2MClMh~x!~~10x!� 1! � h '~x!~1 � x! � ~h~x!0x!+ If we assume
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that there exists a unique solution to this equation, we have Pi � g~l!; hence, P �
g~l!M�1 and g~l!� P 10~M�1!+ Finally,

Pi � P 10~M�1!, i � 1, + + + ,M � 1+ (27)

Optimal value for M+ The optimal values for P1, + + + ,PM�1 imply that the opti-
mal Ri becomes 10Pi , i � 1, + + + ,M; thus,

var~ ZP ! �
P 2

C
~M � 1!2h~P 10M�1 !~P�10M�1 � 1!, (28)

which we want to minimize in M+ Note that Ri Pi � 1+ Let

f ~M ! �
P 2

C
~M � 1!2h~P 10M�1 !~P�10M�1 � 1!, (29)

whose derivative cancels in

F~ y! :� ~2~1 � e y !� y!h~e y !� y~1 � e y !e yh '~e y !� 0 with y �
ln P

M � 1
+

(30)

In general, this does not give an integer+We have y0 � ln P0~M � 1! ~i+e+, M � 1 �
@ ln P0y0# or @ln P0y0#� 1!+ Let ln P0y0 � n � x with 0 � x � 1+ Then the following
hold:

• If we take M � 1 � n, y � ln P0n+
• If we take M � 1 � n � 1, y � ln P0~n � 1!+

The value of the ratio r :� f ~n � 1!0f ~n! gives the best choice for M as follows:

• If r � 1, M � n � 1+
• If r � 1, M � n+

Thus, the optimal number of thresholds is given by M � @ ln P0y0# � 1 or
M � @ ln P0y0# , where y0 solves F~ y!� 0+ Then M minimizes

var~ ZP ! �
P 2

C
~ ln P !2 y�2h~e y !~e�y � 1!+ (31)

Example 3.2: For h � 1, we have to solve y � 2~e y � 1!+ We get y1 � 0 and
y2 � �1+5936+ y2 is a minimum and the optimal value of M is

M � @�0+6275 ln P #� 1 or @�0+6275 ln P # + (32)
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With P � 10�k , we have

k n ratio~r! �1,�1 M k n ratio~r! �1,�1 M
1 1 . 1 6 8 . 8
2 2 . 2 9 13 , 12
3 4 , 3 12 17 , 16
4 5 . 5 15 21 . 21
5 7 , 6 18 26 , 25

Note that M increases while P decreases, and with this value of M, each Ri and
Pi become

Ri � 5 and Pi �
1

5
+ (33)

Thus, the optimal sampling number and the optimal transition probabilities are inde-
pendent of the rare event probability+

Moreover, asymptotically, M � n � @ ln P0y0#� 1; thus,

Pi � P 10~M�1! � e ln P0~M�1! � e y0 and P � e�~n�1!6y0 6+ (34)

Application 3.1: In approximate counting, remember that the goal is to estimate
the number of Knapsack solutions ~i+e+, the cardinal of V defined by

V :� �x � $0,1%n : a{x :� (
i�1

n

ai xi � b�
for a given positive real vector a � ~ai !i�1

n and real number b!+ We might try to
apply the Markov chain Monte Carlo method ~MCMC! @9#: Construct a Markov
chain MKnap with state space V� $x � $0,1%n : a{x � b% and transitions from each
state x � ~x1, + + + , xn! � V defined by the following:

• With probability 1
2
_ , let y � x; otherwise

• select i uniformly at random in $1, + + + , n% and let y ' � ~x1, + + + , xi�1,
1 � xi , xi�1, + + + , xn!

• If ay ' � b, then let y � y ' , else let y � x+

The new state is y+ This random walk on the hypercube truncated by the hyperplane
a{x � b converges to the uniform distribution over V+ This suggests a procedure for
selecting Knapsack solutions almost uniformly at random+ Starting in state ~0, + + ,0!,
simulate MKnap for sufficiently many steps that the distribution over states is “close”1

1The problem is to bound the number of steps necessary to make the Markov chain MKnap~b! “close” to
stationarity+ More precisely, we need a bound of the mixing time:

tmix~n! :� min$t : Dx ~t
' !� n for all t ' � t %,

where Dx~t ! � maxS�V6P t~x,S! � P~S!6 and P is the stationary distribution+ In @7# , it is shown that
O~n902�n! steps suffice+
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to uniform; then return to the current state+ Of course, sampling over V is not the
same as estimating the size of V+ However, the first task leads to the second+

Keep the vector a fixed but allow b to vary+ Use V~b! and MKnap~b! instead of
V and MKnap to emphasize the dependence on b+Assume without loss of generality
that a1 � {{{� an and define b1 � 0 and bi � min$b,(i�1

i�1 aj % + One can check that

6V~bi�1!6 � 6V~bi !6� ~n � 1!6V~bi�1!6+ (35)

Now write

6V~b!6 � 6V~bn�1!6

�
6V~bn�1!6

6V~bn !6

6V~bn !6

6V~bn�1!6
{{{
6V~b2 !6

6V~b1!6
6V~b1!6

:� rn
�1{{{r1

�1 + (36)

The ratio ri � 6V~bi !606V~bi�1!6 may be estimated by sampling almost uni-
formly from V~bi�1! using the Markov chain MKnap~bi�1! and computing the frac-
tion of the samples that lie within V~bi !+

Now take a � @1,2,3,4# , b � 3, h �1, R � 5, and C � 2600+We chose the levels
as follows: First, define b1 � 0, b2 � 1, b3 � 3, b4 � 3, and b5 � b; second, define
B0 � V, B1 � V~b4!, B2 � V~b3!, B3 � V~b2!, and B4 � V~b1!+ Thus, here, M �
n � 1, N � C0n, and nstep � 1020+ Obviously, Card~V!� 5+We run three different
simulations: The first, suggested in @7# , consists of estimating the n ratios indepen-
dently, the crude and splitting ones+ We obtain different estimations for Card~V!:

• Estimation by crude simulation � 4+088
• Estimation by the n ratios independently � 5+44
• Estimation by splitting � 5+019

Even though the levels are not optimal, splitting provides an improvement+

Let us describe briefly the possible solutions of ~30!+ Remember that we want
to solve ~30!; that is, if z � e y and z � 0,1,

H~z! :�
h '~z!

h~z!
�

1

z
� 2

ln z
�

1

1 � z
� �:

l '~z!

l~z!
�: L~z!+ (37)

First, let z0 be the solution of 2~z � 1! � ln z+ Since h ' � 0, H is negative and a
quick survey shows that L is positive on #0, z0 @ and negative on #z0,1@+ As a con-
sequence, the solutions of ~37! lie in #z0,1@, if they exist+ Thus, solving ~30! is
equivalent to studying the intersections between H and L+ A quick survey of these
functions shows that we have two cases ~see Fig+ 3!:
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Case 1: An odd number of intersections between L and H

m H~z! � L~z! near 1, (38)

m h ''~1! � 0 (39)

Case 2: An even number of intersections or 0 between L and H

Note that y � 0 is a solution of ~30!+ In case 1, it corresponds to a maximum, and in
case 2, it corresponds to a minimum+ The second case is excluded since we made
the assumption h~1! � 0+

Remark 3.2: The solution y � 0 corresponds to the following optimal values:

M � `, Pi � 1, Ri � 1, N ;Mr`

C

~M � 1!h~1!� ln~P !h '~1!
+

(40)

However Pi � 1 implies that P � 1 and Ri � 1 means that we just perform a crude
simulation+

Example 3.3: Here, P � 10�12 and C � 104 +

1+ In Example 1, h~1!� 0 and we are in the second case: The unique solution
y � 0 is the minimum+

Figure 3. Behavior of H and L+
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2+ Let h~x! � 10x � 8x 2 � 12x � 5+ h~1! � 0 and we are in the first case:
y � 0 and y � �0+9919 are the solutions+ y � 0 is the maximum and the
other solution is the minimum+ Taking y � �0+9919, we obtain

M � 26, P0 � 0+3594, R � 2+7826, and N � 22+9 (41)

and we can take R � 3 and N � 23+
3+ Let h~x!� ~10x �1!2e6x+ h~1!� 0 and we are in the second case: y � 0, y1 �

�0+4612, and y2 � �0+5645 are the solutions+ y � 0 is the minimum and the
second solution is the maximum+

4+ Let h~x!� 10x+ Here, h~1!� 1+We want to solve ~30!, whose solutions are
y � 0 and y � �0+6438+ Taking y � �0+6438, we obtain

M � 41, P0 � 0+5179, R � 1+9307, and N � 34+5 (42)

and we can take R � 2 and N � 34+

Thus, the control of the variance of ZP gives a crude confidence interval for P+
Indeed, we get

P� 6 ZP � P 6

P
� a� �

1

P 2a 2
E~~ ZP � E~ ZP !!2 ! (43)

�
1

a 2C
@~M � 1!2~P�10M�1 � 1!h~P 10~M�1! !# (44)

�
4~M � 1!

a 2N
h~P 10~M�1! !+ (45)

This estimation is, in general, useless+ For example, for h � 1, M � 12, and
a� 10�2 , the upper bound becomes � 5 � 1050N+ To obtain a bound lower than 1,
we need N � 5 � 105 + To improve it, we will use Chernoff ’s bounding method
instead of the Markov inequality: For all l � 0,

P~ ZP � P~1 � a!!� P� 1

N (i�1

N

ZPi � P~1 � a!� (46)

� P~e
l (

i�1

N

ZPi

� elNP~1�a! ! (47)

� e�lNP~1�a!
E~el ZP1 !N (48)

� e�N @lP~1�a!�c~l!#, (49)

where c~l!� E~el ZP1 ! is the log-Laplace of ZP1+ Optimization on l � 0 provides

P~ ZP � P~1 � a!!� e�N supl�0 @lP~1�a!�c~l!#+ (50)

RARE EVENT SIMULATION 57



Similarly,

P~ ZP � P~1 � a!!� e�N supl�0 @lP~1�a!�c~l!#+

Let c * be the Crämer transform of c: c *~t!� supl@lt� c~l!# + Thus,

P� 6 ZP � P 6

P
� a� � e�Nc *~P~1�a!! � e�Nc *~P~1�a!! (51)

� 2e�N min~c *~P~1�a!!,c *~P~1�a!!!+ (52)

So we want to obtain an accurate lower bound of c *+

Remark 3.3: Although we would therefore like to take Ri so that Ri Pi � 1, we are
constrained to choose Ri to be a positive integer+ Hereafter, we suppose that we are
in the optimal case, where Ri � 10Pi is an integer+

4. LAPLACE TRANSFORM OF ZP1

To study the Laplace transform of ZP1, we turn to the theory of branching processes
~see Harris @6# , Lyons @8# , and Athreya and Ney @2# !+ More precisely, we consider
our splitting model as a Galton–Watson process, the thresholds representing the
different generations+

4.1. Description of the Model and First Results

We consider a Galton–Watson model ~Zn!, where the size of the nth-generation Zn

is the number of particles that have reached the level Bn, with one particle run at the
beginning+ Then Z0 � 1 and Zn satisfies the following recurrence relation:

Zn�1 � (
i�1

Zn

Xi
n , (53)

where Xi
n is the number of particles among Ri that have reached the ~n �1!-st level+

The ~Xi
n!n�1 are i+i+d+ with common law Binomial, with parameters ~Rn,Pn�1! and

Xi
0; Ber~P1!+ Take the optimal values of Section 3+2:

Ri � R, i � 1, + + + ,M, Pi � P0 , i � 1, + + + ,M � 1+ (54)

Let f ~s!� E~s Z1 !, the g+f+ of Z1+ Then the g+f+ of Zn is the nth iterate of f+ Since ZP1 �
~10RM!ZM�1, we get

E~el ZP1 ! � E~e ~l0R
M !ZM�1 !� g~ fM ~e

l0RM

!!� g~ f oM~el0R
M

!!, (55)

where g is the g+f+ of a Ber~P0! and f the g+f+ of a Bin~R,P0!+ Thus, we are interested
in the expression of fM , the Mth functional iterate of f+

Here, m � E~Z1! � RP0 � 1, so we are in the critical case of the branching
process that ensures that the algorithm of the simulation stops with probability 1
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when M r ` ~see @6# !, since if f ~3!~1! � `,

lim
nr`

P� 2Zn

nf ''~1!
� u 6Zn � 0�� e�u, u � 0+ (56)

This emphasizes the rarity character when the number M of thresholds increases
and the probabilities between the levels decrease+

In our case,

f ~s! � @P0 s � ~1 � P0 !#
R � @P0~s � 1!� 1# R+ (57)

The iterated function fM has no explicit tractable form and we will derive bounds
for fM~s! around s �1+ To do this, we state a general result on the Laplace transform
in critical Galton–Watson models, which we could not find in the literature+

4.2. Bounds of fn(s) for 0 ��� s , 1 and m51

Remark 4.1: Remember that fn and its derivatives are convex+ Furthermore, for all
0 � s � 1, s � f ~s!� f ~1!�1, and by induction, f ~s!� f2~s!� {{{� 1+ Finally, we
obtain fn~s!r 1 since fn~s! � fn~0!+

Proposition 4.1: Let a1 � f ''~1!02, C � ~maxs�@0,1# f '''~s!!06a1, and gn � na1 @1�
~C0n!~ log n � 1!#� a1. Then, for s close to 1 and large n,

1 �
1 � s

1 � gn~1 � s!
� fn~s!� 1 �

~1 � s!@1 � a1~1 � s!#

1 � a1~1 � s!�n � 1 �
a1

2~1 � s!2

2
� + (58)

Proof: Upper bound: Using Taylor’s expansion, with fn~s! � un � fn~1!� 1,

fn�1~s! � f ~ fn~s!!� f ~1!� ~ fn~s!� 1! f '~1!�
~ fn~s!� 1!2

2
f ''~un ! (59)

� fn~s!�
~ fn~s!� 1!2

2
f ''~un !, (60)

since f '~1!� 1+ Let rn � 1 � fn~s!; rn satisfies

rn�1 � rn � rn
2

f ''~un !

2
+ (61)

Now let a0 � f ''~0!02+ Define the decreasing sequences ~an! and ~bn! satisfying

an�1 � an � an
2a1, bn�1 � bn � bn

2a0 , a0 � b0 � 1 � s+ (62)

RARE EVENT SIMULATION 59



Then

an � rn � bn + (63)

1+ bn’s upper bound: Since 0 � bj � 1, we have

1

bn

�
1

bn�1

� a0

1

1 � a0 bn�1

�
1

b0

� a0 (
j�0

n�1 1

1 � a0 bj

�
1

b0

� na0 + (64)

Thus,

bn �
1 � s

1 � a0 n~1 � s!
+ (65)

2+ an’s lower bound: Apply this upper bound to an ~a0 becoming a1!:

an �
1 � s

1 � na1~1 � s!
+ (66)

By substituting ~66! in 10an � ~10a0!� a1(j�0
n�1~10~1 � a1 aj !!, we get

an �
~1 � s!@1 � a1~1 � s!#

1 � a1~1 � s!�n � 1 �
a1

2~1 � s!2

2
� + (67)

Finally, ~63! and ~67! lead to the upper bound of fn in ~58!+

Lower bound: In fact, we prove by induction that

h [gn
~s! :� 1 �

1 � s

1 � [gn~1 � s!
� fn~s! with �

[gn�1 � cn � [gn

[g1 � 0

cn � a1�1 �
C

n
�+

(68)

For n � 1, the left-hand side of ~68! is given by Remark 4+1+ Then note that
h [gn
~s! rnr` 1; thus, for n large enough, 1 � h [gn

~s! � 10n+ For all 1 � ~10n! �
s � 1,

hcn
~s! � 1 � ~s � 1!� cn~s � 1!2 �

~s � 1!3

6
hcn

'''~un
1! (69)

� 1 � ~s � 1!� cn~s � 1!2 (70)

� f ~s!� ~s � 1!2� s � 1

6
f '''~un

2!�
Ca1

n
� (71)

� f ~s! by definition of C+ (72)
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However, by induction, we have h [gn
~s!� fn~s!, and so, since f is increasing, taking

s � h [gn
~t !,

hcn
~h [gn
~t !! � hcn� [gn

~t !� f ~h [gn
~t !!� f ~ fn~t !!� fn�1~t ! (73)

~i+e+, h [gn�1
~t !� fn�1~t !, where [gn�1 � cn � [gn!+ Note that gn; [gn; more precisely,

we have gn � [gn and we finally obtain the left-hand side of ~58! since g r hg is
increasing+ �

In the particular case of f ~s!� ~P0 s � 1 � P0!
R , we can derive a more precise

lower bound:

Proposition 4.2: For s close to 1,

1 �
1 � s

1 � na1~1 � s!
� fn~s!+ (74)

Observe that this is precise at s � 1+

Proof: Let h~s!� 1 � ~~1 � s!0~1 � a1~1 � s!!!+ Since f ~1!� h~1!� 1, f '~1!�
h '~1!� 1, and f ''~1!� h ''~1!� 2a1, the sign of f � h trivially depends on the sign
of the third derivative of f � h, which is obviously negative here+ Then h � f+ Since
f is increasing, we deduce ~74! by induction+ �

We plot in Figure 4a the upper bound and the two lower bounds for P � 10�12

and s near 1+

4.3. Bounds of fn(s) for 1 ��� s and m51

Remark 4.2: First, let us note that, by convexity, for all s � 1,

~s � 1! f '~1! � f ~s!� f ~1!� f ~s!� 1; (75)

hence, f ~s! � s, and by induction on n,

fn�1~s! � fn~s!� {{{� f ~s!� s � 1+ (76)

We remark that for s � 1, the iterated function increases rapidly to infinity+

Proposition 4.3: Let gn
' � na1 @1 � ~C0n!~ log n � 1!#� a1. Then, for s close to 1

and large n,

1 �
~s � 1!

1 � na1 sn
P0�2~s � 1!

� fn~s!� 1 �
s � 1

1 � ngn
' ~s � 1!

+ (77)

Proof: Proceeding as in Proposition 4+1 leads to the upper bound+ Here,
fn rnr�` `, which prevents us from making a Taylor expansion around 1+ To
overcome this difficulty, consider kn, the inverse function of fn; it is the nth func-
tional iterate of the g+f+ k ~inverse function of f ! that takes the value 1 in 1, whose
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derivative is 1 in 1 and second derivative is negative, and kn rnr�` 1+ Thus,
making a Taylor development and using the same tools as previously, we get

1 �
~s � 1!~1 � a1~s � 1!!

1 � ~n � 1!a1~s � 1!
� kn~s!� 1 �

s � 1

1 � na1 sn
P0�2~s � 1!

, (78)

Figure 4. Bounds of fM~s!+
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where b2 � k ''~s!02 and sn :� 1 � ~10na1!+ Using the link between kn and fn and the
upper bound of kn,

1 �
~s � 1!

1 � na1 sn
P0�2~s � 1!

� fn~s!+ (79)

The lower bound of kn leads to an upper bound of fn+ However, it provides no
improvement+ �

As done earlier, we can derive a more precise upper bound in the particular
case of f ~s!� ~P0 s � 1 � P0!

R :

Proposition 4.4: For s close to 1,

fn~s! � 1 �
s � 1

1 � na1~s � 1!
+ (80)

We plot in Figure 4b these three bounds for P � 10�12 and s near 1+

About the geometric distribution. If the law of X is such that the probabilities
pk are in a geometric proportion ~ pk � P~X � k!� bck�1 for k � 1,2 + + + + and p0 �
1 � p1 � p2 + + + with b, c � 0 and b � 1 � c!, then the associated g+f+ is a rational
function:

h~s! � 1 �
b

1 � c
�

bs

1 � cs
+ (81)

Taking b � ~1 � c!2 and c � a10~1 � a1! leads to

h~s! � 1 �
s � 1

1 � a1~s � 1!
+ (82)

So we have compared the nth functional iterate of a Binomial g+f+ to the one of a
geometric g+f+ It suggests comparing the importance splitting models with Binomial
and with geometric laws+ The geometric laws model is set in the following way:We
run particles one after the other+As long as the next level is not reached, we keep on
generating particles; then we start again from the level the particle is at ~the geo-
metric distribution is the law of the first success!+

This link is also stressed by Cosnard and Demongeot in @4#: for m � 1 and
s 2 � f ''~1! � 2a1, the asymptotic behavior of f 2n

is the same as the geometric
distribution with the same variance ~i+e+, h!+

4.4. Optimization of the Crämer Transform

Remember that

c *~P~1 � a!! � sup
l�0
$lP~1 � a!� ln~P0 fM ~e

l0RM

!� 1 � P0 !%, (83)

c *~P~1 � a!! � sup
l�0
$lP~1 � a!� ln~P0 fM ~e

l0RM

!� 1 � P0 !%+ (84)

RARE EVENT SIMULATION 63



Considering the gradient of the functions, we prove that the supremum for l� 0 is
reached near zero+ So we can use the upper bounds for fM obtained in the previous
subsection, which leads to lower bounds for c * :

c *~P~1 � a!! � F~P~1 � a!! and c *~P~1 � a!!� G~P~1 � a!!, (85)

where

F~x! � sup
l�0

�lx � ln�1 � P0

~el0R
M

� 1!

1 � Ma1~e
l0RM

� 1!
��

and

G~x! � sup
l�0

�lx � ln�1 � P0

~1 � el0R
M

!@1 � a1~1 � el0R
M

!#

u0
�� +

Finally,

P� 6 ZP � P 6

P
� a� � 2e�N min~F~P~1�a!!,G~P~1�a!!!+ (86)

One can easily obtain explicit but complex expressions for F~x! and G~x!+ We
plot in Figure 5 the upper bounds obtained by the variance and by the Laplace
transform, for different values of a, the prescribed error of the confidence inter-
val+ We take P � 10�9 and the optimal values obtained above for the parameters+
Note that the upper bound given by the Laplace transform is better than the bound
given by Chebychev’s inequality, with the variance+ We obtain P~6~ ZP � P !0P 6 �
a! � L+ In the preceding example where P � 10�9 , if we fix a� 0+05 and L close
to 0+01, then the corresponding costs needed are 3 � 107 for the variance and
3 � 106 for the Laplace transform+

5. CONCLUSION

The simplified model described here has two main faults+ First, we cannot choose
in general the optimal level Pi + In practice, we just have an empirical estimation of
the Pi , and we can adjust the levels according to them+ A more precise analysis is
then needed to get confidence intervals of the estimation+ Second, the optimal sam-
pling number at each level is not an integer in general+ Therefore, in practice, the
number of particles generated at each step should be chosen at random, either such
that E~R!� 10P0 or E~10R!� P0+ Thus, we finally need to work in a random envi-
ronment+ This requires a precise asymptotic of random iterates of the Laplace trans-
form, where analysis is more delicate than the one presented here and will be the
subject of a forthcoming paper+
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