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Spectral analysis and stabilization of a chain of

serially connected Euler-Bernoulli beams and

strings

Käıs Ammari ∗, Denis Mercier †, Virginie Régnier †

and

Julie Valein ‡

Abstract. We consider N Euler-Bernoulli beams and N strings alternatively

connected to one another and forming a particular network which is a chain begin-

ning with a string. We consider two stabilization problems on the same network.

The spectrum of the conservative system is studied: the characteristic equation as

well as its asymptotic behavior are given. We prove that the energy of the solutions

of the first dissipative system tends to zero when the time tends to infinity under

some irrationality assumptions of the length of the strings and beams. On another

hand we prove a polynomial decay result of the energy of the second system, in-

dependently of the length of the strings and beams, for all regular initial data.

Our technique is based on a frequency domain method and combines a contradic-

tion argument with the multiplier technique to carry out a special analysis for the

resolvent.

2010 Mathematics Subject Classification. 35L05, 35M10, 35R02, 47A10, 93D15, 93D20.

Key words and phrases. Network, wave equation, Euler-Bernoulli beam equation, spec-

trum, resolvent method, feedback stabilization.
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1 Introduction

We consider the evolution problems (P1) and (P2) described by the following systems

of 2N equations :

(P1)



(∂2
t u2j−1 − ∂2

xu2j−1)(t, x) = 0, x ∈ (0, l2j−1), t ∈ (0,∞), j = 1, ..., N,

(∂2
t u2j + ∂4

xu2j)(t, x) = 0, x ∈ (0, l2j), t ∈ (0,∞), j = 1, ..., N,

u1(t, 0) = 0, u2N (t, l2N ) = 0, t ∈ (0,∞),

∂2
xu2j(t, 0) = ∂2

xu2j(t, l2j) = 0, t ∈ (0,∞), j = 1, ..., N,

uj(t, lj) = uj+1(t, 0), t ∈ (0,∞), j = 1, ..., 2N − 1,

∂3
xu2j(t, 0) + ∂xu2j−1(t, l2j−1) = − ∂tu2j−1(t, l2j−1), t ∈ (0,∞), j = 1, ..., N,

∂3
xu2j(t, l2j) + ∂xu2j+1(t, 0) = ∂tu2j(t, l2j), t ∈ (0,∞), j = 1, ..., N,

uj(0, x) = u0
j (x), ∂tuj(0, x) = u1

j (x), x ∈ (0, lj), j = 1, ..., 2N,

and

(P2)



(∂2
t u2j−1 − ∂2

xu2j−1)(t, x) = 0, x ∈ (0, l2j−1), t ∈ (0,∞), j = 1, ..., N,

(∂2
t u2j + ∂4

xu2j)(t, x) = 0, x ∈ (0, l2j), t ∈ (0,∞), j = 1, ..., N,

u1(t, 0) = 0, u2N (t, l2N ) = 0, ∂2
xu2N (t, l2N ) = 0, t ∈ (0,∞),

∂2
xu2j(t, 0) = ∂2

txu2j(t,0), t ∈ (0,∞), j = 1, ..., N,

∂2
xu2j(t, l2j) = −∂2

txu2j(t, l2j), t ∈ (0,∞), j = 1, ..., N − 1,

uj(t, lj) = uj+1(t, 0), t ∈ (0,∞), j = 1, ..., 2N − 1,

∂3
xu2j(t, 0) + ∂xu2j−1(t, l2j−1) = − ∂tu2j−1(t, l2j−1), t ∈ (0,∞), j = 1, ..., N,

∂3
xu2j(t, l2j) + ∂xu2j+1(t, 0) = ∂tu2j+1(t,0), t ∈ (0,∞), j = 1, ..., N − 1,

uj(0, x) = u0
j (x), ∂tuj(0, x) = u1

j (x), x ∈ (0, lj), j = 1, ..., 2N,

where lj > 0, ∀ j = 1, ..., 2N .

Models of the transient behavior of some or all of the state variables describing the

motion of flexible structures have been of great interest in recent years, for details

about physical motivation for the models, see [11], [14], [16] and the references therein.

Mathematical analysis of transmission partial differential equations is detailed in [16].

Let us first introduce some notation and definitions which will be used throughout the

rest of the paper, in particular some which are linked to the notion of Cν- networks,

ν ∈ N (as introduced in [13] and recalled in [19]).

Let Γ be a connected topological graph embedded in R2, with 2N edges (N ∈ N∗). Let

K = {kj : 1 ≤ j ≤ 2N} be the set of the edges of Γ. Each edge kj is a Jordan curve in
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R2 and is assumed to be parametrized by its arc length xj such that the parametrization

πj : [0, lj ] → kj : xj 7→ πj(xj) is ν-times differentiable, i.e. πj ∈ Cν([0, lj ],R2) for all

1 ≤ j ≤ 2N . The length of the edge kj is lj > 0. The Cν- network G associated with Γ

is then defined as the union

G =
2N⋃
j=1

kj .

We study two feedback stabilization problems for a string-beam network, see [1]-[8],

[16] and [27]-[28]. In the following, only chains will be considered as mathematically

described in Section 5 of [20]. See also [21] and Figure 1.

0

k1

string
l1 0

k2

beam

l2 0

k3

string
l3 0

k4

beam

l4 0

k5

string
l5 0

k6

beam

l6

• • • • • • •

Figure 1: A chain with 2N = 6 edges

Following Ammari/Jellouli/Mehrenberger ([9]), we study a linear system modelling the

vibrations of a chain of alternated Euler-Bernoulli beams and strings but with N beams

and N strings (instead of one string-one beam). For each edge kj (representing a string

if j is odd and a beam if j is even), the scalar function uj(x, t) for x ∈ G and t > 0

contains the information on the vertical displacement of the string if j is odd and of the

beam if j is even (1 ≤ j ≤ 2N).

Our aim is to study the spectrum of the conservative spatial operator which is defined

in Section 3 and to obtain stability results for (P1) and (P2).
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We define the natural energy E(t) of a solution u = (u1, ..., u2N ) of (P1) or (P2) by

E(t) =
1
2

N∑
j=1

(∫ l2j−1

0

(
|∂tu2j−1(t, x)|2 + |∂xu2j−1(t, x)|2

)
dx

+
∫ l2j

0

(
|∂tu2j(t, x)|2 + |∂2

xu2j(t, x)|2
)

dx
)
. (1.1)

We can easily check that every sufficiently smooth solution of (P1) satisfies the following

dissipation law

E′(t) = −
2N−1∑
j=1

∣∣∂tuj(t, lj)∣∣2 ≤ 0, (1.2)

and therefore, the energy is a nonincreasing function of the time variable t.

The first result concerns the well-posedness of the solutions of (P1) and the decay of

the energy E(t) of the solutions of (P1). We also study the spectrum of the correspond-

ing conservative system. We give, in particular, the characteristic equation and the

asymptotic behavior of the eigenvalues of the corresponding conservative system. We

deduce that the generalized gap condition holds: if we denote by (λn)n∈N∗ the sequence

of eigenvalues counted with their multiplicities, then

∃γ > 0, ∀n ≥ 1, λn+2N − λn ≥ γ. (1.3)

Contrary to [9], it seems that the (simple) gap condition fails in general (for any N ≥ 2).

Therefore we do not succeed to obtain an observability inequality (and then to deduce

stability results for (P1)) directly by the study of the spectrum and the eigenvectors (see,

for instance, [22]). In fact, the difficulties are to locate precisely the type of eigenvalues

in the packets.

However, we prove that the energy E(t) of the solutions of (P1) tends to zero when

t→ + ∞ in an appropriate energy space (described later), under some assumptions

about the irrationality properties of the length of the strings and beams. For that, we

use a result from [10].

As we do not succeed to obtain the explicit decay rate to zero of the energy of the

solutions of (P1), we change a little the system, by considering more dissipation condi-

tions. That is why we introduce in problem (P2), in addition, the following dissipation

conditions

∂2
xu2j(t, 0) = ∂2

txu2j(t,0), t ∈ (0,∞), j = 1, ..., N,

∂2
xu2j(t, l2j) = −∂2

txu2j(t, l2j), t ∈ (0,∞), j = 1, ..., N − 1.
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In this case, we are able to prove more interesting stability results for system (P2) and

to give the explicit decay rate of the energy of the solutions of (P2) in an appropriate

space.

In the same manner as previously and with the same energy E(t) (defined by (1.1)),

every sufficiently smooth solution of (P2) satisfies the following dissipation law

E′(t) = −
2N−1∑
j=1

∣∣∂tuj(t, lj)∣∣2 − N−1∑
j=1

∣∣∂2
txu2j(t, l2j)

∣∣2 − N∑
j=1

∣∣∂2
txu2j(t, 0)

∣∣2 ≤ 0, (1.4)

and therefore, the energy is a nonincreasing function of the time variable t.

The main result of this paper then concerns the precise asymptotic behavior of the

solutions of (P2). As it was shown in [9] in the case of one string and one beam

connected together (i.e. N = 1), we can not except to obtain an exponential decay rate

of the solutions of (P2). However we are able to prove that the decay rate to zero of

the energy is ln4(t)/t2, independently of the length of the strings and beams and by

taking more regular initial data in an appropriate space. Our technique is based on a

frequency domain method from [17] and combines a contradiction argument with the

multiplier technique to carry out a special analysis for the resolvent.

This paper is organized as follows: In Section 2, we give the proper functional setting

for systems (P1) and (P2) and prove that these two systems are well-posed. In Section

3, we study the spectrum of the corresponding conservative system and we give the

asymptotic behavior of the eigenvalues. We then show that the energies of systems (P1)

and (P2) tend to zero. Finally, in Section 4, we study the stabilization result for (P2)

by the frequency domain technique and give the explicit decay rate of the energy of the

solutions of (P2).

2 Well-posedness of the systems

In order to study systems (P1) and (P2) we need a proper functional setting. We define

the following space

V =
{
u = (u1, ..., u2N ) ∈

N∏
j=1

(
H1(0, l2j−1)×H2(0, l2j)

)
,

uj(lj) = uj+1(0), j = 1, . . . , 2N − 1, u1(0) = 0, u2N (l2N ) = 0
}
,
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equipped with the sesquilinear form

< u, ũ >V =
N∑
j=1

(∫ l2j−1

0
∂xu2j−1(x)∂xũ2j−1(x)dx+

∫ l2j

0
∂2
xu2j(x)∂2

xũ2j(x)dx
)
. (2.5)

Note the following lemma:

Lemma 2.1. We have that 0 is an eigenvalue associated to (P1) and (P2) of multiplicity

N − 1, i.e. there exists a subspace of V of dimension N − 1 such that any φ in this

subspace satisfies

(EP0)



∂2
xφ2j−1(x) = 0, x ∈ (0, l2j−1), j = 1, ..., N,

∂4
xφ2j(x) = 0, x ∈ (0, l2j), j = 1, ..., N,

φ1(0) = 0, φ2N (l2N ) = 0,

∂2
xφ2j(0) = ∂2

xφ2j(l2j) = 0, j = 1, ..., N,

φj(lj) = φj+1(0), j = 1, ..., 2N − 1,

∂3
xφ2j(0) + ∂xφ2j−1(l2j−1) = 0, j = 1, ..., N,

∂3
xφ2j(l2j) + ∂xφ2j+1(0) = 0, j = 1, ..., N.

Proof. Let φ be a non-trivial solution of (EP0). By the two first equations of (EP0), for

j ∈ {1, · · · , N}, φ2j−1 is a first order polynomial and φ2j is a third order polynomial.

Moreover, with the fourth equation of (EP0), φ2j also is a first order polynomial. The

two last equations of (EP0) become

∂xφ2j−1(0) = ∂xφ2j−1(l2j−1) = 0, j = 1, · · · , N.

Consequently there exists b2j−1 ∈ C such that φ2j−1 = b2j−1 for j ∈ {1, · · · , N}. The

third equation of (EP0) implies b1 = 0. Moreover we find, by the fifth equation of

(EP0), that

φ2j(x) =
b2j+1 − b2j−1

l2j
x+ b2j−1, x ∈ (0, l2j), j = 1, · · · , N,

where we set b2N+1 = 0.

The function φ defined above with (b3, b5, · · · , b2N−1) ∈ CN−1 then satisfies (EP0),

which finishes the proof.

It is well-known that system (P1) may be rewritten as the first order evolution equation U ′ = A1U,

U(0) = (u0, u1) = U0,
(2.6)
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where U is the vector U = (u, ∂tu)t and the operator A1 : Y1 → V ×
∏2N
j=1 L

2(0, lj) is

defined by

A1(u, v)t := (v, (∂2
xu2j−1,−∂4

xu2j)1≤j≤N )t,

with

Y1 :=

(u, v) ∈
N∏
j=1

(
H2(0, l2j−1)×H4(0, l2j)

)
× V :

satisfies (2.7) to (2.10) hereafter} ,

∂2
xu2N (l2N ) = 0 (2.7)

∂2
xu2j(0) = 0 j = 1, ..., N and ∂2

xu2j(l2j) = 0, j = 1, ..., N − 1 (2.8)

∂3
xu2j(0) + ∂xu2j−1(l2j−1) = −v2j−1(l2j−1), j = 1, ..., N (2.9)

∂3
xu2j(t, l2j) + ∂xu2j+1(0) = v2j(l2j), j = 1, ..., N − 1. (2.10)

It is clear that < . , . >V does not define a norm for V but only a semi-norm since,

for all u ∈ V , we have < u, u >V = 0 if and only if u satisfies (EP0). In order to get a

Hilbert space we define by E0, the eigenspace of A1 associated to the eigenvalue 0, i.e.

E0 =

(φ, 0) ∈ V ×
2N∏
j=1

L2(0, lj) : φ satisfies (EP0)

 ,

and P0,1 : V ×
∏2N
j=1 L

2(0, lj)→ E0 the projection onto E0 defined by

P0,1 =
1

2πi

∮
γ
(λI −A1)−1dλ,

where γ is a simple closed curve enclosing the eigenvalue 0 (see Theorem 6.17 of [15]).

Now let H1 the Hilbert space defined by

V ×
2N∏
j=1

L2(0, lj) = E0 ⊕H1, (2.11)

where H1 = (I−P0,1)(V ×
∏2N
j=1 L

2(0, lj)) and E0 = P0,1(V ×
∏2N
j=1 L

2(0, lj)). Then P0,1

is the projection onto E0 parallel to H1. Note that, if N = 1, H1 = V ×
∏2N
j=1 L

2(0, lj).

Then H1 is a Hilbert space, equipped with the usual inner product〈 u

v

 ,

 ũ

ṽ

〉
H1

=
N∑
j=1

(∫ l2j−1

0

(
v2j−1(x)ṽ2j−1(x) + ∂xu2j−1(x)∂xũ2j−1(x)

)
dx

+
∫ l2j

0

(
v2j(x)ṽ2j(x) + ∂2

xu2j(x)∂2
xũ2j(x)

)
dx
)
.
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The domain D(A1) of the operator A1 is defined by

D(A1) := H1 ∩ Y1.

Therefore

A1 : D(A1)→ H1,

since A1 commutes with P0,1.

Moreover the norm on D(A1) is defined by

||(u, v)||2D(A1) = ||A1(u, v)||2H1
+ ||(u, v)||2H1

. (2.12)

Note that, with all these notation, problem (P1) is rewritten in an abstract way as: find

(u, v)t ∈ D(A1) such that (u, v)tt = A1(u, v)t.

Now we can prove the well-posedness of system (P1) and that the solution of (P1)

satisfies the dissipation law (1.2).

Proposition 2.2. (i) For an initial datum U0 ∈ H1, there exists a unique solution

U ∈ C([0, +∞), H1) to problem (2.6). Moreover, if U0 ∈ D(A1), then

U ∈ C([0, +∞), D(A1)) ∩ C1([0, +∞), H1).

(ii) The solution u of (P1) with initial datum in D(A1) satisfies (1.2). Therefore the

energy is decreasing.

Proof. (i) By Lumer-Phillips’ theorem (see [24, 26]), it suffices to show that A1 is

dissipative and maximal.

We first prove that A1 is dissipative. Take U = (u, v)t ∈ D(A1). Then

〈A1U, U〉H1
=

N∑
j=1

(∫ l2j−1

0

(
∂2
xu2j−1(x)v2j−1(x) + ∂xv2j−1(x)∂xu2j−1(x)

)
dx

+
∫ l2j

0

(
−∂4

xu2j(x)v2j(x) + ∂2
xv2j(x)∂2

xu2j(x)
)

dx
)
.

By integration by parts, we have

<
(
〈A1U, U〉H1

)
= <

 N∑
j=1

[∂xu2j−1v2j−1]l2j−1

0 +
N∑
j=1

[
−∂3

xu2jv2j
]l2j
0

+
N∑
j=1

[
∂2
xu2j∂xv2j

]l2j
0

 .
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Moreover, we have
N∑
j=1

[
∂2
xu2j∂xv2j

]l2j
0

= 0,

by (2.7) and (2.8), and by the continuity of v at the interior nodes, we obtain

N∑
j=1

[∂xu2j−1v2j−1]l2j−1

0 +
N∑
j=1

[
−∂3

xu2jv2j
]l2j
0

=
N∑
j=1

(
∂xu2j−1(l2j−1) + ∂3

xu2j(0)
)
v2j−1(l2j−1)−

N−1∑
j=1

(
∂xu2j+1(0) + ∂3

xu2j(l2j)
)
v2j(l2j)

−∂xu1(0)v1(0)− ∂3
xu2N (l2N )v2N (l2N )

= −
N∑
j=1

|v2j−1(l2j−1)|2 −
N−1∑
j=1

|v2j(l2j)|2

by (2.9), (2.10) and since v ∈ V . Therefore

<
(
〈A1U, U〉H1

)
= −

2N−1∑
j=1

|vj(lj)|2 ≤ 0. (2.13)

This shows the dissipativeness of A1.

Let us now prove that A1 is maximal, i.e. that λI −A1 is surjective for some λ > 0.

Let (f, g)t ∈ H1. We look for U = (u, v)t ∈ D(A1) solution of

(λI −A1)

 u

v

 =

 f

g

 , (2.14)

or equivalently 
λuj − vj = fj ∀j ∈ {1, ..., 2N},

λv2j−1 − ∂2
xu2j−1 = g2j−1 ∀j ∈ {1, ..., N},

λv2j + ∂4
xu2j = g2j ∀j ∈ {1, ..., N}.

(2.15)

Suppose that we have found u with the appropriate regularity. In the following, due to

(2.11), we set V1 the Hilbert space defined by

H1 = V1 ×
2N∏
j=1

L2(0, lj),

equipped with the inner product (2.5). Then for all j ∈ {1, ..., 2N}, we have

vj := λuj − fj ∈ V1 ⊂ V. (2.16)
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It remains to find u. By (2.15) and (2.16), uj must satisfy, for all j = 1, ..., N ,

λ2u2j−1 − ∂2
xu2j−1 = g2j−1 + λf2j−1,

and

λ2u2j + ∂4
xu2j = g2j + λf2j .

Multiplying these identities by a test function φ, integrating in space and using integra-

tion by parts, we obtain

N∑
j=1

∫ l2j−1

0

(
λ2u2j−1φ2j−1 + ∂xu2j−1∂xφ2j−1

)
dx−

N∑
j=1

[
∂xu2j−1φ2j−1

]l2j−1

0

+
N∑
j=1

∫ l2j

0

(
λ2u2jφ2j + ∂2

xu2j∂
2
xφ2j

)
dx+

N∑
j=1

([
∂3
xu2jφ2j

]l2j
0
−
[
∂2
xu2j∂xφ2j

]l2j
0

)

=
2N∑
j=1

∫ lj

0
(gj + λfj)φjdx.

Since u ∈ D(A1) and (u, v) satisfies (2.16), we then have

N∑
j=1

∫ l2j−1

0

(
λ2u2j−1φ2j−1 + ∂xu2j−1∂xφ2j−1

)
dx+

N∑
j=1

∫ l2j

0

(
λ2u2jφ2j + ∂2

xu2j∂
2
xφ2j

)
dx

+
2N−1∑
j=1

λuj(lj)φj(lj) =
2N∑
j=1

∫ lj

0
(gj + λfj)φjdx+

2N−1∑
j=1

fj(lj)φj(lj). (2.17)

This problem has a unique solution u ∈ V1 by Lax-Milgram’s lemma, because the left-

hand side of (2.17) is coercive on V1. If we consider φ ∈
∏2N
j=1D(0, lj) ⊂ V1, then u

satisfies

λ2u2j−1 − ∂2
xu2j−1 = g2j−1 + λf2j−1 in D′(0, l2j−1), j = 1, · · · , N,

λ2u2j + ∂4
xu2j = g2j + λf2j in D′(0, l2j), j = 1, · · · , N.

This directly implies that u ∈
∏N
j=1

(
H2(0, l2j−1)×H4(0, l2j)

)
and then u ∈ V1 ∩∏N

j=1

(
H2(0, l2j−1)×H4(0, l2j)

)
. Coming back to (2.17) and by integrating by parts,

we find
N∑
j=1

(
∂2
xu2j(l2j)∂xφ2j(l2j)− ∂2

xu2j(0)∂xφ2j(0)
)

+
N∑
j=1

(
∂xu2j−1(l2j−1) + ∂3

xu2j(0)
)
φ2j−1(l2j−1)

−
N−1∑
j=1

(
∂xu2j+1(0) + ∂3

xu2j(l2j)
)
φ2j(l2j) +

2N−1∑
j=1

λuj(lj)φj(lj) =
2N−1∑
j=1

fj(lj)φj(lj).

10



Consequently, by taking particular test functions φ, we obtain

∂2
xu2j(l2j) = 0 and ∂2

xu2j(0) = 0, j = 1, · · · , N,

∂xu2j−1(l2j−1) + ∂3
xu2j(0) = −λu2j−1(l2j−1) + f2j−1(l2j−1)

= −v2j−1(l2j−1), j = 1, · · · , N,

∂xu2j+1(0) + ∂3
xu2j(l2j) = λu2j(l2j)− f2j(l2j) = v2j(l2j), j = 1, · · · , N − 1.

In summary we have found (u, v)t ∈ D(A1) satisfying (2.14), which finishes the proof of

(i).

(ii) To prove (ii), it suffices to derivate the energy (1.1) for regular solutions and to use

system (P1). The calculations are analogous to those of the proof of the dissipativeness

of A1 in (i), and then, are left to the reader.

We see, in the same manner, that problem (P2) can be rewritten in an abstract way as:

find (u, v)t ∈ D(A2) such that (u, v)tt = A2(u, v)t, where A2 : Y2 → V ×
∏2N
j=1 L

2(0, lj)

for

Y2 :=

(u, v) ∈
N∏
j=1

(
H2(0, l2j−1)×H4(0, l2j)

)
× V :

satisfies (2.7), (2.9), (2.10) and (2.18) hereafter} ,

∂2
xu2j(0) = ∂xv2j(0), j = 1, ..., N and ∂2

xu2j(l2j) = −∂xv2j(l2j), j = 1, ..., N − 1, (2.18)

A2(u, v)t := (v, (∂2
xu2j−1,−∂4

xu2j)1≤j≤N )t.

Then we define the Hilbert space H2 by

V ×
2N∏
j=1

L2(0, lj) = E0 ⊕H2, H2 = (I − P0,2)(V ×
2N∏
j=1

L2(0, lj))

with P0,2 : V ×
∏2N
j=1 L

2(0, lj)→ E0 the projection onto E0 defined by

P0,2 =
1

2iπ

∮
γ
(λI −A2)−1dλ

(with γ is a simple closed curve enclosing the eigenvalue 0), and

D(A2) := H2 ∩ Y2.

Then

A2 : D(A2)→ H2.

The following proposition holds:
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Proposition 2.3. (i) For an initial datum U0 ∈ H2, there exists a unique solution

U ∈ C([0, +∞), H2) to  U ′ = A2U,

U(0) = (u0, u1) = U0.

Moreover, if U0 ∈ D(A2), then

U ∈ C([0, +∞), D(A2)) ∩ C1([0, +∞), H2).

(ii) The solution u of (P2) with initial datum in D(A2) satisfies (1.4). Therefore the

energy is decreasing.

Proof. The proof of (i) and (ii) is the same as the proof of Proposition 2.2, and therefore

is left to the reader.

3 Spectral analysis of a chain of serially connected Euler-Bernoulli

beams and strings

In this section, we study the spectral analysis of the corresponding conservative system.

Let Φ be the solution of the conservative system derived from problems (P1) and (P2)

given in the introduction, i.e. Φ is the solution of the following system

(Pc)



(∂2
t Φ2j−1 − ∂2

xΦ2j−1)(t, x) = 0, x ∈ (0, l2j−1), t ∈ (0,∞), j = 1, ..., N,

(∂2
t Φ2j + ∂4

xΦ2j)(t, x) = 0, x ∈ (0, l2j), t ∈ (0,∞), j = 1, ..., N,

Φ1(t, 0) = 0, Φ2N (t, l2N ) = 0, t ∈ (0,∞)

∂2
xΦ2j(t, 0) = ∂2

xΦ2j(t, l2j) = 0, t ∈ (0,∞), j = 1, ..., N,

Φj(t, lj) = Φj+1(t, 0), t ∈ (0,∞), j = 1, ..., 2N − 1,

∂3
xΦ2j(t, 0) + ∂xΦ2j−1(t, l2j−1) = 0, t ∈ (0,∞), j = 1, ..., N,

∂3
xΦ2j(t, l2j) + ∂xΦ2j+1(t, 0) = 0, t ∈ (0,∞), j = 1, ..., N,

Φj(0, x) = u0
j (x), ∂tΦj(0, x) = u1

j (x), x ∈ (0, lj), j = 1, ..., 2N,

where we have replaced the dissipative conditions (in bold in systems (P1) and (P2)) by

the conservative ones.

We can rewrite system (Pc) in an abstract way as: find (Φ,Ψ)t ∈ D(Ac) such that
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(Φ,Ψ)tt = Ac(Φ,Ψ)t, where Ac : Yc → V ×
∏2N
j=1 L

2(0, lj), for

Yc :=

(Φ, Ψ) ∈
N∏
j=1

(
H2(0, l2j−1)×H4(0, l2j)

)
× V :

satisfies (2.7), (2.8), and (3.19), (3.20) hereafter} ,

∂3
xu2j(0) + ∂xu2j−1(l2j−1) = 0, j = 1, ..., N (3.19)

∂3
xu2j(t, l2j) + ∂xu2j+1(0) = 0, j = 1, ..., N − 1, (3.20)

and

Ac(Φ,Ψ)t := (Ψ, (∂2
xΦ2j−1,−∂4

xΦ2j)1≤j≤N )t.

Then we define the Hilbert space Hc by

V ×
2N∏
j=1

L2(0, lj) = E0 ⊕Hc, Hc = (I − P0,c)(V ×
2N∏
j=1

L2(0, lj)) = Vc ×
2N∏
j=1

L2(0, lj)

with P0,c : V ×
∏2N
j=1 L

2(0, lj)→ E0 the projection onto E0 defined by with

P0,c =
1

2iπ

∮
γ
(λI −Ac)−1dλ

(with γ is a simple closed curve enclosing the eigenvalue 0), and

D(Ac) := Hc ∩ Yc.

Following Section 2, it is clear that system (Pc) is well-posed in the natural energy

space. If we suppose that (u0, u1) ∈ Hc = Vc×
∏2N
j=1 L

2(0, lj), then problem (Pc) admits

a unique solution

Φ ∈ C([0, T ], Vc) ∩ C1([0, T ],
2N∏
j=1

L2(0, lj)).

This system is obviously conservative, i.e. its energy is constant.

3.1 The characteristic equation

Let φ be a non-trivial solution of the eigenvalue problem (EP ) associated to the con-

servative problem (Pc) and λ2 be the corresponding eigenvalue. That is to say, φ ∈ Vc
satisfies the transmission and boundary conditions (3.21)-(3.25) hereafter as well as

(EP )


∂2
xφ2j−1 = λ2φ2j−1 on (0, l2j−1), ∀ j ∈ {1, ...,N},

−∂4
xφ2j = λ2φ2j on (0, l2j), ∀ j ∈ {1, ...,N},

φ2j−1 ∈ H2(0, l2j−1), ∀j ∈ {1, ..., N}, φ2j ∈ H4(0, l2j), ∀j ∈ {1, ..., N},
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φ1(0) = 0, φ2N (l2N ) = 0, (3.21)

∂2
xφ2j(0) = ∂2

xφ2j(l2j) = 0, j = 1, ..., N (3.22)

φj(lj) = φj+1(0), j = 1, ..., 2N − 1 (3.23)

∂3
xφ2j(0) + ∂xφ2j−1(l2j−1) = 0, j = 1, ..., N (3.24)

∂3
xφ2j(l2j) + ∂xφ2j+1(0) = 0, j = 1, ..., N − 1. (3.25)

Note that this also means that (φ, λφ) ∈ D(Ac) is an eigenvector of Ac associated to

the eigenvalue λ. By the definition of Ac and of its domain, 0 is not an eigenvalue of

Ac. Moreover 0 is not an eigenvalue of A1 and A2.

Define z by λ = iz2 where z lies in R+∗ with i2 = −1.

Following Paulsen ([23]) and Mercier ([18]), we will rewrite this eigenvalue problem on

a chain of 2N beams and strings using only square matrices of order 2 in the following

way: we define, for each j ∈ {1, ..., N}, the vector functions V2j−1 and V2j by

V2j−1(x) =
(
φ2j−1(x),

1
z2
∂xφ2j−1(x)

)t
, ∀x ∈ [0, l2j−1],

V2j(x) =
(
φ2j(x),

1
z3
∂3
xφ2j(x)

)t
, ∀x ∈ [0, l2j ].

Define the matrices Aj by

A2j−1(z, l2j−1) :=

 c2j−1 s2j−1

−s2j−1 c2j−1

 ,

A2j(z, l2j) :=
1

e2l2jz − 2el2jzs2j − 1

·

 e2l2jz (c2j − s2j)− c2j − s2j 2s2j
(
1− e2l2jz

)
e2l2jzc2j − 2el2jz + c2j e2l2jz (c2j − s2j)− c2j − s2j

 ,

with j ∈ {1, · · · , N} and with the notation c2j−1 = cos(l2j−1 · z2), s2j−1 = sin(l2j−1 · z2)

c2j = cos(l2j · z), s2j = sin(l2j · z).
(3.26)

The matrix T is defined by:

T (z) :=

 1 0

0 −1
z

 .
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To finish with, the matrix M(z) is the square matrix of order 2 given by

M(z) = A2NTA2N−1...T
−1A2TA1. (3.27)

Lemma 3.1. (A few trivial but useful properties)

With the notation introduced above, we have:

Vj(lj) = AjVj(0), ∀j ∈ {1, ..., 2N},

V2j(0) = TV2j−1(l2j−1), ∀j ∈ {1, ..., N},

V2j+1(0) = T−1V2j(l2j), ∀j ∈ {1, ..., N − 1},

V2N (l2N ) = M(z)V1(0).

Proof. First, for j odd and j ∈ {1, . . . , 2N}, since uj satisfies the first equation of the

eigenvalue problem (EP ), uj is a linear combination of the vectors of the fundamental

basis (
cos(z2 .), sin(z2 .)

)
.

The first equation of the lemma follows from that property after some calculations.

Now, for j even and j ∈ {1, . . . , 2N}, since uj satisfies the second equation of the

eigenvalue problem (EP ), uj is a linear combination of the vectors of the fundamental

basis (
cos(z.), sin(z .), ez ., e−z .

)
.

In this basis, if we consider the two following functions d1, d2 with coordinates

d1 := (−eljz sin(ljz), eljz cos(ljz)− 1, 0,−eljz sin(ljz))

d2 := (eljz − e−ljz, 0, cos(ljz)− e−ljz, eljz − cos(ljz),

we can see that they are independent and satisfy (3.21). Consequently uj can be ex-

pressed as a linear combination of these two functions. Now, to find Aj , we proceed as

follows: let (α, β)t the coordinates of uj in the basis (d1, d2). There exist two matrices

M0,M1 such that Vj(0) = M0(α, β)t and Vj(lj) = M1(α, β)t, then Aj is the matrix

M1M
−1
0 .

Moreover the transmission conditions (3.23), (3.24) and (3.25) imply the second and

third equations.

The fourth one is the logical consequence of the first three applied successively for j = 1,

j = 2, etc...
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Theorem 3.2. (The characteristic equation for the eigenvalue problem corresponding

to a chain of alternated beams and strings)

The complex number λ = iz2 (z ∈ R+∗) is an eigenvalue of Ac if and only if z satisfies

the characteristic equation

f(z) = m12(z) = 0, (3.28)

where m12(z) is the term on the first line and second column of the matrix M(z).

Proof. Let φ be a non-trivial solution of the eigenvalue problem (EP ) and λ2 be the

corresponding eigenvalue, where λ = iz2 (z ∈ R+∗).

Using the boundary conditions as well as V2N (l2N ) = M(z)V1(0), it follows: 0
1
z3
∂3
xφ2N (l2N )

 = M(z)

 0
1
z2
∂xφ1(0)

 .

It is clear that the vector of the second part of the previous equality is non-trivial since

φ is a non-trivial solution of problem (EP ). Hence the result.

Proposition 3.3. (Asymptotic behavior of the characteristic equation)

Assume that the characteristic equation is given by Theorem 3.2. Then

f(z) = z (f∞(z) + g(z))

where

f∞(z) = s1(z) · c2(z) · s3(z) · · · s2N−1(z) · (c2N (z)− s2N (z)) (3.29)

(with cj, sj defined by (3.26)) and g satisfies limz→+∞ g(z) = 0. Thus, the asymptotic

behavior of the spectrum σ(Ac) corresponds to the roots of the asymptotic characteristic

equation

f∞(z) = 0. (3.30)

Proof. In the following, the notation o(h(λ)) is used for a square matrix of order 2 such

that all its terms are dominated by the function λ 7→ h(λ) asymptotically. For any

j ∈ {1, . . . , N},

A2j(z, l2j) =
1

e2l2jz − 2el2jzs2j − 1

e2l2jz
 c2j − s2j 2s2j

c2j c2j − s2j

+ o(2l2jz)

 .
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Thus

A2j(z, l2j) =

 c2j − s2j 2s2j

c2j c2j − s2j

+ o(1),

which leads, after some calculations, to:

T−1A2jTA2j−1 =

 (c2j − s2j)c2j−1 (c2j − s2j)s2j−1

−zc2jc2j−1 −zc2js2j−1

+ o(1).

Likewise

T−1A2j+2TA2j+1 =

 (c2j+2 − s2j+2)c2j+1 (c2j+2 − s2j+2)s2j+1

−zc2j+2c2j+1 −zc2j+2s2j+1

+ o(1).

Thus

T−1A2j+2TA2j+1T
−1A2jTA2j−1

=

 −z(c2j+2 − s2j+2)s2j+1c2jc2j−1 −z(c2j+2 − s2j+2)s2j+1c2js2j−1

z2c2j+2s2j+1c2jc2j−1 z2c2j+2s2j+1c2js2j−1

+ o(1).

The result follows by induction.

Remark 3.4. We can note that the eigenvalues λ = iz2 of (EP ) have 2N families of

asymptotic behavior:(
i
kπ

l2j−1

)
k∈N∗

, j = 1, · · · , N,

(
i

(
π + 2kπ

2l2j

)2
)
k∈N∗

, j = 1, · · · , N − 1,

and

(
i

(
π/4 + kπ

l2N

)2
)
k∈N∗

.

It follows that the generalized gap condition (1.3) holds.

Proposition 3.5. (Geometric multiplicity of the eigenvalues)

If λ 6= 0 is an eigenvalue of the operator Ac and Eλ is the associated eigenspace, then

the dimension of Eλ is one.

Proof. The eigenvectors φ ∈ Vc associated to the eigenvalue λ2 (cf. problem (EP )) are

entirely determined by their values at the nodes of the network (i.e. where the beams

and strings are connected to one another). Due to Lemma 3.1, they are also determined

by V1(0) =
(
φ1(0),

1
z2
∂xφ1(0)

)t
. Now φ1(0) = 0 (cf. condition (3.21)) and ∂xφ1(0)

may take any value in R∗. Hence the result.
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3.2 Strong stability of (P1) and (P2)

We first prove the following lemma:

Lemma 3.6. If there exist i, j ∈ {1, · · · , N} such that

l2i−1

l2j−1
/∈ Q or

l2i
l2j

/∈ Q, (3.31)

or if there exist i, j ∈ {1, · · · , N} such that

(l2i)2

l2j−1
6= p2

q
π, where p, q ∈ Z, (3.32)

then
2N−1∑
j=1

|φj(lj)|2 6= 0, (3.33)

for all eigenvectors φ ∈ Vc of (EP ).

Proof. Let φ ∈ Vc be an eigenvector of (EP ) associated to the eigenvalue λ2, where

λ = iz2 (z ∈ R+∗). Assume that (3.33) is false, i.e. that we have

2N∑
j=2

|φj(0)|2 = 0. (3.34)

We use in the following the basis introduced in the proof of Lemma 3.1.

First, since φ2j−1(0) = 0 for j = 1, · · · , N , it is easy to see that there exists a2j−1 such

that

φ2j−1 = a2j−1 sin(z2·), ∀j = 1, · · · , N.

Then, by the continuity at the interior nodes (3.23), we get

a2j−1 sin(z2l2j−1) = 0, ∀j = 1, · · · , N.

Second, there exist a2j , b2j , ã2j and b̃2j such that

φ2j = a2j sin(z·) + b2j cos(z·) + ã2j sinh(z·) + b̃2j cosh(z·).

By (3.22) and (3.34), we obtain

b2j = b̃2j = ã2j = 0 and a2j sin(zl2j) = 0, ∀j = 1, · · · , N,
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since z 6= 0. Then, we have, with the notation introduced in (3.26),

ajsj = 0, j = 1, · · · , 2N. (3.35)

Moreover (3.24) gives

a2j =
1
z
a2j−1c2j−1,

and (3.25) yields

a2j+1 = za2jc2j .

By induction, we obtain, for all j ≥ 2,

aj = zεja1cj−1cj−2 · · · c1, (3.36)

with ε2j = −1 and ε2j−1 = 0. Therefore a1 6= 0 (otherwise aj = 0 for all j, and then

φ = 0, which is impossible). Now, by (3.35), we have s1 = 0 and c1 = ±1. Then,

since (3.36) holds, a2 6= 0 and s2 = 0, again with (3.35). Then c2 = ±1... We see, by

induction, that sj = 0 for all j ∈ {1, · · · , 2N}. Therefore, it suffices to have one sj 6= 0

for some j ∈ {1, · · · , 2N} to obtain (3.33). It is the case if there exist i, j ∈ {1, · · · , N}

such that (3.31) or (3.32) hold.

As a consequence of the previous lemma, we can prove the following proposition.

Proposition 3.7. We have

lim
t→+∞

E(t) = 0 (3.37)

for all solution u of (P1) with (u0, u1) in H1 if and only if (3.33) holds for all eigenvectors

φ ∈ Vc of (EP ). Consequently, if there exist i, j ∈ {1, · · · , N} such that (3.31) or (3.32)

hold, then (3.37) holds.

Proof. ⇐ Let us show that (3.33) implies (3.37). For that purpose we closely follow

[25].

First, we show that A1 has no eigenvalue on the imaginary axis. If it is not the case, let

iω be an eigenvalue of A1 where ω ∈ R∗. Let Z ∈ D(A1) be an eigenvector associated

with iω. Then Z is of the form

Z =

 φ

iωφ

 ,
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with
∂2
xφ2j−1 = −ω2φ2j−1, j = 1, · · · , N,

∂4
xφ2j = ω2φ2j , j = 1, · · · , N.

(3.38)

It is an immediate consequence of the identity (iωI −A1)Z = 0.

We now take the inner product 〈., .〉H1
between A1Z and Z. By (2.13), we have

<
(
〈A1Z,Z〉H1

)
= −ω2

2N−1∑
j=1

|φj(lj)|2 .

Since Z is an eigenvector of A1 associated with iω and ω 6= 0, we obtain
2N−1∑
j=1

|φj(lj)|2 = 0.

Note that Z satisfies the eigenvalue problem (EP ) and Z belongs to D(Ac), since

P0,cZ =
1

2iπ

∮
γ
(λI −Ac)−1Zdλ =

1
2iπ

∮
γ

1
λ− iω

Zdλ = 0,

(where we use (λI−Ac)( 1
λ−iωZ) = Z and where γ is a simple closed curve enclosing 0),

and thus Z = Z − P0,cZ ∈ (I − P0,c)(V ×
∏2N
j=1 L

2(0, lj)) = Hc. Then this contradicts

(3.33). Therefore A1 has no eigenvalue on the imaginary axis.

Now, we can apply the main theorem of Arendt and Batty [10]: Since σ(A1) ∩ iR is

empty, we obtain (3.37).

⇒ Let us show that (3.37) implies (3.33). For that purpose we use a contradiction

argument. Suppose that there exists an eigenvector φ ∈ Vc of (EP ) of associated

eigenvalue λ2 (where λ = iz2, z ∈ R+∗) such that

2N−1∑
j=1

|φj(lj)|2 = 0.

Let us set

u(., t) = φ cos(z2t).

Then u is solution of (P1) and satisfies

E(t) = E(0),

because

φj(lj) = 0, ∀j = 1, · · · , 2N.

This contradicts (3.37).

It suffices to use Lemma 3.6 to finish the proof.
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Moreover, with the same method as previously, we are able to prove the decay to zero of

the energy of solutions without restriction about the irrational properties of the lengths.

Proposition 3.8. We have lim
t→+∞

E(t) = 0 for any solution of (P2) with (u0, u1) in

H2.

Proof. As in the proof of Proposition 3.7, we can show that the energy of solutions of

(P2) tends to zero if and only if

2N−1∑
j=1

|φj(lj)|2 +
N−1∑
j=1

(
|∂xφ2j(l2j)|2 + |∂xφ2j(0)|2

)
6= 0, (3.39)

for all eigenvectors φ of (EP ). Let φ be an eigenvector of (EP ) such that (3.39) is false.

By the same proof as Lemma 3.6, this implies that φ = 0, which is impossible. Then

(3.39) holds and therefore the energy decays to 0.

Remark 3.9. If we take the initial data in V ×
∏2N
j=1 L

2(0, lj), the energy of the solutions

of (P1) and (P2) do not decay to 0, since u = φ, where (φ, 0)t is an eigenvector of Ai
(i = 1, 2) associated to the eigenvalue 0, is solution of (P1) and (P2) with constant

energy.

4 Stabilization result for (P2)

We prove a decay result of the energy of system (P2), independently of the length of

the strings and beams, for all regular initial data. In [9], the authors prove that the

system described by (P2) is not exponentially stable in H2 with N = 1 (i.e. with one

string and one beam). Therefore, in the general case (for N ∈ N∗), we can not except to

obtain an exponential decay for the energy of the solutions of (P2), but only a weaker

decay rate, and in this general case, we prove a polynomial decay rate. To obtain this,

our technique is based on a frequency domain method and combines a contradiction

argument with the multiplier technique to carry out a special analysis for the resolvent.

The following theorem is a direct generalisation of the result in [9], which we note, due

to a mistake in the choice of θ, the decay rate in the following ln4(t)
t2

has been written
ln6(t)
t4

(corresponding to a choice of θ = 1 and not to θ = 1/2).
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Theorem 4.1. There exists a constant C > 0 such that, for all (u0, u1) ∈ D(A2), the

solution of system (P2) satisfies the following estimate

E(t) ≤ C ln4(t)
t2

∥∥(u0, u1)
∥∥2

D(A2)
, ∀ t > 0. (4.40)

Proof. We will employ the following frequency domain theorem for polynomial stability

(see Liu-Rao [17]) of a C0 semigroup of contractions on a Hilbert space:

Lemma 4.2. A C0 semigroup etL of contractions on a Hilbert space satisfies

||etLU0|| ≤ C
ln1+ 1

θ (t)

t
1
θ

||U0||D(L)

for some constant C > 0 and for θ > 0 if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (4.41)

and

lim sup
|β|→∞

1
βθ
‖(iβ − L)−1‖ <∞, (4.42)

where ρ(L) denotes the resolvent set of the operator L.

Then the proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3. The spectrum of A2 contains no point on the imaginary axis.

Proof. Since A2 has compact resolvent, its spectrum σ(A2) only consists of eigenvalues

of A2. We will show that the equation

A2Z = iβZ (4.43)

with Z = (y, v)t ∈ D(A2) and β 6= 0 has only the trivial solution.

By taking the inner product of (4.43) with Z and using

< (< A2Z,Z >H2) = −
N∑
j=1

(
|v2j(0)|2 +

∣∣∣∣dv2jdx
(0)
∣∣∣∣2
)

−
N−1∑
j=1

(
|v2j(l2j)|2 +

∣∣∣∣dv2jdx
(l2j)

∣∣∣∣2
)
, (4.44)

we obtain that

v2j(0) = 0,
dv2j
dx

(0) = 0, j = 1, ..., N and v2j(l2j) = 0,
dv2j
dx

(l2j) = 0, j = 1, ..., N − 1.
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Next, we eliminate v in (4.43) to get an ordinary differential equation:

(β2y2j−1 + ∂2
xy2j−1)(x) = 0, x ∈ (0, l2j−1), j = 1, ..., N,

(β2y2j − ∂4
xy2j)(x) = 0, x ∈ (0, l2j), j = 1, ..., N,

y1(0) = 0, y2N (l2N ) = 0, ∂2
xy2N (l2N ) = 0,

∂2
xy2j(0) = 0, j = 1, ..., N,

∂2
xy2j(l2j) = 0, j = 1, ..., N − 1,

yj(lj) = yj+1(0), j = 1, ..., 2N − 1,

∂3
xy2j(0) + ∂xy2j−1(l2j−1) = 0, j = 1, ..., N,

∂3
xy2j(l2j) + ∂xy2j+1(0) = 0, j = 1, ..., N − 1.

(4.45)

Then, we can easily see that the only solution of the above system is the trivial one.

The second lemma shows that (4.42) holds with L = A2 and θ = 1.

Lemma 4.4. The resolvent operator of A2 satisfies condition (4.42) for θ = 1.

Proof. Suppose that condition (4.42) is false with θ = 1. By the Banach-Steinhaus

Theorem (see [12]), there exists a sequence of real numbers βn → +∞ and a sequence

of vectors Zn = (y
n
, vn)t ∈ D(A2) with ‖Zn‖H2 = 1 such that

||βn(iβnI −A2)Zn||H2 → 0 as n→∞, (4.46)

i.e.,

β1/2
n (iβnyn − vn) ≡ fn → 0 in V, (4.47)

β1/2
n

(
iβnvn,2j−1 −

d2yn,2j−1

dx2

)
≡ gn,2j−1 → 0 in L2(0, l2j−1), (4.48)

β1/2
n

(
iβnvn,2j +

d4yn,2j
dx4

)
≡ kn,2j → 0 in L2(0, l2j), (4.49)

since β1/2
n ≤ βn.

Our goal is to derive from (4.46) that ||Zn||H2 converges to zero, thus there is a contra-

diction. The proof is divided into four steps:

First step. We first notice that we have

||βn(iβnI −A2)Zn||H2 ≥ |< (〈βn(iβnI −A2)Zn, Zn〉H2) |. (4.50)

Then, by (4.44) and (4.46),

β
1
2
n vn,2j(0)→ 0, β

1
2
n
dvn,2j
dx

(0)→ 0, j = 1, ..., N (4.51)
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and

β
1
2
n vn,2j(l2j)→ 0, β

1
2
n
dvn,2j
dx

(l2j)→ 0, j = 1, ..., N − 1. (4.52)

This further leads, by (4.47) and the trace theorem, to

|βn|
3
2 |yn,2j(0)| → 0, |βn|3/2

∣∣∣∣dyn,2jdx
(0)
∣∣∣∣→ 0, j = 1, ..., N, (4.53)

and

|βn|
3
2 |yn,2j(l2j)| → 0, |βn|3/2

∣∣∣∣dyn,2jdx
(l2j)

∣∣∣∣→ 0, j = 1, ..., N − 1. (4.54)

Moreover, since Zn ∈ D(A2) and thus satisfies (2.18), we have, by (4.51) and (4.52),

|βn|
1
2

∣∣∣∣d2yn,2j
dx2

(0)
∣∣∣∣→ 0, j = 1, ..., N, |βn|

1
2

∣∣∣∣d2yn,2j
dx2

(l2j)
∣∣∣∣→ 0, j = 1, ..., N − 1. (4.55)

Then, note that, by continuity at the interior nodes and by (4.53) and (4.54), we have

|βn|
3
2 |yn,2j−1(0)| → 0, j = 2, ..., N, |βn|

3
2 |yn,2j−1(l2j−1)| → 0, j = 1, ..., N. (4.56)

Second step. We now express vn as a function of y
n

from (4.47) and substitute it into

(4.48)-(4.49) to get

β1/2
n

(
−β2

nyn,2j−1 −
d2yn,2j−1

dx2

)
= gn,2j−1 + iβnfn,2j−1, j = 1, ..., N, (4.57)

β1/2
n

(
−β2

nyn,2j +
d4yn,2j
dx4

)
= kn,2j + iβnfn,2j , j = 1, ..., N. (4.58)

Next, we take the inner product of (4.57) with q2j−1(·)dyn,2j−1

dx
in L2(0, l2j−1) where

q2j−1 ∈ C1([0, l2j−1]) and q2j−1(0) = 0. We obtain that∫ l2j−1

0
β1/2
n

(
− β2

nyn,2j−1 −
d2yn,2j−1

dx2

)
q2j−1(x)

dȳn,2j−1

dx
dx

=
∫ l2j−1

0

(
gn,2j−1 + iβn fn,2j−1

)
q2j−1(x)

dȳn,2j−1

dx
dx

=
∫ l2j−1

0
gn,2j−1 q2j−1(x)

dȳn,2j−1

dx
dx− i

∫ l2j−1

0
q2j−1

dfn,2j−1

dx
βnȳn,2j−1 dx

−i
∫ l2j−1

0
fn,2j−1

dq2j−1

dx
βnȳn,2j−1 dx+ ifn,2j−1(l2j−1)q2j−1(l2j−1)βnȳn,2j−1(l2j−1).

(4.59)

It is clear that the right-hand side of (4.59) converges to zero. Indeed, fn,2j−1 and

gn,2j−1 converge to zero in H1 and L2 respectively, ‖Zn‖H2
= 1 and (4.56) holds, and,

finally, |βnyn,2j−1| =
∣∣∣∣fn,2j−1

β
1/2
n

+ vn,2j−1

∣∣∣∣ is bounded in L2(0, l2j−1).
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By a straight-forward calculation,

<
{∫ l2j−1

0
−β2

nyn,2j−1 q2j−1
dȳn,2j−1

dx
dx

}
= −1

2
q2j−1(l2j−1)|βnyn,2j−1(l2j−1)|2

+
1
2

∫ l2j−1

0

dq2j−1

dx
|βnyn,2j−1|2dx

and

<
{∫ l2j−1

0
− d

2yn,2j−1

dx2
q2j−1

dȳn,2j−1

dx
dx

}
= −1

2
q2j−1(l2j−1)

∣∣∣∣dyn,2j−1

dx
(l2j−1)

∣∣∣∣2
+

1
2

∫ l2j−1

0

∣∣∣∣dyn,2j−1

dx

∣∣∣∣2 dq2j−1

dx
dx.

We then take the real part of (4.59), and (4.56) leads to∫ l2j−1

0

dq2j−1

dx
|βnyn,2j−1|2 dx+

∫ l2j−1

0

dq2j−1

dx

∣∣∣∣dyn,2j−1

dx

∣∣∣∣2 dx
− q2j−1(l2j−1)

∣∣∣∣dyn,2j−1

dx
(l2j−1)

∣∣∣∣2 → 0. (4.60)

Similarly, we take the inner product of (4.58) with q2j(·)
dyn,2j
dx

in L2(0, l2j) with q2j ∈

C3([0, l2j ]) and q2j(l2j) = 0. We then repeat the above procedure. Since∫ l2j

0

∣∣∣∣dyn,2jdx

∣∣∣∣2 dx = − 1
iβn

∫ l2j

0
vn,2j

d2ȳn,2j
dx2

− 1
iβn

∫ l2j

0
(iβn yn,2j − vn,2j)

d2ȳn,2j
dx2

dx

− dȳn,2j
dx

(0) yn,2j(0) +
dȳn,2j
dx

(l2j) yn,2j(l2j),

then, from the boundedness of vn,2j , iβnyn,2j − vn,2j , d2yn,2j
dx2 in L2(0, l2j) and (4.53)-

(4.54), dyn,2j
dx converges to zero in L2(0, l2j). This will give, after some calculations,∫ l2j

0

dq2j
dx
|βnyn,2j |2dx+

∫ l2j

0
3
dq2j
dx

∣∣∣∣d2yn,2j
dx2

∣∣∣∣2 dx
− 2<

(
d3yn,2j
dx3

(0)q2j(0)
dȳn,2j
dx

(0)
)
→ 0. (4.61)

Third step. Next, we show that
dyn,2j−1

dx
(l2j−1) and

d3yn,2j
dx3

(0) converge to zero. We

take the inner product of (4.58) with 1

β
1/2
n

e−β
1/2
n x in L2(0, l2j). We have, with (4.58),∫ l2j

0

(
−β2

nyn,2j +
d4un,2j
dx4

)
e−β

1/2
n xdx =

∫ l2j

0

1

β
1/2
n

kn,2je
−β1/2

n xdx

+i
∫ l2j

0
β1/2
n fn,2je

−β1/2
n xdx.

(4.62)

25



It is clear that the first term of the right hand side of (4.62) tends to zero by (4.49).

Moreover, by integration by parts,∫ l2j

0
β1/2
n fn,2je

−β1/2
n xdx =

∫ l2j

0

dfn,2j
dx

e−β
1/2
n xdx− fn,2j(l2j)e−β

1/2
n l2j + fn,2j(0),

which tends to zero since fn,2j tends to zero in H2 and by the trace theorem.

This leads to ∫ l2j

0

(
β2
ne
−β1/2

n x yn,2j − e−β
1/2
n x d

4yn,2j
dx4

)
dx→ 0. (4.63)

Performing four integrations by parts in the second term on the left-hand side of (4.63),

we obtain∫ l2j

0

(
β2
ne
−β1/2

n x yn,2j − e−β
1/2
n x d

4yn,2j
dx4

)
dx =

d3yn,2j
dx3

(0) + β1/2
n

d2yn,2j
dx2

(0)

+ βn
dyn,2j
dx

(0) + β3/2
n yn,2j(0) + o(1), (4.64)

with (4.54)-(4.55) and since∣∣∣∣d3yn,2j
dx3

(l2j)e−β
1/2
n l2j

∣∣∣∣2 ≤ e−2β
1/2
n l2j

∫ l2j

0

∣∣∣∣d4yn,2j
dx4

(x)
∣∣∣∣2 dx

≤ e−2β
1/2
n l2j

∫ l2j

0

∣∣∣∣∣kn,2jβ
1/2
n

− iβnvn,2j

∣∣∣∣∣
2

dx

≤ 2
βn
e−2β

1/2
n l2j

∫ l2j

0
|kn,2j |2 dx

+2β2
ne
−2β

1/2
n l2j

∫ l2j

0
|vn,2j |2 dx→ 0,

because ‖Zn‖H2
= 1.

Thus, according to (4.53) and (4.55), we simplify (4.64) to

d3yn,2j
dx3

(0)→ 0. (4.65)

Consequently, since Zn ∈ D(A2) and thus satisfies (2.9), we obtain

dyn,2j−1

dx
(l2j−1)→ 0. (4.66)

Then, (4.53) and (4.65) lead to

dȳn,2j
dx

(0)
d3yn,2j
dx3

(0)→ 0. (4.67)
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In view of (4.66)-(4.67), we simplify (4.60) and (4.61) to∫ l2j−1

0

dq2j−1

dx
|βnyn,2j−1|2dx+

∫ l2j−1

0

dq2j−1

dx

∣∣∣∣dyn,2j−1

dx

∣∣∣∣2 dx→ 0, (4.68)

∫ l2j

0

dq2j
dx
|βnyn,2j |2dx+

∫ l2j

0
3
dq2j
dx

∣∣∣∣d2yn,2j
dx2

∣∣∣∣2 dx→ 0 (4.69)

respectively.

Fourth step. Finally, we choose q2j−1 and q2j such that
dq2j−1

dx
is strictly positive and

dq2j
dx

is strictly negative. This can be done by taking

q2j−1(x) = ex − 1, q2j(x) = e(l2j−x) − 1.

Therefore, (4.68) and (4.69) imply

‖βnyn,2j−1‖L2(0,l2j−1) → 0, ‖βnyn,2j‖L2(0,l2j) → 0, ‖(yn,2j−1, yn,2j)j∈{1,··· ,N}‖V → 0.

(4.70)

In view of (4.47), we also get

‖vn,2j−1‖L2(0,l2j−1) → 0, ‖vn,2j‖L2(0,l2j) → 0, (4.71)

which clearly contradicts ‖Zn‖H2
= 1.

The two hypothesis of Lemma 4.2 are proved by Lemma 4.3 and Lemma 4.4. Then

(4.40) holds. The proof of Theorem 4.1 is then finished.
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[12] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983.

[13] J. von Below, Classical solvability of linear parabolic equations on networks, J.

Diff. Eq., 72 (1988), 316-337.
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