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Introduction

We consider the evolution problems (P 1 ) and (P 2 ) described by the following systems of 2N equations :

(P 1 )                                      (∂ 2 t u 2j-1 -∂ 2
x u 2j-1 )(t, x) = 0, x ∈ (0, l 2j-1 ), t ∈ (0, ∞), j = 1, ..., N, (∂ 2 t u 2j + ∂ 4 x u 2j )(t, x) = 0, x ∈ (0, l 2j ), t ∈ (0, ∞), j = 1, ..., N, u 1 (t, 0) = 0, u 2N (t, l 2N ) = 0, t ∈ (0, ∞),

∂ 2
x u 2j (t, 0) = ∂ 2 x u 2j (t, l 2j ) = 0, t ∈ (0, ∞), j = 1, ..., N, u j (t, l j ) = u j+1 (t, 0), t ∈ (0, ∞), j = 1, ..., 2N -1,

∂ 3
x u 2j (t, 0) + ∂ x u 2j-1 (t, l 2j-1 ) = -∂ t u 2j-1 (t, l 2j-1 ), t ∈ (0, ∞), j = 1, ..., N, ∂ 3

x u 2j (t, l 2j ) + ∂ x u 2j+1 (t, 0) = ∂ t u 2j (t, l 2j ), t ∈ (0, ∞), j = 1, ..., N, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), x ∈ (0, l j ), j = 1, ..., 2N, and

(P 2 )                                            (∂ 2 t u 2j-1 -∂ 2
x u 2j-1 )(t, x) = 0, x ∈ (0, l 2j-1 ), t ∈ (0, ∞), j = 1, ..., N, (∂ 2 t u 2j + ∂ 4 x u 2j )(t, x) = 0, x ∈ (0, l 2j ), t ∈ (0, ∞), j = 1, ..., N, u 1 (t, 0) = 0, u 2N (t, l 2N ) = 0, ∂ 2

x u 2N (t, l 2N ) = 0, t ∈ (0, ∞), ∂ 2

x u 2j (t, 0) = ∂ 2 tx u 2j (t, 0), t ∈ (0, ∞), j = 1, ..., N, ∂ 2

x u 2j (t, l 2j ) = -∂ 2 tx u 2j (t, l 2j ), t ∈ (0, ∞), j = 1, ..., N -1, u j (t, l j ) = u j+1 (t, 0), t ∈ (0, ∞), j = 1, ..., 2N -1, ∂ 3

x u 2j (t, 0) + ∂ x u 2j-1 (t, l 2j-1 ) = -∂ t u 2j-1 (t, l 2j-1 ), t ∈ (0, ∞), j = 1, ..., N, ∂ 3 x u 2j (t, l 2j ) + ∂ x u 2j+1 (t, 0) = ∂ t u 2j+1 (t, 0), t ∈ (0, ∞), j = 1, ..., N -1, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), x ∈ (0, l j ), j = 1, ..., 2N, where l j > 0, ∀ j = 1, ..., 2N .

Models of the transient behavior of some or all of the state variables describing the motion of flexible structures have been of great interest in recent years, for details about physical motivation for the models, see [START_REF] Banks | Smart Materials Structures[END_REF], [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and the references therein.

Mathematical analysis of transmission partial differential equations is detailed in [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF].

Let us first introduce some notation and definitions which will be used throughout the rest of the paper, in particular some which are linked to the notion of C ν -networks, ν ∈ N (as introduced in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] and recalled in [START_REF] Mercier | Spectrum of a network of Euler-Bernoulli beams[END_REF]).

Let Γ be a connected topological graph embedded in R 2 , with 2N edges (N ∈ N * ). Let K = {k j : 1 ≤ j ≤ 2N } be the set of the edges of Γ. Each edge k j is a Jordan curve in R 2 and is assumed to be parametrized by its arc length x j such that the parametrization π j : [0, l j ] → k j : x j → π j (x j ) is ν-times differentiable, i.e. π j ∈ C ν ([0, l j ], R 2 ) for all 1 ≤ j ≤ 2N . The length of the edge k j is l j > 0. The C ν -network G associated with Γ is then defined as the union

G = 2N j=1 k j .
We study two feedback stabilization problems for a string-beam network, see [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF]- [START_REF] Ammari | Stabilization of generic trees of strings[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and [START_REF] Xu | Stability of a star shaped coupled networks of strings and beams[END_REF]- [START_REF] Zhang | Stability of a complex network of Euler-Bernoulli beams[END_REF]. In the following, only chains will be considered as mathematically described in Section 5 of [START_REF] Mercier | Control of a network of Euler-Bernoulli beams[END_REF]. See also [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] and Figure 1. Following Ammari/Jellouli/Mehrenberger ( [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF]), we study a linear system modelling the vibrations of a chain of alternated Euler-Bernoulli beams and strings but with N beams and N strings (instead of one string-one beam). For each edge k j (representing a string if j is odd and a beam if j is even), the scalar function u j (x, t) for x ∈ G and t > 0 contains the information on the vertical displacement of the string if j is odd and of the beam if j is even (1 ≤ j ≤ 2N ).

Our aim is to study the spectrum of the conservative spatial operator which is defined in Section 3 and to obtain stability results for (P 1 ) and (P 2 ).

We define the natural energy E(t) of a solution u = (u 1 , ..., u 2N ) of (P 1 ) or (P 2 ) by

E(t) = 1 2 N j=1 l 2j-1 0 |∂ t u 2j-1 (t, x)| 2 + |∂ x u 2j-1 (t, x)| 2 dx + l 2j 0 |∂ t u 2j (t, x)| 2 + |∂ 2 x u 2j (t, x)| 2 dx . (1.1)
We can easily check that every sufficiently smooth solution of (P 1 ) satisfies the following dissipation law

E (t) = - 2N -1 j=1 ∂ t u j (t, l j ) 2 ≤ 0, (1.2) 
and therefore, the energy is a nonincreasing function of the time variable t.

The first result concerns the well-posedness of the solutions of (P 1 ) and the decay of the energy E(t) of the solutions of (P 1 ). We also study the spectrum of the corresponding conservative system. We give, in particular, the characteristic equation and the asymptotic behavior of the eigenvalues of the corresponding conservative system. We deduce that the generalized gap condition holds: if we denote by (λ n ) n∈N * the sequence of eigenvalues counted with their multiplicities, then

∃γ > 0, ∀n ≥ 1, λ n+2N -λ n ≥ γ. (1.3)
Contrary to [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF], it seems that the (simple) gap condition fails in general (for any N ≥ 2).

Therefore we do not succeed to obtain an observability inequality (and then to deduce stability results for (P 1 )) directly by the study of the spectrum and the eigenvectors (see, for instance, [START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF]). In fact, the difficulties are to locate precisely the type of eigenvalues in the packets.

However, we prove that the energy E(t) of the solutions of (P 1 ) tends to zero when t → + ∞ in an appropriate energy space (described later), under some assumptions about the irrationality properties of the length of the strings and beams. For that, we use a result from [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF].

As we do not succeed to obtain the explicit decay rate to zero of the energy of the solutions of (P 1 ), we change a little the system, by considering more dissipation conditions. That is why we introduce in problem (P 2 ), in addition, the following dissipation conditions

∂ 2 x u 2j (t, 0) = ∂ 2 tx u 2j (t, 0), t ∈ (0, ∞), j = 1, ..., N, ∂ 2 x u 2j (t, l 2j ) = -∂ 2 tx u 2j (t, l 2j ), t ∈ (0, ∞), j = 1, ..., N -1.
In this case, we are able to prove more interesting stability results for system (P 2 ) and to give the explicit decay rate of the energy of the solutions of (P 2 ) in an appropriate space.

In the same manner as previously and with the same energy E(t) (defined by (1.1)), every sufficiently smooth solution of (P 2 ) satisfies the following dissipation law

E (t) = - 2N -1 j=1 ∂ t u j (t, l j ) 2 - N -1 j=1 ∂ 2 tx u 2j (t, l 2j ) 2 - N j=1 ∂ 2 tx u 2j (t, 0) 2 ≤ 0, (1.4) 
and therefore, the energy is a nonincreasing function of the time variable t.

The main result of this paper then concerns the precise asymptotic behavior of the solutions of (P 2 ). As it was shown in [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF] in the case of one string and one beam connected together (i.e. N = 1), we can not except to obtain an exponential decay rate of the solutions of (P 2 ). However we are able to prove that the decay rate to zero of the energy is ln 4 (t)/t 2 , independently of the length of the strings and beams and by taking more regular initial data in an appropriate space. Our technique is based on a frequency domain method from [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

This paper is organized as follows: In Section 2, we give the proper functional setting for systems (P 1 ) and (P 2 ) and prove that these two systems are well-posed. In Section 3, we study the spectrum of the corresponding conservative system and we give the asymptotic behavior of the eigenvalues. We then show that the energies of systems (P 1 ) and (P 2 ) tend to zero. Finally, in Section 4, we study the stabilization result for (P 2 ) by the frequency domain technique and give the explicit decay rate of the energy of the solutions of (P 2 ).

Well-posedness of the systems

In order to study systems (P 1 ) and (P 2 ) we need a proper functional setting. We define the following space

V = u = (u 1 , ..., u 2N ) ∈ N j=1 H 1 (0, l 2j-1 ) × H 2 (0, l 2j ) , u j (l j ) = u j+1 (0), j = 1, . . . , 2N -1, u 1 (0) = 0, u 2N (l 2N ) = 0 ,
equipped with the sesquilinear form

< u, ũ > V = N j=1 l 2j-1 0 ∂ x u 2j-1 (x)∂ x ũ2j-1 (x)dx + l 2j 0 ∂ 2 x u 2j (x)∂ 2 x ũ2j (x)dx . (2.5)
Note the following lemma:

Lemma 2.1. We have that 0 is an eigenvalue associated to (P 1 ) and (P 2 ) of multiplicity N -1, i.e. there exists a subspace of V of dimension N -1 such that any φ in this subspace satisfies

(EP 0 )                                ∂ 2 x φ 2j-1 (x) = 0, x ∈ (0, l 2j-1 ), j = 1, ..., N, ∂ 4 x φ 2j (x) = 0, x ∈ (0, l 2j ), j = 1, ..., N, φ 1 (0) = 0, φ 2N (l 2N ) = 0, ∂ 2 x φ 2j (0) = ∂ 2 x φ 2j (l 2j ) = 0, j = 1, ..., N, φ j (l j ) = φ j+1 (0), j = 1, ..., 2N -1, ∂ 3 x φ 2j (0) + ∂ x φ 2j-1 (l 2j-1 ) = 0, j = 1, ..., N, ∂ 3 x φ 2j (l 2j ) + ∂ x φ 2j+1 (0) = 0, j = 1, ..., N.
Proof. Let φ be a non-trivial solution of (EP 0 ). By the two first equations of (EP 0 ), for j ∈ {1, • • • , N }, φ 2j-1 is a first order polynomial and φ 2j is a third order polynomial.

Moreover, with the fourth equation of (EP 0 ), φ 2j also is a first order polynomial. The two last equations of (EP 0 ) become

∂ x φ 2j-1 (0) = ∂ x φ 2j-1 (l 2j-1 ) = 0, j = 1, • • • , N. Consequently there exists b 2j-1 ∈ C such that φ 2j-1 = b 2j-1 for j ∈ {1, • • • , N }.
The third equation of (EP 0 ) implies b 1 = 0. Moreover we find, by the fifth equation of (EP 0 ), that

φ 2j (x) = b 2j+1 -b 2j-1 l 2j x + b 2j-1 , x ∈ (0, l 2j ), j = 1, • • • , N,
where we set b 2N +1 = 0.

The function φ defined above with (b

3 , b 5 , • • • , b 2N -1 ) ∈ C N -1 then satisfies (EP 0 ),
which finishes the proof.

It is well-known that system (P 1 ) may be rewritten as the first order evolution equation

   U = A 1 U, U (0) = (u 0 , u 1 ) = U 0 , (2.6) 
where U is the vector U = (u, ∂ t u) t and the operator A 1 :

Y 1 → V × 2N j=1 L 2 (0, l j ) is defined by A 1 (u, v) t := (v, (∂ 2 x u 2j-1 , -∂ 4 x u 2j ) 1≤j≤N ) t ,
with

Y 1 :=    (u, v) ∈ N j=1 H 2 (0, l 2j-1 ) × H 4 (0, l 2j ) × V : satisfies (2.7) to (2.10) hereafter} , ∂ 2 x u 2N (l 2N ) = 0 (2.7) ∂ 2 x u 2j (0) = 0 j = 1, ..., N and ∂ 2 x u 2j (l 2j ) = 0, j = 1, ..., N -1 (2.8) ∂ 3 x u 2j (0) + ∂ x u 2j-1 (l 2j-1 ) = -v 2j-1 (l 2j-1 ), j = 1, ..., N (2.9) 
∂ 3 x u 2j (t, l 2j ) + ∂ x u 2j+1 (0) = v 2j (l 2j ), j = 1, ..., N -1. (2.10)
It is clear that < . , . > V does not define a norm for V but only a semi-norm since, for all u ∈ V , we have < u, u > V = 0 if and only if u satisfies (EP 0 ). In order to get a Hilbert space we define by E 0 , the eigenspace of A 1 associated to the eigenvalue 0, i.e.

E 0 =    (φ, 0) ∈ V × 2N j=1 L 2 (0, l j ) : φ satisfies (EP 0 )    ,
and P 0,1 : V × 2N j=1 L 2 (0, l j ) → E 0 the projection onto E 0 defined by

P 0,1 = 1 2πi γ (λI -A 1 ) -1 dλ,
where γ is a simple closed curve enclosing the eigenvalue 0 (see Theorem 6.17 of [START_REF] Kato | Perturbation theory for linear operators[END_REF]).

Now let H 1 the Hilbert space defined by

V × 2N j=1 L 2 (0, l j ) = E 0 ⊕ H 1 , (2.11) 
where

H 1 = (I -P 0,1 )(V × 2N j=1 L 2 (0, l j )) and E 0 = P 0,1 (V × 2N j=1 L 2 (0, l j )). Then P 0,1 is the projection onto E 0 parallel to H 1 . Note that, if N = 1, H 1 = V × 2N j=1 L 2 (0, l j ).
Then H 1 is a Hilbert space, equipped with the usual inner product

  u v   ,   ũ ṽ   H 1 = N j=1 l 2j-1 0 v 2j-1 (x)ṽ 2j-1 (x) + ∂ x u 2j-1 (x)∂ x ũ2j-1 (x) dx + l 2j 0 v 2j (x)ṽ 2j (x) + ∂ 2 x u 2j (x)∂ 2 x ũ2j (x) dx .
The domain D(A 1 ) of the operator A 1 is defined by

D(A 1 ) := H 1 ∩ Y 1 .
Therefore

A 1 : D(A 1 ) → H 1 ,
since A 1 commutes with P 0,1 .

Moreover the norm on D(A 1 ) is defined by

||(u, v)|| 2 D(A 1 ) = ||A 1 (u, v)|| 2 H 1 + ||(u, v)|| 2 H 1 .
(2.12)

Note that, with all these notation, problem (P 1 ) is rewritten in an abstract way as: find

(u, v) t ∈ D(A 1 ) such that (u, v) t t = A 1 (u, v) t .
Now we can prove the well-posedness of system (P 1 ) and that the solution of (P 1 )

satisfies the dissipation law (1.2).

Proposition 2.2. (i) For an initial datum U 0 ∈ H 1 , there exists a unique solution

U ∈ C([0, +∞), H 1 ) to problem (2.6). Moreover, if U 0 ∈ D(A 1 ), then U ∈ C([0, +∞), D(A 1 )) ∩ C 1 ([0, +∞), H 1 ).
(ii) The solution u of (P 1 ) with initial datum in D(A 1 ) satisfies (1.2). Therefore the energy is decreasing.

Proof. (i) By Lumer-Phillips' theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF][START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), it suffices to show that A 1 is dissipative and maximal.

We first prove that

A 1 is dissipative. Take U = (u, v) t ∈ D(A 1 ). Then A 1 U, U H 1 = N j=1 l 2j-1 0 ∂ 2 x u 2j-1 (x)v 2j-1 (x) + ∂ x v 2j-1 (x)∂ x u 2j-1 (x) dx + l 2j 0 -∂ 4 x u 2j (x)v 2j (x) + ∂ 2 x v 2j (x)∂ 2 x u 2j (x) dx .
By integration by parts, we have

A 1 U, U H 1 =   N j=1 [∂ x u 2j-1 v 2j-1 ] l 2j-1 0 + N j=1 -∂ 3 x u 2j v 2j l 2j 0 + N j=1 ∂ 2 x u 2j ∂ x v 2j l 2j 0   .
Moreover, we have

N j=1 ∂ 2 x u 2j ∂ x v 2j l 2j 0 = 0, by (2.7 
) and (2.8), and by the continuity of v at the interior nodes, we obtain

N j=1 [∂ x u 2j-1 v 2j-1 ] l 2j-1 0 + N j=1 -∂ 3 x u 2j v 2j l 2j 0 = N j=1 ∂ x u 2j-1 (l 2j-1 ) + ∂ 3 x u 2j (0) v 2j-1 (l 2j-1 )- N -1 j=1 ∂ x u 2j+1 (0) + ∂ 3 x u 2j (l 2j ) v 2j (l 2j ) -∂ x u 1 (0)v 1 (0) -∂ 3 x u 2N (l 2N )v 2N (l 2N ) = - N j=1 |v 2j-1 (l 2j-1 )| 2 - N -1 j=1 |v 2j (l 2j )| 2
by (2.9), (2.10) and since v ∈ V . Therefore

A 1 U, U H 1 = - 2N -1 j=1 |v j (l j )| 2 ≤ 0. (2.13)
This shows the dissipativeness of A 1 .

Let us now prove that A 1 is maximal, i.e. that λI -A 1 is surjective for some λ > 0.

Let (f , g) t ∈ H 1 . We look for U = (u, v) t ∈ D(A 1 ) solution of

(λI -A 1 )   u v   =   f g   , (2.14) 
or equivalently

       λu j -v j = f j ∀j ∈ {1, ..., 2N }, λv 2j-1 -∂ 2 x u 2j-1 = g 2j-1 ∀j ∈ {1, ..., N }, λv 2j + ∂ 4 x u 2j = g 2j ∀j ∈ {1, ..., N }.
(2.15)

Suppose that we have found u with the appropriate regularity. In the following, due to (2.11), we set V 1 the Hilbert space defined by

H 1 = V 1 × 2N j=1 L 2 (0, l j ),
equipped with the inner product (2.5). Then for all j ∈ {1, ..., 2N }, we have

v j := λu j -f j ∈ V 1 ⊂ V. (2.16)
It remains to find u. By (2.15) and (2.16), u j must satisfy, for all j = 1, ..., N ,

λ 2 u 2j-1 -∂ 2 x u 2j-1 = g 2j-1 + λf 2j-1 ,
and

λ 2 u 2j + ∂ 4 x u 2j = g 2j + λf 2j .
Multiplying these identities by a test function φ, integrating in space and using integration by parts, we obtain

N j=1 l 2j-1 0 λ 2 u 2j-1 φ 2j-1 + ∂ x u 2j-1 ∂ x φ 2j-1 dx - N j=1 ∂ x u 2j-1 φ 2j-1 l 2j-1 0 + N j=1 l 2j 0 λ 2 u 2j φ 2j + ∂ 2 x u 2j ∂ 2 x φ 2j dx + N j=1 ∂ 3 x u 2j φ 2j l 2j 0 -∂ 2 x u 2j ∂ x φ 2j l 2j 0 = 2N j=1 l j 0 (g j + λf j ) φ j dx.
Since u ∈ D(A 1 ) and (u, v) satisfies (2.16), we then have

N j=1 l 2j-1 0 λ 2 u 2j-1 φ 2j-1 + ∂ x u 2j-1 ∂ x φ 2j-1 dx+ N j=1 l 2j 0 λ 2 u 2j φ 2j + ∂ 2 x u 2j ∂ 2 x φ 2j dx + 2N -1 j=1 λu j (l j )φ j (l j ) = 2N j=1 l j 0 (g j + λf j ) φ j dx + 2N -1 j=1 f j (l j )φ j (l j ). (2.17)
This problem has a unique solution u ∈ V 1 by Lax-Milgram's lemma, because the lefthand side of (2.17

) is coercive on V 1 . If we consider φ ∈ 2N j=1 D(0, l j ) ⊂ V 1 , then u satisfies λ 2 u 2j-1 -∂ 2 x u 2j-1 = g 2j-1 + λf 2j-1 in D (0, l 2j-1 ), j = 1, • • • , N, λ 2 u 2j + ∂ 4 x u 2j = g 2j + λf 2j in D (0, l 2j ), j = 1, • • • , N. This directly implies that u ∈ N j=1 H 2 (0, l 2j-1 ) × H 4 (0, l 2j ) and then u ∈ V 1 ∩ N j=1 H 2 (0, l 2j-1 ) × H 4 (0, l 2j ) .
Coming back to (2.17) and by integrating by parts, we find

N j=1 ∂ 2 x u 2j (l 2j )∂ x φ 2j (l 2j ) -∂ 2 x u 2j (0)∂ x φ 2j (0) + N j=1 ∂ x u 2j-1 (l 2j-1 ) + ∂ 3 x u 2j (0) φ 2j-1 (l 2j-1 ) - N -1 j=1 ∂ x u 2j+1 (0) + ∂ 3 x u 2j (l 2j ) φ 2j (l 2j ) + 2N -1 j=1 λu j (l j )φ j (l j ) = 2N -1 j=1 f j (l j )φ j (l j ).
Consequently, by taking particular test functions φ, we obtain

∂ 2 x u 2j (l 2j ) = 0 and ∂ 2 x u 2j (0) = 0, j = 1, • • • , N, ∂ x u 2j-1 (l 2j-1 ) + ∂ 3 x u 2j (0) = -λu 2j-1 (l 2j-1 ) + f 2j-1 (l 2j-1 ) = -v 2j-1 (l 2j-1 ), j = 1, • • • , N, ∂ x u 2j+1 (0) + ∂ 3 x u 2j (l 2j ) = λu 2j (l 2j ) -f 2j (l 2j ) = v 2j (l 2j ), j = 1, • • • , N -1.
In summary we have found (u, v) t ∈ D(A 1 ) satisfying (2.14), which finishes the proof of (i).

(ii) To prove (ii), it suffices to derivate the energy (1.1) for regular solutions and to use system (P 1 ). The calculations are analogous to those of the proof of the dissipativeness of A 1 in (i), and then, are left to the reader.

We see, in the same manner, that problem (P 2 ) can be rewritten in an abstract way as:

find (u, v) t ∈ D(A 2 ) such that (u, v) t t = A 2 (u, v) t , where A 2 : Y 2 → V × 2N j=1 L 2 (0, l j ) for Y 2 :=    (u, v) ∈ N j=1 H 2 (0, l 2j-1 ) × H 4 (0, l 2j ) × V :
satisfies (2.7), (2.9), (2.10) and (2.18) hereafter} ,

∂ 2 x u 2j (0) = ∂ x v 2j (0), j = 1, ..., N and ∂ 2 x u 2j (l 2j ) = -∂ x v 2j (l 2j ), j = 1, ..., N -1, (2.18) A 2 (u, v) t := (v, (∂ 2 x u 2j-1 , -∂ 4 x u 2j ) 1≤j≤N ) t .
Then we define the Hilbert space H 2 by

V × 2N j=1 L 2 (0, l j ) = E 0 ⊕ H 2 , H 2 = (I -P 0,2 )(V × 2N j=1 L 2 (0, l j ))
with P 0,2 : V × 2N j=1 L 2 (0, l j ) → E 0 the projection onto E 0 defined by

P 0,2 = 1 2iπ γ (λI -A 2 ) -1 dλ
(with γ is a simple closed curve enclosing the eigenvalue 0), and

D(A 2 ) := H 2 ∩ Y 2 .
Then

A 2 : D(A 2 ) → H 2 .
The following proposition holds:

Proposition 2.3. (i) For an initial datum U 0 ∈ H 2 , there exists a unique solution

U ∈ C([0, +∞), H 2 ) to    U = A 2 U, U (0) = (u 0 , u 1 ) = U 0 . Moreover, if U 0 ∈ D(A 2 ), then U ∈ C([0, +∞), D(A 2 )) ∩ C 1 ([0, +∞), H 2 ).
(ii) The solution u of (P 2 ) with initial datum in D(A 2 ) satisfies (1.4). Therefore the energy is decreasing.

Proof. The proof of (i) and (ii) is the same as the proof of Proposition 2.2, and therefore is left to the reader.

3 Spectral analysis of a chain of serially connected Euler-Bernoulli beams and strings

In this section, we study the spectral analysis of the corresponding conservative system.

Let Φ be the solution of the conservative system derived from problems (P 1 ) and (P 2 )

given in the introduction, i.e. Φ is the solution of the following system

(P c )                                      (∂ 2 t Φ 2j-1 -∂ 2 x Φ 2j-1 )(t, x) = 0, x ∈ (0, l 2j-1 ), t ∈ (0, ∞), j = 1, ..., N, (∂ 2 t Φ 2j + ∂ 4 x Φ 2j )(t, x) = 0, x ∈ (0, l 2j ), t ∈ (0, ∞), j = 1, ..., N, Φ 1 (t, 0) = 0, Φ 2N (t, l 2N ) = 0, t ∈ (0, ∞) ∂ 2 x Φ 2j (t, 0) = ∂ 2 x Φ 2j (t, l 2j ) = 0, t ∈ (0, ∞), j = 1, ..., N, Φ j (t, l j ) = Φ j+1 (t, 0), t ∈ (0, ∞), j = 1, ..., 2N -1, ∂ 3 x Φ 2j (t, 0) + ∂ x Φ 2j-1 (t, l 2j-1 ) = 0, t ∈ (0, ∞), j = 1, ..., N, ∂ 3 x Φ 2j (t, l 2j ) + ∂ x Φ 2j+1 (t, 0) = 0, t ∈ (0, ∞), j = 1, ..., N, Φ j (0, x) = u 0 j (x), ∂ t Φ j (0, x) = u 1 j (x), x ∈ (0, l j ), j = 1, ..., 2N,
where we have replaced the dissipative conditions (in bold in systems (P 1 ) and (P 2 )) by the conservative ones.

We can rewrite system (P c ) in an abstract way as: find (Φ, Ψ) 

t ∈ D(A c ) such that (Φ, Ψ) t t = A c (Φ, Ψ) t , where A c : Y c → V × 2N j=1 L 2 (0, l j ), for Y c :=    (Φ, Ψ) ∈ N j=1 H 2 (0, l 2j-1 ) × H 4 (0, l 2j ) × V : satisfies (2.
∂ 3 x u 2j (0) + ∂ x u 2j-1 (l 2j-1 ) = 0, j = 1, ..., N (3.19) 
∂ 3 x u 2j (t, l 2j ) + ∂ x u 2j+1 (0) = 0, j = 1, ..., N -1, (3.20) 
and

A c (Φ, Ψ) t := (Ψ, (∂ 2 x Φ 2j-1 , -∂ 4 x Φ 2j ) 1≤j≤N ) t .
Then we define the Hilbert space H c by

V × 2N j=1 L 2 (0, l j ) = E 0 ⊕ H c , H c = (I -P 0,c )(V × 2N j=1 L 2 (0, l j )) = V c × 2N j=1 L 2 (0, l j )
with P 0,c : V × 2N j=1 L 2 (0, l j ) → E 0 the projection onto E 0 defined by with

P 0,c = 1 2iπ γ (λI -A c ) -1 dλ
(with γ is a simple closed curve enclosing the eigenvalue 0), and

D(A c ) := H c ∩ Y c .
Following Section 2, it is clear that system (P c ) is well-posed in the natural energy space. If we suppose that (u 0 , u 1 ) ∈ H c = V c × 2N j=1 L 2 (0, l j ), then problem (P c ) admits a unique solution

Φ ∈ C([0, T ], V c ) ∩ C 1 ([0, T ], 2N j=1 L 2 (0, l j )).
This system is obviously conservative, i.e. its energy is constant.

The characteristic equation

Let φ be a non-trivial solution of the eigenvalue problem (EP ) associated to the conservative problem (P c ) and λ 2 be the corresponding eigenvalue. That is to say, φ ∈ V c satisfies the transmission and boundary conditions (3.21)-(3.25) hereafter as well as

(EP )        ∂ 2 x φ 2j-1 = λ 2 φ 2j-1 on (0, l 2j-1 ), ∀ j ∈ {1, ..., N}, -∂ 4 x φ 2j = λ 2 φ 2j on (0, l 2j ), ∀ j ∈ {1, ..., N}, φ 2j-1 ∈ H 2 (0, l 2j-1 ), ∀j ∈ {1, ..., N }, φ 2j ∈ H 4 (0, l 2j ), ∀j ∈ {1, ..., N }, φ 1 (0) = 0, φ 2N (l 2N ) = 0, (3.21) ∂ 2 x φ 2j (0) = ∂ 2 x φ 2j (l 2j ) = 0, j = 1, ..., N (3.22) 
φ j (l j ) = φ j+1 (0), j = 1, ..., 2N -1 (3.23)

∂ 3 x φ 2j (0) + ∂ x φ 2j-1 (l 2j-1 ) = 0, j = 1, ..., N (3.24) 
∂ 3 x φ 2j (l 2j ) + ∂ x φ 2j+1 (0) = 0, j = 1, ..., N -1. (3.25)
Note that this also means that (φ, λφ) ∈ D(A c ) is an eigenvector of A c associated to the eigenvalue λ. By the definition of A c and of its domain, 0 is not an eigenvalue of A c . Moreover 0 is not an eigenvalue of A 1 and A 2 .

Define z by λ = iz 2 where z lies in R + * with i 2 = -1.

Following Paulsen ([23]) and Mercier ([18]

), we will rewrite this eigenvalue problem on a chain of 2N beams and strings using only square matrices of order 2 in the following way: we define, for each j ∈ {1, ..., N }, the vector functions V 2j-1 and V 2j by

V 2j-1 (x) = φ 2j-1 (x), 1 z 2 ∂ x φ 2j-1 (x) t , ∀x ∈ [0, l 2j-1 ], V 2j (x) = φ 2j (x), 1 z 3 ∂ 3 x φ 2j (x) t , ∀x ∈ [0, l 2j ].
Define the matrices A j by

A 2j-1 (z, l 2j-1 ) :=   c 2j-1 s 2j-1 -s 2j-1 c 2j-1   , A 2j (z, l 2j ) := 1 e 2l 2j z -2e l 2j z s 2j -1 •   e 2l 2j z (c 2j -s 2j ) -c 2j -s 2j 2s 2j 1 -e 2l 2j z e 2l 2j z c 2j -2e l 2j z + c 2j e 2l 2j z (c 2j -s 2j ) -c 2j -s 2j   , with j ∈ {1, • • • , N } and with the notation    c 2j-1 = cos(l 2j-1 • z 2 ), s 2j-1 = sin(l 2j-1 • z 2 ) c 2j = cos(l 2j • z), s 2j = sin(l 2j • z).
(3.26)

The matrix T is defined by:

T (z) :=   1 0 0 - 1 z   .
To finish with, the matrix M (z) is the square matrix of order 2 given by With the notation introduced above, we have:

M (z) = A 2N T A 2N -1 ...T -1 A 2 T A 1 . ( 3 
V j (l j ) = A j V j (0), ∀j ∈ {1, ..., 2N }, V 2j (0) = T V 2j-1 (l 2j-1 ), ∀j ∈ {1, ..., N }, V 2j+1 (0) = T -1 V 2j (l 2j ), ∀j ∈ {1, ..., N -1}, V 2N (l 2N ) = M (z)V 1 (0).
Proof. First, for j odd and j ∈ {1, . . . , 2N }, since u j satisfies the first equation of the eigenvalue problem (EP ), u j is a linear combination of the vectors of the fundamental basis cos(z 2 .), sin(z 2 .) .

The first equation of the lemma follows from that property after some calculations. Now, for j even and j ∈ {1, . . . , 2N }, since u j satisfies the second equation of the eigenvalue problem (EP ), u j is a linear combination of the vectors of the fundamental basis cos(z.), sin(z .), e z . , e -z . .

In this basis, if we consider the two following functions d 1 , d 2 with coordinates d 1 := (-e l j z sin(l j z), e l j z cos(l j z) -1, 0, -e l j z sin(l j z)) d 2 := (e l j z -e -l j z , 0, cos(l j z) -e -l j z , e l j z -cos(l j z),

we can see that they are independent and satisfy (3.21). Consequently u j can be expressed as a linear combination of these two functions. Now, to find A j , we proceed as follows: let (α, β) t the coordinates of u j in the basis (d 1 , d 2 ). There exist two matrices

M 0 , M 1 such that V j (0) = M 0 (α, β) t and V j (l j ) = M 1 (α, β) t , then A j is the matrix M 1 M -1 0 .
Moreover the transmission conditions (3.23), (3.24) and (3.25) imply the second and third equations.

The fourth one is the logical consequence of the first three applied successively for j = 1, j = 2, etc... where m 12 (z) is the term on the first line and second column of the matrix M (z).

Proof. Let φ be a non-trivial solution of the eigenvalue problem (EP ) and λ 2 be the corresponding eigenvalue, where λ = iz 2 (z ∈ R + * ).

Using the boundary conditions as well as

V 2N (l 2N ) = M (z)V 1 (0), it follows:   0 1 z 3 ∂ 3 x φ 2N (l 2N )   = M (z)   0 1 z 2 ∂ x φ 1 (0)   .
It is clear that the vector of the second part of the previous equality is non-trivial since φ is a non-trivial solution of problem (EP ). Hence the result.

Proposition 3.3. (Asymptotic behavior of the characteristic equation)

Assume that the characteristic equation is given by Theorem 3.2. Then

f (z) = z (f ∞ (z) + g(z))
where

f ∞ (z) = s 1 (z) • c 2 (z) • s 3 (z) • • • s 2N -1 (z) • (c 2N (z) -s 2N (z)) (3.29)
(with c j , s j defined by (3.26)) and g satisfies lim z→+∞ g(z) = 0. Thus, the asymptotic behavior of the spectrum σ(A c ) corresponds to the roots of the asymptotic characteristic equation

f ∞ (z) = 0. (3.30)
Proof. In the following, the notation o(h(λ)) is used for a square matrix of order 2 such that all its terms are dominated by the function λ → h(λ) asymptotically. For any j ∈ {1, . . . , N },

A 2j (z, l 2j ) = 1 e 2l 2j z -2e l 2j z s 2j -1   e 2l 2j z   c 2j -s 2j 2s 2j c 2j c 2j -s 2j   + o(2l 2j z)   . Thus A 2j (z, l 2j ) =   c 2j -s 2j 2s 2j c 2j c 2j -s 2j   + o(1),
which leads, after some calculations, to:

T -1 A 2j T A 2j-1 =   (c 2j -s 2j )c 2j-1 (c 2j -s 2j )s 2j-1 -zc 2j c 2j-1 -zc 2j s 2j-1   + o(1). Likewise T -1 A 2j+2 T A 2j+1 =   (c 2j+2 -s 2j+2 )c 2j+1 (c 2j+2 -s 2j+2 )s 2j+1 -zc 2j+2 c 2j+1 -zc 2j+2 s 2j+1   + o(1).
Thus

T -1 A 2j+2 T A 2j+1 T -1 A 2j T A 2j-1 =   -z(c 2j+2 -s 2j+2 )s 2j+1 c 2j c 2j-1 -z(c 2j+2 -s 2j+2 )s 2j+1 c 2j s 2j-1 z 2 c 2j+2 s 2j+1 c 2j c 2j-1 z 2 c 2j+2 s 2j+1 c 2j s 2j-1   + o(1).
The result follows by induction.

Remark 3.4. We can note that the eigenvalues λ = iz 2 of (EP ) have 2N families of asymptotic behavior: 3.2 Strong stability of (P 1 ) and (P 2 )

i kπ l 2j-1 k∈N * , j = 1, • • • , N, i π + 2kπ 2l 2j 2 k∈N * , j = 1, • • • , N -1,
V 1 (0) = φ 1 (0), 1 z 2 ∂ x φ 1 (0)
We first prove the following lemma:

Lemma 3.6. If there exist i, j ∈ {1, • • • , N } such that l 2i-1 l 2j-1 / ∈ Q or l 2i l 2j / ∈ Q, (3.31) or if there exist i, j ∈ {1, • • • , N } such that (l 2i ) 2 l 2j-1 = p 2 q π, where p, q ∈ Z, (3.32) then 2N -1 j=1 |φ j (l j )| 2 = 0, (3.33) 
for all eigenvectors φ ∈ V c of (EP ).

Proof. Let φ ∈ V c be an eigenvector of (EP ) associated to the eigenvalue λ 2 , where

λ = iz 2 (z ∈ R + * ). Assume that (3.33) is false, i.e. that we have 2N j=2 |φ j (0)| 2 = 0. (3.34)
We use in the following the basis introduced in the proof of Lemma 3.1.

First, since φ 2j-1 (0) = 0 for j = 1, • • • , N , it is easy to see that there exists a 2j-1 such that

φ 2j-1 = a 2j-1 sin(z 2 •), ∀j = 1, • • • , N.
Then, by the continuity at the interior nodes (3.23), we get

a 2j-1 sin(z 2 l 2j-1 ) = 0, ∀j = 1, • • • , N.
Second, there exist a 2j , b 2j , ã2j and b2j such that 

φ 2j = a 2j sin(z•) + b 2j cos(z•) + ã2j sinh(z•) + b2j cosh(z•).
a 2j+1 = za 2j c 2j .
By induction, we obtain, for all j ≥ 2,

a j = z j a 1 c j-1 c j-2 • • • c 1 , (3.36) 
with 2j = -1 and 2j-1 = 0. Therefore a 1 = 0 (otherwise a j = 0 for all j, and then φ = 0, which is impossible). Now, by ( As a consequence of the previous lemma, we can prove the following proposition.

Proposition 3.7. We have

lim t → +∞ E(t) = 0 (3.37)
for all solution u of (P 1 ) with (u 0 , u 1 ) in H 1 if and only if (3.33) holds for all eigenvectors φ ∈ V c of (EP ). Consequently, if there exist i, j ∈ {1, • • • , N } such that (3.31) or (3.32) hold, then (3.37) holds.

Proof. ⇐ Let us show that (3.33) implies (3.37). For that purpose we closely follow [START_REF] Tucsnak | How to get a conservative well-posed linear system out of thin air. II. Controllability and stability[END_REF].

First, we show that A 1 has no eigenvalue on the imaginary axis. If it is not the case, let iω be an eigenvalue of A 1 where ω ∈ R * . Let Z ∈ D(A 1 ) be an eigenvector associated with iω. Then Z is of the form

Z =   φ iωφ   , with ∂ 2 x φ 2j-1 = -ω 2 φ 2j-1 , j = 1, • • • , N, ∂ 4 x φ 2j = ω 2 φ 2j , j = 1, • • • , N. (3.38) 
It is an immediate consequence of the identity (iωI -A 1 )Z = 0.

We now take the inner product ., . H 1 between A 1 Z and Z. By (2.13), we have

A 1 Z, Z H 1 = -ω 2 2N -1 j=1 |φ j (l j )| 2 .
Since Z is an eigenvector of A 1 associated with iω and ω = 0, we obtain

2N -1 j=1 |φ j (l j )| 2 = 0.
Note that Z satisfies the eigenvalue problem (EP ) and Z belongs to D(A c ), since

P 0,c Z = 1 2iπ γ (λI -A c ) -1 Zdλ = 1 2iπ γ 1 λ -iω Zdλ = 0,
(where we use (λI -A c )( 1 λ-iω Z) = Z and where γ is a simple closed curve enclosing 0), and thus

Z = Z -P 0,c Z ∈ (I -P 0,c )(V × 2N j=1 L 2 (0, l j )) = H c .
Then this contradicts (3.33). Therefore A 1 has no eigenvalue on the imaginary axis. Now, we can apply the main theorem of Arendt and Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]: Since σ(A 1 ) ∩ iR is empty, we obtain (3.37).

⇒ Let us show that (3.37) implies (3.33). For that purpose we use a contradiction argument. Suppose that there exists an eigenvector φ ∈ V c of (EP ) of associated eigenvalue λ 2 (where

λ = iz 2 , z ∈ R + * ) such that 2N -1 j=1 |φ j (l j )| 2 = 0. Let us set u(., t) = φ cos(z 2 t).
Then u is solution of (P 1 ) and satisfies

E(t) = E(0), because φ j (l j ) = 0, ∀j = 1, • • • , 2N.
This contradicts (3.37).

It suffices to use Lemma 3.6 to finish the proof.

Moreover, with the same method as previously, we are able to prove the decay to zero of the energy of solutions without restriction about the irrational properties of the lengths. Proposition 3.8. We have lim t → +∞ E(t) = 0 for any solution of (P 2 ) with (u 0 , u 1 ) in

H 2 .
Proof. As in the proof of Proposition 3.7, we can show that the energy of solutions of (P 2 ) tends to zero if and only if

2N -1 j=1 |φ j (l j )| 2 + N -1 j=1 |∂ x φ 2j (l 2j )| 2 + |∂ x φ 2j (0)| 2 = 0, (3.39) 
for all eigenvectors φ of (EP ). Let φ be an eigenvector of (EP ) such that (3.39) is false.

By the same proof as Lemma 3.6, this implies that φ = 0, which is impossible. Then (3.39) holds and therefore the energy decays to 0.

Remark 3.9. If we take the initial data in V × 2N j=1 L 2 (0, l j ), the energy of the solutions of (P 1 ) and (P 2 ) do not decay to 0, since u = φ, where (φ, 0) t is an eigenvector of A i (i = 1, 2) associated to the eigenvalue 0, is solution of (P 1 ) and (P 2 ) with constant energy.

Stabilization result for (P 2 )

We prove a decay result of the energy of system (P 2 ), independently of the length of the strings and beams, for all regular initial data. In [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF], the authors prove that the system described by (P 2 ) is not exponentially stable in H 2 with N = 1 (i.e. with one string and one beam). Therefore, in the general case (for N ∈ N * ), we can not except to obtain an exponential decay for the energy of the solutions of (P 2 ), but only a weaker decay rate, and in this general case, we prove a polynomial decay rate. To obtain this, our technique is based on a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

The following theorem is a direct generalisation of the result in [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF], which we note, due to a mistake in the choice of θ, the decay rate in the following ln 4 (t) t 2 has been written

ln 6 (t) t 4
(corresponding to a choice of θ = 1 and not to θ = 1/2).

Theorem 4.1. There exists a constant C > 0 such that, for all (u 0 , u 1 ) ∈ D(A 2 ), the solution of system (P 2 ) satisfies the following estimate

E(t) ≤ C ln 4 (t) t 2 (u 0 , u 1 ) 2 D(A 2 ) , ∀ t > 0. (4.40)
Proof. We will employ the following frequency domain theorem for polynomial stability (see Liu-Rao [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) of a C 0 semigroup of contractions on a Hilbert space:

Lemma 4.2. A C 0 semigroup e tL of contractions on a Hilbert space satisfies

||e tL U 0 || ≤ C ln 1+ 1 θ (t) t 1 θ ||U 0 || D(L)
for some constant C > 0 and for θ > 0 if 

ρ(L) ⊃ iβ β ∈ R ≡ iR,
1 β θ (iβ -L) -1 < ∞, (4.42) 
where ρ(L) denotes the resolvent set of the operator L.

Then the proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3. The spectrum of A 2 contains no point on the imaginary axis.

Proof. Since A 2 has compact resolvent, its spectrum σ(A 2 ) only consists of eigenvalues of A 2 . We will show that the equation

A 2 Z = iβZ (4.43)
with Z = (y, v) t ∈ D(A 2 ) and β = 0 has only the trivial solution.

By taking the inner product of (4.43) with Z and using

(< A 2 Z, Z > H 2 ) = - N j=1 |v 2j (0)| 2 + dv 2j dx (0) 2 - N -1 j=1 |v 2j (l 2j )| 2 + dv 2j dx (l 2j ) 2 , (4.44) 
we obtain that v 2j (0) = 0, dv 2j dx (0) = 0, j = 1, ..., N and v 2j (l 2j ) = 0, dv 2j dx (l 2j ) = 0, j = 1, ..., N -1.

Next, we eliminate v in (4.43) to get an ordinary differential equation:

                                     (β 2 y 2j-1 + ∂ 2 x y 2j-1 )(x) = 0, x ∈ (0, l 2j-1 ), j = 1, ..., N, (β 2 y 2j -∂ 4 x y 2j )(x) = 0, x ∈ (0, l 2j ), j = 1, ..., N, y 1 (0) = 0, y 2N (l 2N ) = 0, ∂ 2 x y 2N (l 2N ) = 0, ∂ 2 x y 2j (0) = 0, j = 1, ..., N, ∂ 2 x y 2j (l 2j ) = 0, j = 1, ..., N -1, y j (l j ) = y j+1 (0), j = 1, ..., 2N -1, ∂ 3 x y 2j (0) + ∂ x y 2j-1 (l 2j-1 ) = 0, j = 1, ..., N, ∂ 3 x y 2j (l 2j ) + ∂ x y 2j+1 (0) = 0, j = 1, ..., N -1. 
(4.45)

Then, we can easily see that the only solution of the above system is the trivial one.

The second lemma shows that (4.42) holds with L = A 2 and θ = 1.

Lemma 4.4. The resolvent operator of A 2 satisfies condition (4.42) for θ = 1.

Proof. Suppose that condition (4.42) is false with θ = 1. By the Banach-Steinhaus Theorem (see [START_REF] Brezis | Analyse Fonctionnelle, Théorie et Applications[END_REF]), there exists a sequence of real numbers β n → +∞ and a sequence of vectors

Z n = (y n , v n ) t ∈ D(A 2 ) with Z n H 2 = 1 such that ||β n (iβ n I -A 2 )Z n || H 2 → 0 as n → ∞, (4.46) 
i.e.,

β 1/2 n (iβ n y n -v n ) ≡ f n → 0 in V, (4.47) 
β 1/2 n iβ n v n,2j-1 - d 2 y n,2j-1 dx 2 ≡ g n,2j-1 → 0 in L 2 (0, l 2j-1 ), (4.48) 
β 1/2 n iβ n v n,2j + d 4 y n,2j dx 4 ≡ k n,2j → 0 in L 2 (0, l 2j ), (4.49) since β 1/2 n ≤ β n .
Our goal is to derive from (4.46) that ||Z n || H 2 converges to zero, thus there is a contradiction. The proof is divided into four steps:

First step. We first notice that we have This further leads, by (4.47) and the trace theorem, to

||β n (iβ n I -A 2 )Z n || H 2 ≥ | ( β n (iβ n I -A 2 )Z n , Z n H 2 ) |. ( 4 
|β n | 3 2 |y n,2j (0)| → 0, |β n | 3/2 dy n,2j dx (0) → 0, j = 1, ..., N, (4.53) 
and 

|β n | 3 2 |y n,2j (l 2j )| → 0, |β n | 3/2 dy n,2j dx (l 2j ) → 0, j = 1, ..., N -1. ( 4 
|β n | 1 2 d 2 y n,2j dx 2 (0) → 0, j = 1, ..., N, |β n | 1 2 d 2 y n,2j dx 2 (l 2j ) → 0, j = 1, ..., N -1. (4.55)
Then, note that, by continuity at the interior nodes and by (4.53) and (4.54), we have Next, we take the inner product of (4.57) with q 2j-1 (•) dy n,2j-1 dx in L 2 (0, l 2j-1 ) where

|β n | 3 2 |y n,2j-1 (0)| → 0, j = 2, ..., N, |β n | 3 2 |y n,2j-1 (l 2j-1 )| → 0, j = 1, ...,
q 2j-1 ∈ C 1 ([0, l 2j-1 ]
) and q 2j-1 (0) = 0. We obtain that

l 2j-1 0 β 1/2 n -β 2 n y n,2j-1 - d 2 y n,2j-1 dx 2 q 2j-1 (x) dȳ n,2j-1 dx dx = l 2j-1 0 g n,2j-1 + iβ n f n,2j-1 q 2j-1 (x) dȳ n,2j-1 dx dx = l 2j-1 0 g n,2j-1 q 2j-1 (x) dȳ n,2j-1 dx dx -i l 2j-1 0 q 2j-1 df n,2j-1 dx β n ȳn,2j-1 dx -i l 2j-1 0 f n,2j-1 dq 2j-1 dx β n ȳn,2j-1 dx + if n,2j
-1 (l 2j-1 )q 2j-1 (l 2j-1 )β n ȳn,2j-1 (l 2j-1 ). We then take the real part of (4.59), and (4.56) leads to Similarly, we take the inner product of (4.58) with q 2j (•) dy n,2j dx in L 2 (0, l 2j ) with q 2j ∈ C 3 ([0, l 2j ]) and q 2j (l 2j ) = 0. We then repeat the above procedure. Since 
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  It follows that the generalized gap condition (1.3) holds. Proposition 3.5. (Geometric multiplicity of the eigenvalues) If λ = 0 is an eigenvalue of the operator A c and E λ is the associated eigenspace, then the dimension of E λ is one. Proof. The eigenvectors φ ∈ V c associated to the eigenvalue λ 2 (cf. problem (EP )) are entirely determined by their values at the nodes of the network (i.e. where the beams and strings are connected to one another). Due to Lemma 3.1, they are also determined by

t.

  Now φ 1 (0) = 0 (cf. condition (3.21)) and ∂ x φ 1 (0) may take any value in R * . Hence the result.
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 3 22) and (3.34), we obtain b 2j = b2j = ã2j = 0 and a 2j sin(zl 2j ) = 0, ∀j = 1, • • • , N, since z = 0. Then, we have, with the notation introduced in (3.26), a j s j = 0, j = 1, • • • ,

, we have s 1 = 0 and c 1 =

 11 ±1. Then, since (3.36) holds, a 2 = 0 and s 2 = 0, again with (3.35). Then c 2 = ±1... We see, by induction, that s j = 0 for all j ∈ {1, • • • , 2N }. Therefore, it suffices to have one s j = 0 for some j ∈ {1, • • • , 2N } to obtain (3.33). It is the case if there exist i, j ∈ {1, • • • , N } such that (3.31) or (3.32) hold.
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 22122 .50) Then, by (4.44) and (4.46),β 1 v n,2j (0) → 0, β 1 dv n,2j dx (0) → 0, j = 1, ..., N(4.51) and β v n,2j (l 2j ) → 0, β 1 dv n,2j dx (l 2j ) → 0, j = 1, ..., N -1. (4.52)

(4. 59 ) 1 β 1 / 2 n

 59112 It is clear that the right-hand side of (4.59) converges to zero. Indeed, f n,2j-1 and g n,2j-1 converge to zero in H 1 and L 2 respectively, Z n H 2 = 1 and (4.56) holds, and, finally,|β n y n,2j-1 | = f n,2j-+ v n,2j-1 is bounded in L 2 (0, l 2j-1 ).By a straight-forward calculation, 1 (l 2j-1 )|β n y n,2j-1 (l 2j-1 )| 2

l 2j- 1 0

 1 dq 2j-1 dx |β n y n,2j-1 | 2 dx +

  .54) Moreover, since Z n ∈ D(A 2 ) and thus satisfies (2.18), we have, by (4.51) and (4.52),

  2j ) y n,2j (l 2j ), then, from the boundedness of v n,2j , iβ n y n,2j -v n,2j , converges to zero in L 2 (0, l 2j ). This will give, after some calculations, -β 1/2 n x in L 2 (0, l 2j ). We have, with (4.58),It is clear that the first term of the right hand side of (4.62) tends to zero by (4.49). dx -f n,2j (l 2j )e -β 1/2 n l 2j + f n,2j (0), which tends to zero since f n,2j tends to zero in H 2 and by the trace theorem.Performing four integrations by parts in the second term on the left-hand side of (4.63), -β 1/2 n x y n,2j -e -β 1/2 n x d 4 y n,2j dx 4 dx = d 3 y n,2j dx 3 (0) + β 1/2

	Moreover, by integration by parts,
	l 2j n x This leads to 0 β 1/2 n f n,2j e -β 1/2 n x dx = l 2j 0 df n,2j dx e -β 1/2 l 2j 0 β 2 n e -β 1/2 n x y n,2j -e -β 1/2 n x d 4 y n,2j dx 4	dx → 0.	(4.63)
	we obtain	
	0	l 2j	β 2 n e n	d 2 y n,2j dx 2 (0)
					+ β n	dy n,2j dx	(0) + β 3/2 n y n,2j (0) + o(1), (4.64)
	with (4.54)-(4.55) and since	
	0	l 2j	dy n,2j dx d 3 y n,2j 2 dx = -dx 3 (l 2j )e -β 1/2 1 iβ n 0 n l 2j l 2j	v n,2j 2 ≤ e -2β 1/2 d 2 ȳn,2j dx 2 -n l 2j iβ n 1 0 ≤ e -2β 1/2 n l 2j 0 -dȳ n,2j dx (0) y n,2j (0) + l 2j 0 (iβ n y n,2j -v n,2j ) l 2j 2 d 4 y n,2j dx dx 4 (x) l 2j 2 k n,2j β -iβ n v n,2j dx d 2 ȳn,2j 1/2 n dx 2 dx dȳ n,2j dx (l d 2 y n,2j dx 2 0 in L 2 (0, l 2j ) and (4.53)-≤ 2 e -2β 1/2 n l 2j l 2j |k n,2j | 2 dx β n 0 +2β 2 n e -2β 1/2 n l 2j l 2j |v n,2j | 2 dx → 0,
	(4.54), because Z n H 2 = 1. dy n,2j	
	l 2j Thus, according to (4.53) and (4.55), we simplify (4.64) to 0 dq 2j dx |β n y n,2j | 2 dx + l 2j 0 3 dq 2j dx 2 d 2 y n,2j dx dx 2 -2 d 3 y n,2j dx 3 (0)q 2j (0) d 3 y n,2j dx 3 (0) → 0.	dȳ n,2j dx	(0) → 0. (4.61) (4.65)
	Consequently, since Z n ∈ D(A 2 ) and thus satisfies (2.9), we obtain
	Third step. Next, we show that take the inner product of (4.58) with 1 dy n,2j-1 dx n β 1/2 dy n,2j-1 dx	(l 2j-1 ) and (l 2j-1 ) → 0.	d 3 y n,2j dx 3 (0) converge to zero. We (4.66)
	l 2j Then, (4.53) and (4.65) lead to 0 -β 2 n y n,2j + d 4 u n,2j dx 4	e -β 1/2 n x dx = dȳ n,2j dx (0) d 3 y n,2j dx 3 (0) → 0. l 2j 0 1 β 1/2 n +i l 2j β 1/2 k n,2j e -β 1/2 n x dx n f n,2j e -β 1/2 n x dx.	(4.62) (4.67)
					0

dx e

In view of (4.66)-(4.67), we simplify (4.60) and (4.61) to

respectively.

Fourth step. Finally, we choose q 2j-1 and q 2j such that dq 2j-1 dx is strictly positive and dq 2j dx is strictly negative. This can be done by taking

Therefore, (4.68) and (4.69) imply

In view of (4.47), we also get