
HAL Id: hal-00644088
https://hal.science/hal-00644088

Submitted on 27 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cooperative local search-based algorithm for the
Multiple-Scenario Max-Min Knapsack Problem

Abdelkader Sbihi

To cite this version:
Abdelkader Sbihi. A cooperative local search-based algorithm for the Multiple-Scenario Max-
Min Knapsack Problem. European Journal of Operational Research, 2009, 202 (2), pp.339-346.
�10.1016/j.ejor.2009.05.033�. �hal-00644088�

https://hal.science/hal-00644088
https://hal.archives-ouvertes.fr

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Cooperative Local Search-Based Algorithm

for the Multiple-Scenario Max-Min Knapsack Problem

Abdelkader Sbihi

Department of Information Systems and Decision Making, Audencia Nantes-School of
Management, 8 route de la Jonelière 44312 Nantes Cedex 3, France

Email: asbihi@audencia.com

Abstract

The purpose of this article is to present a novel method to approximately
solve the Multiple-Scenario Max-Min Knapsack Problem (MSM2KP). This
problem models many real world situations, e.g. when for many scenarios
noted π ∈ P = {1, . . . , P}, the aim is to identify the one offering a better
alternative in term of maximizing the worst possible outcome.
Herein is presented a cooperative approach based on two local search algo-
rithms : (i) a limited-area local search applied in the elite neighborhood and
which accepts the first solution with some deterioration threshold of the cur-
rent solution, (ii) a wide range local search is applied to perform a sequence
of paths exchange to improve the current solution.
Results have been analyzed by means state-of-the art methods and via prob-
lem instances obtained by a generator code taken from the literature. The
tests were executed in compeltely comparable scenarios to those of the liter-
ature. The results are promising and the efficiency of the proposed approach
is also shown.

Key words: Combinatorial optimization; Knapsack; Max-min
optimization; Robust optimization; Heuristics; Cooperative
2008 MSC: 2008, 90C10, 90C35, 90C59, 90C90

1. Introduction

The Multiple-Scenario Max-Min Knapsack Problem (MSM2KP) is a vari-
ant of the well known single 0-1 Knapsack Problem (KP) (e.g. Martello and
Toth (1990), Martello et al. (2000)). MSM2KP is a max-min binary knap-
sack problem with multiple scenarios. The aim of this max-min optimization

Preprint submitted to European Journal of Operational Research May 24, 2009

* Text Only Including Abstract/Text + Figs + Tables
Click here to view linked References

http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=9311&rev=3&fileID=76289&msid={B9F0E29D-9692-4C7A-8CB4-0B23D3CFBA4D}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

problem is to maximize the minimum of a family of linear objective functions
subject to a single functional constraint. Several applications of MSM2KP
(linear and non-linear types) match with the real world situations where the
aim is to find an equilibrium for many criterias or an efficient solution. In this
case the solution is said to be Pareto-optimal (see e.g. Branke et al. (2008)).
However, there are several multiobjective problems where the Pareto-optimal
solution building strategy is not effective enough to reach an efficient solu-
tion since the equity or fairness among uniform individual outcomes is an
important issue.
This type of model is also applied when we expect to forcast a situation
depending on many scenarios or simply when the objective is formulated as
a maximum or a minimum of a class of criterias. As an application of this
model, we can cite resources allocation (e.g. see Tang (1988)), matroid the-
ory (e.g. see Averbach et al. (1995)), economics (e.g. see Yu (1996)), game
theory (e.g. see Nash and Sofer (1996)) or multiobjective optimization (e.g.
see Bitran (1977) and Ecker and Shoemaker (1981)). Recently, Taniguchi et
al. (2008) have studied MSM2KP and proposed an algorithm to optimally
solve the problem. The method was able to solve instance problems with a
number of variables up to 1000 items and 30 scenarios.

Our approach investigated this problem under the framework of the max-
min optimization, where we maximize the minimum of all the objectives.
In some literature it is reffered to as the robust optimization (e.g. see Yu
(1996)). While, in general, such a multiobjective optimization problem is
considered as a multi-criteria decision making (e.g. see Steuer (1986)). We
recall that the concept of robust optimization finds its origins in engineering,
specifically, control theory.

Let P be the set of scenarios describing all possible payoffs. We assume
that each payoff might occur with some positive and unknown probability.
Then maximizing the minimal payoff Zπ(X), ∀π ∈ P and X is the binary so-
lution vector related to the scenario π can be seen as “reasonable-worstcase
optimization” and where the decision-maker protects revenue against the
worst-case values. Hence, the max-min optimization approach is an alterna-
tive method to stochastic programming which can be applied for any problem
whose parameter values are unknown, variable, and their distributions are
uncertain. The max-min optimization consists of computing the cost of ro-
bustness of the robust counterpart to the maximum outcome optimization
problem. Due to the scenario uncertainty, a max-min optimization model is
likely to be more useful to a risk-averse decision maker.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In spite of its comparatively long history (e.g. Gilmore and Gomory
(1966)), many variants of the knapsack problem are still being studied inten-
sively. In this paper, we are concerned with the Multiple-Scenario Max-Min
Knapsack Problem; namely MSM2KP. This problem generalizes the classical
knapsack problem with respect to: (i) each item j ∈ J is associated with

P values (vπj)
(π=1,...,P)
(j=1,...,n) , for which each one correponds to a different scenario,

and a single weight wj, j = 1, . . . , n, (ii) instead of trying to compute a single
solution with a maximum total profit, we compute a set of feasible solutions
of different values and covering all the possible scenarios π = 1, . . . , P . Then
the worst scenario is identified in order to perform a maximization.
Given a knapsack of a fixed capacity C, the MSM2KP can formally be stated
as follows:

(MSM2KP)


max
X

Z(X) = min
1≤π≤P

{∑
j∈J

vπj xj

}
Subject to:

∑
j∈J

wjxj ≤ C

xj ∈ {0, 1}, for j = 1, . . . , n

X = (x1, . . . , xj, . . . , xn=|J |), the variable xj is either equal to 0, implying
item j is not picked, or equal to 1 implying item j is picked, knowing the
worst scenario π?.

We may assume without loss of generality that wj, v
π
j (for j = 1, . . . , n

and π = 1, . . . , P) and C are positive integers, and
∑

j∈J wj > C.
In the following, the items j ∈ J , for each scenario π = 1, . . . , P are sorted

regarding a specific order based on the efficiency of the items and which we
detail in section 3. This order-based efficiency determines priority to some
items to select in the solution. Notice that if two efficiencies (for the same
scenario π) have the same value, then we consider, in first, the efficiency
corresponding to the greater profit. The so-defined problem is NP-hard since
for P = 1, it simply represents the single Knapsack Problem (KP) which is
NP-hard (see Martello and Toth (1990)).

The remaining of the paper is organized as follows. First (Section 2), we
briefly review some related works on the classical knapsack problem and some
of its variants, also on the max-min (or min-max) combinatorial problems
dealing with sequential exact and approximate algorithms. Second (Sec-
tion 3), we detail the algorithm which ensures the feasiblity to the obtained
solution. This procedure consists to construct, in a greedy way, a feasible

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

sub-solution to complete by adding items realizing the minimum objective
value without exceeding the remaining capacity. This algorithm identifies
some critical elements j regarding the current scenario π? for the solution
such that

∑j−1
k=1wk ≤ C <

∑j
k=1wk which allow to diversify the search in

the neighborhood. Then the approach will apply some complex local search
strategies to attempt some improvements.

The purpose of this heuristic is to find a starting feasible solution to
MSM2KP in order to evaluate the influence of the initial solution’s quality
in the overall performance of the cooperative search. In Section 4, we detail
the cooperative approach. It consists to improve the current solution by en-
hancing the local search around several types of feasible neighbrohood search
space. The neighborhoods selection is decided regarding a certain criterion
and the main local search is run regarding the type of the selected neigh-
borhood. So that it can be seen as a hierarchical depth search around the
solution neighborhood. In Section 5, we present several series of computa-
tional results on problem instances obtained by a generator code taken from
the literature. We show the efficiency of the proposed approach regarding
the obtained solutions. Finally, in the conclusion (Section 6), we summarize
the main results of the paper and give a conclusion.

2. Literature survey

The Knapsack Problem (KP) is an NP-hard combinatorial problem (for
more details on complexity theory the reader may refer to Garey and Johnson
(1979)) and has been widely studied in the literature. The way of seeking a
solution depends on the particular framework of the application (leading to
the particular knapsack problem) and the available computational resources.
Hence, a good review of the single knapsack problem and its associated exact
and heuristic algorithms is available in Martello and Toth (1990). For the
(un)bounded single constraint KP, we can find in the literature a large variety
of solution methods (see Martello et al. (1999); Balas and Zemel (1980);
Fayard and Plateau (1982) and Pisinger (1997)). The problem has been
solved optimally and approximately by dynamic programming, search tree
procedures or other hybrid approaches.

Several approaches have also been developed in other previous works that
adressed the general case, i.e., when the number of constraints is extended to
more than one or the aim is to optimize a class of functions (multiobjective
KP). A first variant of the KP is called Multidimensional (or Multiconstraint)

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Knapsack Problem (MDKP) (see Chu and Beasley (1998)). The Multiple-
Choice Knapsack Problem (MCKP) (see Pisinger (1995)) is another vari-
ant where the picking criterion of items is more restrictive. Another more
harder variant is the Multiple-choice Multidimensional Knapsack Problem
(MMKP) (see Hifi et al. (2006) and Sbihi (2007)). A recent detailed review
for the MMKP is given in Sbihi (2007). If we deal with only two knapsack
constraints, then the problem is referred to as the Bidimensional Knapsack
Problem (BKP) (see Freville and Plateau (1997)). Another type of combina-
torial optimization problem is the max-min (min-max) allocation problem.
This problem has widely been studied in the literature (see Brown (1991);
Luss (1992); Pang and Yu (1989) and Tang (1988)). We also can find in the
literature another max-min optimization problem of knapsack type which
has been aproximately and optimally solved via tabu search based-heurstic,
branch and bound and binary search methods (see Hifi et al. (2002) and
Yamada et al. (1998)).

To the best of our knowledge, there exists only three papers dealing di-
rectly or indirectly with the Multiple-Scenario Max-Min Knapsack Problem
(MSM2KP) (see Yu (1996); Iida (1999) and Taniguchi et al. (2008)). The
first paper (Yu (1996)) proposed to optimally solve MSM2KP by a branch
and bound algorithm. The approach was able to solve instance problems
up to 60 items. In the second paper (Iida (1999)), the author developped a
method to obtain new lower and upper bounds for the max-min 0-1 knapsack
problem thanks to a derivative procedure-based lagrangean relaxation. The
approach used also a branch and bound procedure developped in Yu (1996)
as well as the obtained lower and upper bounds. The author showed that
these bounds were good enough to solve the problem in a acceptable comput-
ing time. However, the method failed to increase the total number of items
more than 60. Finally, in Taniguchi et al. (2008), the paper developped
an approach in two steps to optimally solve MSM2KP. First, the authors
proposed a surrogate relaxation heuristic to reduce the problem, then they
compute some upper and lower bounds. This technique allowed to reduce the
problem and permits to optimally solve the remaining problem by a branch
and bound procedure. In this paper, we analyze and present an alternative
optimization method. It can be seen as a first step to extend to more than a
simple method which iteratively attempts to select a good heuristic amongst
many.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3. A greedy algorithm for the MSM2KP

Prior to design our main approach, we propose an algorithm called herein
GH in order to build a starting feasible solution. This initial solution is ob-
tained iteratively and the aim is to perform better improvement throughout
the process by a very sophisticated method.

Let X = (xj)j=1,...,n be a solution vector, where xj = 1 if item j is
selected in the solution, and xj = 0 otherwise. The aim is to maximize the
total profit regarding the minimal π-objective value Zπ(X) obtained over all
the P scenarios.
In this heuristic, items are initially sorted according to a specific decreasing
order. For each item j = 1, . . . , n, we compute first its efficiency regarding
the scenario π as eπj = vπj /wj. We say that (j ≺ k) iff eπj ≥ eπk . Considering
this order, we apply a reordering of the total items as a preprocessing step.

Then, GH builds iteratively a partial feasible solution. Indeed, in the
main steps, for each selected item j, the procedure attempts to complete
the solution. The procedure locates a minimal scenario π? and computes
Z(X) = maxx

∑
j∈J v

π?

j xj. GH terminates once a feasible solution Z(X)
is obtained. We recall that the obtained solution could be of bad quality.
Herein, we describe the main steps of the greedy algorithm GH :

Algorithm GH (Greedy Heuristic)
Input: An MSM2KP instance I
Ouput: A feasible solution X for MSM2KP

Initialization:
1. FOR j = 1, . . . , n and π = 1, . . . , P DO

Sort items in the decreasing order of the efficiency eπj
2. π? = 1; X0: initial; //π?: scenario with the minimum (sub)solution
3. Set X ← X0; Z(X)← Zπ

?
(X0); //X: feasible starting point e.g. 0

Main steps:
4. REPEAT

5. IF wj ≤ (C −
∑
k≤j−1

wk) THEN //the solution is feasible for π?

Zπ
?
(X)← Zπ

?
(X) + vπ

?

j ;
j ← j + 1;
Let π? = arg min

1≤π≤P
{Zπ(X)};

6. UNTIL j > |J |
7. EXIT with best feasible solution X of best value Z(X);

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4. A cooperative local search

In this section, we present the main principle of the cooperative local search-
based approach namely CLS. The main algorithm contains several steps. Tabu
search starts by a feasible solution obtained thanks to GH. All the visited solutions
are feasible. The exploration of the solutions space is executed with some add/drop
swaps. The elite solutions list is generated by improving the objective value where
the minimal scenario has already been identified. The core of the approach is to
build neighborhoods and perform several local searches in order to reach a best
near-optimal solution.

Our cooperative strategy takes place when a search procedure gives away infor-
mation about its best solutions and another procedure adapts its search trajectory
based on this information. The cooperative local search framework is composed of
a decision parameter and of two local search heuristics (notice that we can extend
the method to more than 2 local search heuristics). The decision parameter is in
charge of the selection and the execution of the appropriate local search heuristic
at each decision point of the search process. The greedy strategy selects the best,
not necessarily an improving, scenario. The tabu based strategy, incorporates a
tabu list in the selection mechanism that forbids the selection of the non-improving
solution for a certain tabu tenure. The decision parameter allows to accept the
selected local search heuristic which accepts only to improve the current solution
or either to improve the current solution or to lead to the smallest deterioration
of the current solution if no improvement can be achieved.

The aim of using the cooperative heuristic is to raise the level of generality so as
to be able to apply the same solution method to several criteria problems. Perhaps
at the expense of reduced but still acceptable solution quality when compared to
a tailor-made approach. Hence, we define two types of local search that address
MSM2KP neighborhood search : (i) a generalized search outlined herein by GS
and (ii) a limited search represented herein by RS.

The GS algorithm is a very large local search and applied if the list L has
not included enough moves regarding a certain threshold S. Otherwise the RS
algorithm is called in order to perform a limited-area local search in the elite
neighborhood. RS accepts the first solution which slightly deteriorates the current
solution Xcurrent. The limited-area local search is supposed to perform in a very
rich elite neighborhood.
To ensure the feasibility of the solution, we apply a feasible state phase regarding
the best recorded infeasible solution. It corresponds to set to ‘zero’ the solu-
tion components xj (j = 1, . . . , n) which are equal to ‘one’ and have the lowest
efficiency eπ

?

j .

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Algorithm FSH (Feasible State Heuristic)

Initialization:
1. Set X ← X //X is the recorded best infeasible solution

Main steps:
2. REPEAT

3. Select jmin = argmin
1≤j≤n

{eπ?j | xj = 1}

4. xjmin ← 0;
5. UNTIL

∑
1≤j≤nwjxj ≤ C;

6. END

The tabu approach uses a tabu list L that includes all the tabu moves. The
tabu status for these moves is amended regarding a period τ such that α

√
n ≤

τ ≤ 2α
√
n, (α ∈ [0.5; 1.5] and n is the problem size). The tabu status of a move

is removed if it belongs to the list L and it exceeds τ iterations, or if it matches
with the aspiration criteria.

4.1. Intensification and diversification

It is achieved via GH which is called once an improvement of the current
solution is realized. We set L an elite moves list and π? = argmin

1≤π≤P
{
∑
j∈J

vπj xj}

is the index corresponding to the minimal scenario corresponding to the current
solution Xcurrent.

4.1.1. The very large local search
The very large local search or generalized search (algorithm GS) starts with a

feasible solution and performs a sequence of path exchange to improve the solution.
The list L contains the moves that improves the objective value Z(.) = Zπ

?
(X)

and j ∈ L ⇔ (vπ
?

j ≥ 0 and xj = 1).

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Algorithm GS (Generalized Search)

Initialization:
1. L={j1, j2, . . . , jr}; j? = j1;
2. FOR π = 1 to P DO

3. V alueπ =
∑

j 6=j? v
π
j xj + vπj?(xj? ± εj?); εj =

{
+1 if xj = 0
−1 if xj = 1

;

4. µ = min
1≤π≤P

{V alueπ};

Main steps:
5. FOR j = j2 to jr DO
6. π ← 1; m =

∑
k 6=j v

π
kxk + vπj (xj ± εj);

7. WHILE (V alueπ ≥ µ and π ≤ P) DO //abandon candidate j once
it leads to a smaller value of µ

8. π ← π + 1;
9. IF (V alueπ ≤ m) THEN
10. m← V alueπ;

//save the minimum of all V alueπ, π = 1, . . . , P
11. END WHILE
12. IF π = P THEN j? ← j; µ← m;
13. END

Furthermore, we consider a set Lswap of couples of items (j1, j2) that are
candidates for a swap such that the exchange operation allows to improve the
current value of the solution.

(j1, j2) ∈ Lswap ⇔
(

vπ
?

j1
≥ 0; xj1 = 1

and
xj2 = 0

or


vπ

?

j2
≥ 0; xj2 = 1

and
xj1 = 0

)
This procedure performs systematically a search of all the solutions contained

in the list L.

4.1.2. The restricted guided local search
Contrary to GS algorithm, RS algorithm is a targeting limited-area local

search. It allows to make savings in term of locating the best solution or to
accept degrading solution with some threshold. This is achieved via a filtering
process thanks to a decreasing threshold acceptance function Φ(θ), where θ is a
parameter to set up. The threshold acceptance function Φ(.) can be seen as a
penalization-based concept. We detail in what follows the RS algorithm :

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Algorithm RS (Restricted Search)

Initialization:
1. L={j1, j2, . . . , j`}; j? = j1, and ` > S;

//L is a solution subspace with ` 1-components
//S is a parameter controlling the search complexity

2. V alueπ =
∑

j 6=j? v
π
j x

current
j + vπj?(x

current
j? ± εj?), π = 1, . . . , P ;

3. µ = min
1≤π≤P

{V alueπ};

Main steps:
5.WHILE (not Stopping Condition and k ≤ S) DO
6. jk ← random(j, L); L← L \ {j}; //random selection of item j
7. V alueπ =

∑
j 6=jk v

π
j x

current
j + vπjk(xcurrentjk

± εjk), π = 1, . . . , P ;
8. µ = min

1≤π≤P
V alueπ;

9. IF µ ≥ Z(Xcurrent) + Φ(θ)× Z(Xcurrent) THEN //Z(.) best value
10. j? ← jk;
11. ELSE k ← k + 1;
12. END WHILE
13. END

The algorithm starts by setting the current solution to a selected one belonging
to the region L with |L| = `. Then it applies a restricted swaps sequence in order
to remain in the same region to better explore it. Another feature is to guide the
search to unexplored or not enough explored regions thanks to a changing region
movement and some swaps to explore the new region.

The idea is to accept less and less degraded solutions progressively of the search
process. It uses memory to guide the search to promising regions of the solution
space. This is performed by increasing the current cost function with a penalty
term that penalizes bad features of previously visited solutions. However, Φ(.) can
trap the local search around some local optima.

This reduction in the search spaces enables a fast execution of the global algo-
rithm. Unfortunately, it also imposes serious limitations on the ability to provide
good quality intermediate solutions.

4.1.3. An improved 2-phase tabu search for MSM2KP
The concept of the approach is to help guide the search towards the opti-

mization of the different individual objectives. It starts with a feasible solution
obtained thanks to the GH algorithm. For the local search, we apply both large
and limited local search (algorithm GS and algorithm RS). It starts with an initial
complete solution and then makes a request for informations to perform the right

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

local search using the assigned heuristic either for a certain number of iterations,
or until no further improvement is possible. The process performs search through
the same solution space, starting from the same current solution. If the obtained
solution is not feasible, then the feasible state phase (algorithm FSH) is applied to
convert the solution in order to build a new solution regarding the best solution
found in the list L. This operation permits also to release the solution trapped
around a local optima.

Algorithm CLS (Cooperative Local Search)
Input: An MSM2KP instance I
Ouput: A best near-optimal solution X? for MSM2KP
Initialization:

1. X = (x1, . . . , xj , . . . , xn):= GH();//a feasible initial solution
2. Xcurrent ← X? ← X;
3. Iter ← 0; L← ∅;
4. Z(Xcurrent)← V aluecurrent ← min

1≤π≤P
{
∑
j∈J

vπj x
current
j };

Main steps:
5. FSH()←−FALSE; //the solution is feasible
6. π?=arg min

1≤π≤P

∑
j∈J

vπj x
current
j ; //if many, select the first obtained one

7. L←− construct(); //generate the list of moves elite
8. t← 0; //internal counter for the local search
9. IF |L| ≤ S THEN

GS(xcurrent, j?);
xcurrentj? ← xcurrentj? ± εj? ;
t← t+ 1;

10. IF |L| > S THEN
RS(xcurrent, j?);
xcurrentj? ← xcurrentj? ± εj? ;
t← t+ 1;

11. V aluecurrent ← min
π
{
∑
j 6=j?

(vπj x
current
j) + vπj?x

current
j? };

12. IF (V aluecurrent ≥ Z(Xcurrent) and FSH()) THEN
Z(Xcurrent)← V aluecurrent;
X? ← Xcurrent;

13. UPDATE L, Iter;
14. IF Iter ≥Max Iter THEN STOP;
15. EXIT with solution X? of value Z(X?);

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

We detail the method as a chosen heuristic to guide the search towards the
desired regions of the trade-off area. It takes into account the localization of
the current solution in the objective space and the ability of each neighbourhood
exploration heuristic to achieve improvements on each of the individual objectives.
The local search process allows to run the selected heuristic to the current solution
for a certain number of iterations, or until no further improvement is possible.

The startegy attempts to restrict the likelihood of generating solutions in
crowded regions of the trade-off surface and enhance the likelihood of generating
solutions in under-populated regions. The algorithm using this strategy, attempts
to perform a more “intelligent” path finding by applying the neighbourhood search
heuristic that is more likely to “guide” the solution in the desired direction.

5. Computational results

We have run initial tests to analyze the computational performances of both
greedy heuristic GH and the developed approach CLS. The proposed algorithm is
coded in C++ and run on Sony VAIO Centrino Duo Core laptop (with 1.66 Ghz
and 1 GB/Go of Ram). Our computational study was conducted on 132 problem
instances of various sizes and densities. These test problem instances (detailed in
Table 0) are standard and their optimal solution values are not known.

First of all, we notice that we did not succeed to have access to the same
problem instances tested by Taniguchi et al. (2008). We only had access to the
problems generator used by these authors who provided us with the code. We may
also notice that since we used a different computer with a different processor than
the one used by Taniguchi et al. (2008), the generator code generated problem
instances with different values but the design technique remains the same.

The problem instances are generated as follows: each weight wj and the ordinal
profit v0

j (j = 1, . . . , n) are randomly, uniformly and independently generated in
the integer interval [1, 100]. For a given scenario π, the value vπj of each item
j is uniform and random integer in the interval [(1 − σ)v0

j , (1 + σ)v0
j], where

σ ∈ {0.3; 0.6; 0.9} is a parameter to set up the correlation level between different
scenarios. For instance, more σ is close to 0, more the scenarios are strongly
correlated and consequently the profits are also strongly correlated. The knapsack
capacity is set to C = 1

D

∑
1≤j≤nwj . D is constant to set.

These instances are divided into three different groups depending on the σ
value. The first group (σ = 0.9) represents the “uncorrelated” or “likelyhood un-
correlated” instances, the second one (σ = 0.6) contains the “weakly correlated”
instances and the last group (σ = 0.3) represents the “strongly correlated” in-
stances. In addition to this, we set D the availability parameter that indicates

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

whether the capacity C is tight enough or not. Practically, we designed our com-
putational test protocol by setting three types of sets S1, S2 and S3.

Class Inst. n P Inst. n P
S1 I01x.D 1000 40 I02x.D 1500 40

I03x.D 2000 40 I04x.D 2500 40
I05x.D 3000 40 I06x.D 3500 20
I07x.D 4000 20 I08x.D 4500 20
I09x.D 5000 20 I10x.D 6000 20
I11x.D 10000 20

S2 I12x.D 2500 50 I13x.D 3000 50
I14x.D 3500 50 I15x.D 5000 30
I16x.D 8000 20

S3 I17x.D 500 60 I18x.D 1000 60
I19x.D 1500 60 I20x.D 2000 60
I21x.D 200 80 I22x.D 200 100

Table 0: Test problem instances details: x=u, w, s; D=2, 4

Here u (σ = 0.9) denotes uncorrelated problem instances, w (σ = 0.6) denotes
weakly correlated problem instances and s (σ = 0.3) denotes strongly correlated
problem instances.
On one hand, S1 includes problem instances with relatively a big number of items
n and a small number of scenarios P , S2 contains problem instances with a relative
medium n and P and on the other hand, S3 contains problem instances with a
relative small n and a big P .

5.1. The results summary

The purpose of this section is twofold: (i) to evaluate the performance of
the GH and CLS and (ii) to determine the best trade-off between the running
time and the used parameters for the cooperative CLS algorithm: the maximum
number of iterations, the length of the list L and the penalty Φ(.) function. Each
parameter of CLS algorithm has been calibrated in order to obtain the best possible
performances for each problem. The length of the tabu list L varies dynamically.
Indeed, if P is the number of the different scenarios, then the parameter S is
automatically and randomly taken in the interval [b

√
P c+ 25, b

√
P c+ 35]. Other

parameters settings were necessary. We summarize them in the table 1.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Iter α τ θ Φ(θ)
4500 (uncor)
2500 (w cor)
1500 (s cor)

0.9 (uncor)
1.1 (w cor)
1.3 (s cor)

random([α
√
n, 2α

√
n]) random[1,10] θ

(Iter)3/2

Table 1: Parameters settings

In a preliminary experiment, we have solved the problem instances by consid-
ering several parameters of the algorithm. The details of the test results appear
in Tables 2-10.
To analyze the method’s performance, we first compute the upper bound UB (we
used Dantzig (1957)’s upper bound) to determine : (i) the gap γ := (UB−Z(X?))
between UB and the best obtained solution value Z(X?) and (ii) the average per-
centage deviation ρ := 100.(UB−Z(X?)

Z(X?)), since we don’t know the optimal solution
for the treated problem instances. We explain in the Upper bound computation
Appendix how to compute UB.
In our numerical tests, we solved the same problem instances sets for each fixed
parameter D, α, τ , Iter and Φ(.).

We may notice that we have improved these results by increasing the size of the
problems regarding the number of the items as well as the number of the scenarios.
CLS is able to process a very large number of variables within a few amount of
cpu consuming time. In some cases, the algorithm is either able to lead to the
optimal solution. We remark that for several problems of different sizes and types
and belonging to S1 and S2, the obtained solution Z(X?) is equal to the upper
bound UB. In this case the algorithm has reached the optimal solution since it is
the biggest feasible solution. The percentage of these obtained solutions depends
on the set we have considered.

Furthermore, the algorithm is able to produce high quality near-optimal solu-
tions for these sets (n = 10000 and P = 100 scenarios) within a relatively small
cpu consuming time. While in Taniguchi et al. (2008), the approach was able
to solve the problem with a number of items n less than 1000 and a number of
scenarios P less than 30 and in less than a few seconds. Indeed, these solutions
were obtained within 1% of relative errors. Our method has solved approximately
larger problems and faster regarding the size of the treated problems. Comparing
these obtained results to those of Taniguchi et al. (2008) and based on the same
problems design, we can remark that our approach is able to lead to solutions of
good quality for the big size problems (in term of number of items and scenarios).

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On average, the first set S1 (for uncorrelated, weakly and strongly correlated
problems) gives the highest amount of reached optimal solutions by CLS and
particularly for the uncorrelated set with 13 solutions out of 22 problems. The
average running time is less than one minute and does not exceed 22 sec. The
average relative percentage error is less than 1% and is located in the intervals
[0, 0.08%] for the uncorrelated, [0, 0.221%] the weakly correlated and [0, 0.073%]
the strongly correlated problems. Furthermore, the algorithm is able to produce
high quality near-optimal solutions for these sets (n = 10000 and P = 40 scenarios)
within a relatively small cpu consuming time.

Inst. GH UB Z(X?) γ ρ% CPU(s)
I01u.2 40725 40740.00 40740 0 0 2.54
I01u.4 31328 31427.17 31403 24.17 0.076 27.2
I02u.2 61173 61218.00 61218 0 0 2.15
I02u.4 44147 44226.93 44207 19.93 0.045 2.78
I03u.2 82818 82830.00 82830 0 0 2.53
I03u.4 58872 61156.00 61156 0 0 3.31
I04u.2 104025 104044.34 104043 1.34 0.001 3.51
I04u.4 73877 73951.44 73911 40.44 0.054 3.78
I05u.2 123280 123297.72 123297 0.72 0 2.95
I05u.4 90817 90946.45 90939 7.45 0.080 3.72
I06u.2 146094 146118.00 146118 0 0 3.28
I06u.4 103424 103472.00 103451 21 0.020 3.81
I07u.2 163523 163529.00 163529 0 0 3.75
I07u.4 119007 119114.32 119088 26.32 0.022 3.86
I08u.2 187034 187040.00 187040 0 0 3.62
I08u.4 135952 136004.00 136004 0 0 3.77
I09u.2 208114 208136.00 208136 0 0 4.12
I09u.4 148808 148830.00 148830 0 0 4.19
I10u.2 256397 256416.23 256415 1.23 0 4.91
I10u.4 191406 191491.00 191491 0 0 5.15
I11u.2 428807 428849.00 428849 0 0 5.68
I11u.4 318754 318813.00 318813 0 0 7.73

Table 2: Uncorrelated set S1 results

The second set S2 of computational experiments (uncorrelated, weakly and
strongly correlated) gives an overview of the algorithm behaviour regarding both
the obtainded upper bound and solution. The algorithm reached 8 optimal so-
lutions out of 10 problems. For this set, the results present the same quality
regarding the running cpu time which is less than 24 sec and the worst percent-
age deviation ρ = 0.082%. The average relative percentage error is located in
the intervals [0, 0.033%] for the uncorrelated, [0, 0.0083%] the weakly correlated

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Inst. GH UB Z(X?) γ ρ% CPU(s)
I01w.2 41095 41172.64 41133 39.64 0.096 3.21
I01w.4 28343 28446.76 28384 62.76 0.221 3.39
I02w.2 60256 60328.80 60291 37.8 0.062 3.54
I02w.4 44609 44654.00 44654 0 0 3.67
I03w.2 79872 79936.00 79896 40 0.050 3.81
I03w.4 58854 58864.16 58863 1.16 0.001 4.25
I04w.2 100545 100677.94 100566 111.94 0.111 4.43
I04w.4 71988 72108.92 72093 15.92 0.022 4.72
I05w.2 120991 121031.44 121030 1.44 0.001 5.37
I05w.4 86756 86837.35 86821 16.35 0.018 5.56
I06w.2 140795 14837.00 14837 0 0 5.84
I06w.4 99827 99861.00 99861 0 0 6.17
I07w.2 162739 162756.56 162755 1.56 0 6.28
I07w.4 113325 113367.00 113367 0 0 6.63
I08w.2 180524 180538.70 180538 0.7 0 6.72
I08w.4 130718 130801.93 130744 57.93 0.044 7.14
I09w.2 202081 202139.00 202099 40 0.019 7.23
I09w.4 143549 143806.18 143699 107.18 0.074 7.31
I10w.2 245519 245549.56 245547 2.56 0.001 7.42
I10w.4 178630 178658.00 178655 3.32 0.001 7.66
I11w.2 416328 416378.12 416371 7.12 0.001 8.23
I11w.4 303786 303944.56 303938 6.65 0.002 8.45

Table 3: Weakly correlated set S1 results

and [0, 0.082%] the strongly correlated problems. Furthermore, this set seems to
be more easy than the first set S1 regarding the global results. Problems with
medium size seems to be relatively easy to tackle.

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Inst. GH UB Z(X?) γ ρ% CPU(s)
I01s.2 41651 41681.89 41679 2.89 0.006 7.91
I01s.4 46909 46947.00 46947 0 0 8.24
I02s.2 63029 63083.28 63037 46.28 0.073 9.36
I02s.4 45331 45425.60 45396 29.6 0.065 9.76
I03s.2 82378 82426.34 82417 9.344 0.011 9.97
I03s.4 63661 63666.65 63664 2.65 0.004 10.32
I04s.2 102602 105720.75 105715 5.75 0.005 10.73
I04s.4 76435 76502.83 76481 21.83 0.028 11.36
I05s.2 126306 126368.68 126349 19.68 0.015 13.55
I05s.4 93579 93594.97 93589 5.97 0.006 13.99
I06s.2 151932 151952.00 151952 0 0 14.36
I06s.4 110497 110511.00 110511 0 0 14.82
I07s.2 168199 168211.00 168211 0 0 15.94
I07s.4 128169 128273.46 128223 50.46 0.039 16.21
I08s.2 191228 191242.20 191235 7.2 0.003 17.34
I08s.4 143825 143917.26 143885 32.26 0.022 17.78
I09s.2 191228 211728.00 211728 0 0 18.33
I09s.4 158404 158530.73 158477 53.73 0.033 18.54
I10s.2 247302 247873.84 247855 18.84 0.007 19.35
I10s.4 172299 172381.09 172379 2.09 0.001 19.66
I11s.2 405655 405709.71 405709 0.79 0 21.45
I11s.4 290357 290417.00 290417 0 0 21.93

Table 4: Strongly correlated set S1 results

Inst. GH UB Z(X?) γ ρ% CPU(s)
I12u.2 102608 102608.00 102608 0 0 8.93
I12u.4 72767 72784.49 72782 2.49 0.003 9.12
I13u.2 122302 122315.16 122310 3.16 0.002 9.73
I13u.4 87527 88549.00 88549 0 0 11.17
I14u.2 143316 143328.00 143328 0 0 13.96
I14u.4 101067 101103.70 101070 33.7 0.033 14.23
I15u.2 217652 217652.00 217652 0 0 18.73
I15u.4 158841 158921.00 158876 45 0.028 19.34
I16u.2 343368 343399.00 343399 0 0 7.23
I16u.4 253303 253316.00 253316 0 0 8.56

Table 5: Uncorrelated set S2 results

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Inst. GH UB Z(X?) γ ρ% CPU(s)
I12w.2 106592 106624.23 106623 1.23 0.001 9.35
I12w.4 79249 79286.63 79284 2.63 0.003 9.63
I13w.2 127545 127566.00 127566 0 0 10.72
I13w.4 95303 95401.82 95322 79.82 0.083 11.13
I14w.2 147832 147848.00 147848 0 0 12.58
I14w.4 108703 108786.82 108757 29.82 0.027 12.84
I15w.2 208762 208817.54 208775 42.54 0.020 13.57
I15w.4 151046 151060.00 151060 0 0 14.36
I16w.2 329312 329336.00 329336 0 0 9.92
I16w.4 242503 242574.45 242570 4.45 0.001 11.06

Table 6: Weakly correlated set S2 results

Inst. GH UB Z(X?) γ ρ% CPU(s)
I12s.2 103173 103180.00 103180 0 0 11.24
I12s.4 75012 75099.24 75037 62.24 0.082 11.78
I13s.2 123190 123243.25 123218 25.25 0.020 12.43
I13s.4 88446 88545.20 88502 43.2 0.004 12.84
I14s.2 142592 142661.67 142631 30.67 0.002 13.41
I14s.4 103385 103386.00 103386 0 0 13.75
I15s.2 204113 204669.42 204662 7.42 0.003 15.62
I15s.4 145587 145717.32 145709 8.32 0.005 16.85
I16s.2 325303 325375.00 325375 0 0 20.14
I16s.4 231209 231300.81 231295 5.81 0.002 23.62

Table 7: Strongly correlated set S2 results

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The third set S3 (uncorrelated, weakly and strongly correlated problems) shows
that the obtained solutions are at most 5.306% far from the upper bound. No
optimal solution was reached by the algorithm. Also all the obtained solutions are
computed in a big cpu consuming time comparing to the first two sets. In addition,
the reached solutions are obtained with a bigger gap than those obtained in the
second set S2. The average relative percentage error is located in the intervals
[0.648%, 4.490%] for the uncorrelated, [0.817%, 4.039%] the weakly correlated and
[0.062, 5.306%] the strongly correlated problems. We remark that this set is a
significantly hard set of instances (uncorrelated, weakly and strongly correlated)
and the obtained solutions present less good quality than those of S1 and S2.

Inst. GH UB Z(X?) γ ρ% CPU(s)
I17u.2 20317 21574.00 21347 227 1.063 3.92
I17u.4 15651 16538.00 16236 302 1.860 4.15
I18u.2 40837 42144.42 41873 271.42 0.648 4.53
I18u.4 30668 33476.80 32789 687.8 2.097 4.72
I19u.2 62433 66216.33 65129 1087.33 1.669 5.56
I19u.4 47511 49674.00 48973 701 1.431 5.13
I20u.2 85301 89940.66 88126 1814.66 2.059 5.42
I20u.4 60937 65922.50 65028 894.5 1.375 5.59
I21u.2 7904 8282.54 8125 157.54 1.938 6.46
I21u.4 5749 6078.92 5893 185.92 3.154 6.87
I22u.2 5736 5982.63 5843 139.63 2.389 7.15
I22u.4 3740 4103.34 3927 176.34 4.490 9.35

Table 8: Uncorrelated set S3 results

Consequently, it is relatively easy to solve problem instances with a relatively
big n and a small P or medium size of both n and P . While n is of small size
and P of big size, the algorithm reaches less good quality solutions and what ever
if they are uncorrelated, weakly or strongly correlated problems. In average, the
algorithm is able to compute these solutions in an acceptable cpu consuming time.
S2 contains problem instances with n up to 8000 and P = 50 and contrary to
the set S3, the obtained solutions are of better quality regarding the computed
percentage deviation error ρ. We recall that S3 contains problem instances with n
up to 2000 and P = 100.

The interaction between scenarios becomes more complex and the algorithm
needs more processing to compute the solution. The correlation between items is
also a parameter which impacts the quality of the solution.

Also, it appears that if the total of iterations is a small one, it is better to not
allow the intensification and diversification. We can explain this by the fact that
the recorded informations are not representative enough of the solutions space.

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Inst. GH UB Z(X?) γ ρ% CPU(s)
I17w.2 20589 21721.72 21223 498.72 2.349 5.61
I17w.4 14924 16534.00 15892 642 4.039 5.96
I18w.2 40675 43573.22 42527 1046.22 2.460 6.25
I18w.4 29051 32251.93 31175 1076.93 3.454 6.74
I19w.2 61013 64841.00 63794 1047 1.641 7.22
I19w.4 44024 47085.70 6154 931.7 2.020 7.53
I20w.2 82352 86474.00 85105 1369 1.610 7.96
I20w.4 58812 63230.50 61772 1458.5 2.361 8.84
I21w.2 7623 7796.23 7733 63.23 0.817 9.16
I21w.4 4645 4835.35 4735 100.35 2.119 10.27
I22w.2 5552 5776.49 5663 113.49 2.004 11.65
I22w.4 4020 4223.52 4140 83.52 2.017 12.56

Table 9: Weakly correlated set S3 results

Inst. GH UB Z(X?) γ ρ% CPU(s)
I17s.2 20207 21544.00 21256 488 2.317 7.91
I17s.4 13966 14848.73 14217 631.73 4.443 8.24
I18s.2 40932 43941.00 42345 1596 3.769 8.63
I18s.4 28979 31025.59 30453 572.59 1.880 8.97
I19s.2 61799 63727.22 62236 1491.22 2.396 9.23
I19s.4 43197 46090.00 44987 1103 2.451 9.56
I20s.2 79741 85187.50 84254 933.5 1.107 9.92
I20s.4 58115 63514.00 62478 1036 1.658 10.46
I21s.2 7702 8150.74 8012 138.74 1.731 10.93
I21s.4 5189 5381.37 5378 3.37 0.062 11.56
I22s.2 5123 6152.00 5842 310 5.306 12.53
I22s.4 2912 3630.42 3625 5 0.137 13.58

Table 10: Strongly correlated set S3 results

6. Conclusion

In this article, we have investigated the max-min binary knapsack with mul-
tiple scenarios (MSM2KP). Finding optimal solutions for the Multiple-Scenario
Max-Min Knapsack Problem (MSM2KP) becomes a challenging and important
issue due to its complex structure and possibly large size problems to tackle. An
approximate algorithm might be an appropriate way to seek near-optimal solu-
tions in an acceptable consuming cpu. To do so, we have developed a cooperative
approximate algorithm. The approach is mainly based upon tabu search and a
combination of two cooperative procedures; a generalized and a restricted local

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

search. The principle of the method is to identify the scenario π? realizing the
minimum total profit as a current solution and to tailor a neighborhood search
to improve the obtained solution. We have used a spreading search strategy and
designed a heuristic feasibility in order to improve the performance of the algo-
rithm. Computational results showed that the two cooperative procedures applied
together are able to generate high-quality solutions for the Multiple-Scenario Max-
Min Knapsack Problem, within a reasonable computing time.

Our approach investigated MSM2KP under the framework of the max-min
optimization, where we maximize the minimum of all the objectives. As a result,
we were able to approximately solve the problem with n up to 10000 variables
and P up to 100 scenarios and in less than one minute. The obtained solutions
were usually within 0.221% for S1, 0.083% for S2 and 5.306% for S3 of relative
percentage deviation errors.

In the local search, each neighborhood solution is evaluated at worst in O(nP 2)
time and the neighborhood search is pruned heuristically by the neighbor list. Dur-
ing the search, infeasible solutions are allowed to be visited while the amount of
violation is penalized. The computational results on a representative benchmark
instances indicate that the proposed algorithm is efficient enough to tackle prob-
lem instances of a certain size (in term of number of items and scenarios). The
algorithm was able to reach 30 solutions which are equal to the computed upper
bound UB among a total of 132 problem instances.

Acknowledgments

The author thanks the three anonymous referees for their helpful comments and
insightful suggestions on previous versions of this paper. Also, the author would
like to thank Pr. Yamada for his help in providing him with his generator code
that was necessary to successfully achieve the computational tests.

References

Averbakh I, Berman O, Punnen A.P (1995) Constrained matroidal bottleneck
problems, Disrete Applied Mathemtics 63:201–214

Balas E, Zemel E (1980) An algorithm for large zero-one knapsack problem,
Operations Research 28:1130–1154

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Bitran G.R (1977) Linear multi-objective programs with zero-one variables, Math-
ematical Programming 13:121–139

Branke J, Deb K, Miettinen K, Slowinski R (eds.) (2008) Multiobjective Optimiza-
tion: Interactive and Evolutionary Approaches. State-of-the-Art, Book Series of
the Lecture Notes in Computer Science 5252, Springer-Verlag, Berlin

Brown J.R (1991) Solving knapsack sharing with general tradeoff functions, Math-
ematical Programming 51:55–73

Chu P, Beasley J.E (1998) Genetic algorithm for the multidimensional knapsack
problem, Journal of Heuristics 4:63–86

Dantzig G.B (1957) Discrete variable extremum problems, Operations Research
5:266–277

Ecker J.G, Shoemaker N.E (1981) Selecting subsets from the set of non-dominated
vectors in multiple objective linear programming, SIAM Journal of Control and
Optimization 19:505–515

Fayard D, Plateau G (1982) An algorithm for the solution of the 0-1 knapsack
problem, Computing 28:269–287

Freville A, Plateau G (1997) The 0-1 bidimensional knapsack problem: toward an
efficient high-level primitive tool, Journal of Heuristics 2:147–167

Garey M, Johnson D (1979) Computers and Intractability : a Guide to the Theory
of NP-Completness, W.H. Freeman and Company, San Francisco, USA

Gilmore P.C, Gomory R.E (1966) The theory and computation of knapsack func-
tions, Operations Research 13:879–919

Hifi M, Michrafy M and Sbihi A (2006) A Reactive Local Search-Based Algorithm
for the Multiple-choice Multidimensional Knapasck Problem, Computational
Optimization and Applications 33(2–3):271–285

Hifi M, Sadfi S, Sbihi A (2002) An efficient algorithm for the knapsack sharing
problem, Computational Optimization and Applications 23:27–45

Iida H (1999) A note on the max-min 0-1 knapsack problem, Journal of Combi-
natorial Optimization 3:89–94

Luss H (1992) Minmax resource allocation problems: optimization and parametric
analysis, European Journal of Operational Research 60:76–86

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Martello S, Toth P (1990) Knapsack Problems: Algorithms and Computer Imple-
mentation, John Wiley: New York

Martello S, Pisinger D, Toth P (1999) Dynamic programming and strong bounds
for the 0-1 knapsack problem, Management Science 45:414–424

Martello S, Pisinger D, Toth P (2000) New trends in exact algorithms for the 0-1
knapsack problem, European Journal of Operational Research 123:325–332

Nash S.G, Sofer A (1996) Linear and non linear programming, McGraw-Hill
International Editions

Pang J.S, Yu C.S (1989) A min-max resource allocation problem with substitu-
tions, European Journal of Operational Research 41:218–223

Pisinger D (1995), A minimal algorithm for the Multiple-choice Knapsack Problem,
European Journal of Operational Research 83:394–410

Pisinger D (1997) A minimal algorithm for the 0-1 knapsack problem, Operations
Research 45:758–767

Sbihi A (2007) A best-first exact algorithm for the multiple-choice multidimen-
sional knapsack problem, Journal of Combinatorial Optimization 13-4:337–351

Steuer R.E (1986) Multiple criteria optimization: theory, computation and appli-
cation:Wiley, New York

Tang C.S (1988) A max-min allocation problem: its solutions and applications,
Operations Research 36:359–367

Taniguchi F, Yamada T, Kataoka S (2008) Heuristic and exact algorithms for the
maxmin optimization of the multi-scenario knapsack problem, Computers and
Operations Research 35:2034–2048

Yamada T, Futakawa M, Kataoka S (1998) Some exact algorithms for the knapsack
sharing problem, European Journal of Operational Research 106:177–183

Yu G (1996) On the max-min 0-1 knapsack problem with robust optimization
applications, Operations Research 44-2:407–415

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Appendix: An upper bound computation

Herein we show how to compute UB. First, the MSM2KP is reduced to a
single knapsack problem by considering the item j of profit pj(λ) as a convex

combination of all the P alternative profits : pj(λ):=
P∑
π=1

λπvπj ;
∑

π λ
π = 1. Then

the MSM2KP relaxation is formulated as :

(LP)


Maximize Z(X) =

∑
j∈J

pj(λ)xj

Subject to
∑
j∈J

wjxj ≤ C

0 ≤ xj ≤ 1, for j = 1, . . . , n

To determine the parameters (λπ), we consider at once an auxiliary problem Aux
as a single scenario MSM2KP :

(Aux)


Maximize Z(X) =

∑
j∈J

vπj xj

Subject to
∑
j∈J

wjxj ≤ C

xj ∈ {0, 1}, for j = 1, . . . , n

Aux denotes a single knapsack problem KP. Its LP relaxation is given by
AuxLP :

(AuxLP)


Maximize Z(X) =

∑
j∈J

vπj xj

Subject to
∑
j∈J

wjxj ≤ C

0 ≤ xj ≤ 1, for j = 1, . . . , n

It exists a critical item ` = min{k :
k∑
j=1

wj > C} such that
`−1∑
j=1

wj ≤ C <
∑̀
j=1

wj .

Then the AuxLP optimal solution is given by:

xj :=


1 if j ≤ `− 1
c−

∑`−1
k=1 wk
w`

if j = `

0 if j ≥ `+ 1

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

And of objective value ZAuxLP (X∗) =
`−1∑
j=1

vπj +
c−

∑`−1
j=1wj

w`
vπ` . It represents an

upper bound for Aux.
The Dantzig Dantzig (1957) upper bound for Aux is then given by :

UBπ :=
`−1∑
j=1

vπj +

⌊
c−

∑`−1
j=1wj

w`
vπ`

⌋
.

Then, we consider λπ := UBπ∑
π UB

π , ∀π = 1, . . . , P . Knowing these parameters,

it is then easy to compute the combined profits pj(λ) :=
P∑
π=1

(UBπ∑
π UB

π

)
vπj . We

solve LP and the Dantzig upper bound UB for MSM2KP is simply the obtained
objective value of LP.

25

