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Experimental and analytical study of the shear instability of a gas-liquid
mixing layer
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38041 Grenoble Cedex 9, France

(Received 23 September 2010; accepted 16 August 2011; published online 29 September 2011)

We carry out an inviscid spatial linear stability analysis of a planar mixing layer, where a fast gas

stream destabilizes a slower parallel liquid stream, and compare the predictions of this analysis

with experimental results. We study how the value of the liquid velocity at the interface and the

finite thickness of the gas jet affect the most unstable mode predicted by the inviscid analysis: in

particular a zero interface velocity is considered to account for the presence in most experimental

situations of a splitter splate separating the gas and the liquid. Results derived from this theory are

compared with experimentally measured frequencies and growth rates: a good agreement is found

between the experimental and predicted frequencies, while the experimental growth rates turn out

to be much larger than expected.VC 2011 American Institute of Physics. [doi:10.1063/1.3642640]

I. INTRODUCTION

Airblast atomization is used to turn a liquid jet into a

spray with a fast cocurrent air stream. This process is

exploited in particular in aeronautics and space applications

for the injectors of several propulsion systems.1 The mecha-

nisms responsible for the break-up of the liquid jet are only

partially understood, see reviews by Lasheras and Hopfin-

ger,2 and Eggers and Villermaux.3 However, an improve-

ment of injection techniques is needed to notably limit the

emission of pollutants and to increase the reliability of these

engines.

It has been shown that the initial destabilization of the

interface in airblast atomization is caused by a shear instabil-

ity akin to a Kelvin-Helmholtz instability, but whose most

unstable mode is controlled by the thickness dg of the gas

vorticity layer. See for example the original work by Ray-

leigh4 with the inclusion of a velocity profile in the shear

instability, or the work of Lawrence et al.5 where both a ve-

locity and density profile are taken into account. Several

recent studies6–9 have focused on the case of gas-liquid shear

layers, relevant to atomization applications. When a stability

analysis is carried out with both a gas and a liquid boundary

layer (see velocity profile of Fig. 1(a)), the most unstable

mode turns out to be directly controlled by the liquid vortic-

ity layer dl, and not the gas one.10,11 This is not what is

observed in the experiments of Raynal,7,12 Marmottant and

Villermaux,8 and Ben Rayana.9,13 This inconsistency has

been resolved by pointing out that the time needed for the

liquid shear layer to grow by viscous diffusion is large com-

pared with the time needed for the gas mode to grow.3,8,12

Under the assumption that there is a vorticity layer only

on the gas side (see Fig. 1(b)), an explicit expression for the

dispersion relation is then found; in the limit of large Weber

and small Richardson numbers the wavenumber of its most

unstable temporal solution is found numerically to scale as3:

k � 1:5
ql
qg

 !1=2
1

dg
(1)

The velocity of the waves can be well approximated by the

following convection velocity, estimated from a pressure

balance between the liquid and gas in a frame moving with

the waves7,12,14:

Uc ¼
ffiffiffiffi

ql
p

Ul þ ffiffiffiffiffi

qg
p

Ug
ffiffiffiffiffi

qg
p þ ffiffiffiffi

ql
p (2)

The frequency of the waves can then be approximated by

f¼Uc=k, with k is the wavelength. Experimental results show

wavelengths scaling with dg and frequencies scaling as Uc=dg
as predicted above,6–8,12,13 but measured frequency values are

consistently larger than predicted. There is also a disagreement

between existing experimental data: Raynal et al.7,12 find ex-

perimental frequencies about 50% larger than predicted ones,

whereas Ben Rayana et al.9,13 on the same planar geometry

and Marmottant and Villermaux8 on a coaxial geometry meas-

ured a factor two or three between the theory and experiments.

If viscosity is taken into account in the temporal analy-

sis, an additional unstable mode is found,15,16 with a much

shorter wavelength than both the inviscid and the experimen-

tal modes. For density ratios corresponding to air=water
experiments Boeck and Zaleski15 find that this viscous mode

is the most unstable one. However, contrary to the inviscid

and the experimental modes, this mode does not scale with

the gas vorticity thickness dg: we therefore choose not to

include viscosity in our stability analysis, and will focus

instead on the improvement of the inviscid analysis. We will

discuss later on what our results suggest as to how viscosity

may be included in the analysis.

In order to clarify the discrepancies between the inviscid

stability analysis and experimental results, we have extended

the analysis to integrate key aspects of the injection: a more

realistic initial velocity profile accounting for the necessary

presence of a splitter plate in the experiments, and the finitea)Electronic mail: matas@hmg.inpg.fr.
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thickness of the gas stream. We will show in Sec. II that

these changes significantly modify the predictions of the

inviscid stability analysis. We will then compare in Sec. III

these predictions with both existing and new experimental

results.

II. INVISCID ANALYSIS

The stability analysis is carried along the lines of the

inviscid analysis carried out by Raynal et al.7 and Raynal.12

We note U the base flow, and u¼ (u, v, w) the velocity per-

turbation. The position of the interface is given by g. The

pressure perturbation is p. We note Ui the base flow velocity

at the interface. The influence of the surface tension r and of

gravity will be neglected in this section.

We linearize the classical equations of momentum and

mass conservation, and look for normal mode solutions

~uðkx; ky; z;xÞeiðkxxþkyy�xtÞ of the resulting system. Solving for

the vertical component of the perturbation velocity ~w, we

obtain the following equation17:

d

dz
qð�xþ kxUÞ

d ~w

dz
� qkx

dU

dz
~w

� �

� qk2ð�xþ kxUÞ~w ¼ 0

(3)

where k2 ¼ k2x þ k2y . Away from the interface, q is constant

and this equation reduces to:

qð�xþ kxUÞ
d2 ~w

dz2
� k2 ~w

� �

¼ qkx
d2U

dz2
~w (4)

As discussed in the introduction, the nature of the solution

for ~w depends on the velocity profile chosen for U(z). If a lin-

ear profile is adopted, then the term on the right hand side of

Eq. (4) is zero: an analytical solution can easily be provided

for ~w, and with proper jump conditions at the interface yield

an expression for the dispersion relation.

A. Effect of a velocity deficit

We have studied the stability of the base flow showed

on Fig. 1(c). This base flow typically exists just at the exit of

the injector in the experimental set-up, due to the solid plate

separating the liquid and gas flows. Viscosity will lead to a

diffusion of momentum towards the interface, and the profile

of Fig. 1(c) is expected to hold only over a short distance,

and evolve eventually towards the profile of Fig. 1(a). How-

ever, a velocity deficit, meaning a velocity close to the inter-

face lower than the bulk liquid velocity, has been observed in

our experimental set-up with particle image velocimetry (PIV)

measurements (seeding with rhodamine and Nd-YAG laser

slice). Only a couple of velocity vectors could be obtained

within the liquid boundary layer, so its full velocity profile

could not be measured, but we could check that even in the

presence of the fast gas flow the liquid velocity remained

smaller in the liquid boundary layer than in the bulk of the

liquid, up to several centimeters downstream the injection.

An error function velocity profile can be used in the

analysis instead of the linear velocity profiles of Fig. 1: how-

ever, this more realistic profile yields exactly the same pre-

dicted unstable modes for our inviscid case, provided the gas

vorticity thickness dg ¼ DU=dU
dz

�

�

max
is the same in both cases.

We therefore choose to present here results obtained with the

more straightforward linear velocity profile. Note that though

viscosity is not included in the derivation of the stability of

the velocity perturbation, it is of course implicitly needed

upstream to generate the base flow profiles of Fig. 1.

For all three base flows of Fig. 1, Eq. (4) then reduces to

d2 ~w

dz2
� k2 ~w ¼ 0

Two solutions are built in the gas phase: w1¼Ae�kz in the

unbounded constant velocity region and w2¼Be�kzþCekz in

the boundary layer; similarly two solutions are built in the

liquid phase: w3¼De�kzþEekz and w4¼Fekz. These solu-

tions are built under the assumption < kð Þ > 0 (waves propa-

gating downstream). Continuity of w at the limit between

constant flow and linear flow zones in each phase, and across

the interface, i.e., at z¼�dg, 0 and dg, gives three relations

between the six integration constants. Three additional jump

conditions are obtained by integrating Eq. (3) across the

same three locations (i.e. across corner points of the velocity

profile)17:

ð�xþ kxUgÞk Ae�kdg � Be�kdg þ Ckekdg
� 	

� kxcgAe
�kdg ¼ 0

ð�xþ kxUlÞk �De�kdl þ Ekekdl � Fekdl
� 	

� kxclFe
kdl ¼ 0

ð�xþ kxUiÞk qgð�Bþ CÞ � qlð�Dþ EÞ
h i

�qgkxcgðBþ CÞ þ qlkxclðDþ EÞ ¼ 0

where cg¼ (Ug�Ui)=dg and cl¼ (Ui�Ul)=dl. We have

taken ky¼ 0, meaning that we look for modes propagating in

the x direction. The dispersion relation is obtained by writing

that the determinant of this system must be zero:

FIG. 1. (a) Velocity profile with two

vorticity thicknesses; (b) Velocity profile

with a gas vorticity thickness only; and

(c) Profile exhibiting a velocity deficit at

the interface.
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where r¼qg=ql is the density ratio, n is the vorticity thick-

ness ratio n¼ dg=dl, ai¼Ui=Ug, and al¼Ul=Ug are the inter-

face and liquid velocities nondimensionalized by Ug. The

frequency and wavenumber are made nondimensional by set-

ting X¼xdg=Ug and K¼ kdg.

This equation is solved numerically for spatial solutions:

the variable is the real x, and the dispersion relation is

solved for the complex wavenumber k¼ krþ iki. The fre-

quency retained is the one which minimizes the (negative)

spatial growth rate ki. Note that with the form of the pertur-

bation taken above, the perturbation is unstable if ki< 0. Fig-

ure 2 shows typical variations of kr and ki, as a function of

nondimensionalized frequency xdg=Ug. The dotted curves

represent the curves obtained with the velocity profiles of

Fig. 1(b) (corresponding to ai¼ al), while the solid curve is

obtained with a velocity profile exhibiting a velocity deficit

at the interface (ai¼ 0, Fig. 1(c)). It can be seen that for the

conditions of Fig. 2 (r¼ 10�3, al¼ 10�2, and n¼ 1) the

unstable mode obtained with a velocity deficit has a larger

frequency. The absolute value of the (negative) growth rate

is also slightly larger. Note also that when the velocity deficit

is taken into account the unstable mode scaling with dl,

which would be dominant3 if the analysis were carried out

with the profile of Fig. 1(a), is not observed: a large viscous

diffusion time therefore need not be invoked anymore to jus-

tify that the most unstable mode scales with dg.

We plot on Fig. 3 the influence of the velocity ratio al on

the spatial wavenumber and growth rate. The interface veloc-

ity is taken to be zero (ai¼ 0). The dimensionless frequency

of the most unstable mode increases with increasing al. It can

be seen that when al is varied in the range 5.10
�4� 4.10�2 the

growth rate increases, while for larger al an increase in Ul

causes a decrease in the growth rate. Figure 4 compares the

variations of the frequency and growth rate of the most unsta-

ble mode as a function of the velocity ratio al in the case

where there is a velocity deficit (solid curve, ai¼ 0) and when

the interface velocity is equal to Ul (dotted line, ai¼ al). The

difference between the two configurations increases with

increasing al, up to a factor three in the frequency when al
becomes close to 0.1. The variations of the growth rate show

that for low al the velocity deficit enhances the instability,

while for al> 5.10�3 it lowers the magnitude of the growth

rate compared with the configuration without a deficit. When

the velocity deficit is progressively reduced, i.e., 0<Ui<Ul,

the results obtained without any liquid boundary layer (Fig.

1(b)) are continuously recovered. If a gravity field perpendicu-

lar to the interface is included, it will damp large wavelength

modes and therefore increase the most unstable frequency.

For the conditions of Fig. 4, which are typical of the experi-

ments presented in Sec. III, the frequency would typically be

increased by about 10%. If surface tension is included it will

on the contrary decrease slightly the most unstable frequency

(by about 2% for the same typical conditions).

We now plot on Fig. 5 the results of the stability analysis

when the ratio n of the gas to liquid vorticity layer is varied

in the range 0.15–10. It can be seen that when n is larger

than 0.5, the frequency, growth rate and velocity of the most

unstable mode are roughly independent of n. When n is

decreased below 0.5, i.e., when the liquid vorticity layer

becomes more than twice as large as the gas vorticity layer,

the growth rate and wavenumber are significantly increased,

while the group velocity decreases significantly (steeper

slope of the wavenumber curve). A consequence of this

FIG. 2. (a) Dimensionless wavenumber kr and (b) growth rate ki obtained

by stability analysis, as a function of dimensionless frequency xdg=Ug. The

solid curve is obtained with a base flow having a full velocity deficit at the

interface (ai¼ 0), and the dotted curve with an interface velocity equal to

the liquid velocity (ai¼ al). Density ratio r¼ 10�3, velocity ratio al¼ 10�2

and vorticity thickness ratio n¼ 1.

FIG. 3. Dimensionless wavenumber kr and growth rate ki obtained by stabil-

ity analysis, as a function of dimensionless frequency xdg=Ug, for ratios

Ul=Ug¼ 5.10�4, 10�3, 2.10�3, 5.10�3, 10�2, 2.10�2, 4.10�2, 6.10�2, and

9.10�2 (from left to right). ai¼ 0, n¼ 1, and r¼ 10�3.
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result is that since experimental conditions on our set-up cor-

respond to situations where dg> dl, the stability analysis pre-

dicts that for these conditions the thickness dl of the liquid

vorticity layer will not affect the nature of the unstable mode

when there is a velocity deficit.

B. Asymptotic analysis and influence of the liquid on
the gas mode

Motivated by the fact that previous studies found a rela-

tively simple dependence of the most unstable mode wave-

length upon flow parameters in the case without a velocity

deficit (see Eq. (1)), and in order to find how this scaling is

modified when there is a velocity deficit, we now carry out

an asymptotic analysis on the dispersion relation, around the

unstable mode identified in Sec. II A. We first make this

expansion for the case where there is a single vorticity layer

in the gas phase (base velocity profile of Fig. 1(b). We make

several assumptions:

• We assume that r � 1. This is true in the air=water case,
but will also hold in any gas=liquid case at moderate abso-

lute pressures. Only lower order terms in r will therefore

be retained in the expansion.
• We assume Ul � Ug: this is true in configurations where

Kelvin-Helmholtz instability is observed in air=water con-
ditions. In order to include this assumption in the expan-

sion in powers of r, we introduce the dynamic pressure ra-

tio M ¼ qgU
2
g= qlU

2
l


 �

, and assume M to be of order 1 or

larger. We then set Ul ¼ Ug

ffiffiffiffiffiffiffiffiffi

r=M
p

in the dispersion

relation.
• Based on the scaling of Eq. (1) for the wavenumber, we

look for a dimensionless wavenumber K of the form

K ¼ K0 ffiffi

r
p

, where K0 ¼O(1). Given the scaling of the phe-

nomenological convection velocity (equation 2), we there-

fore introduce X¼X
0r with X0 ¼O(1) as well.

Only the lower order terms in r are kept in the dispersion

relation, yielding the simplified dispersion relation:

X
02 � K02 þ 2

K0
ffiffiffiffiffi

M
p

� �

X
0 þ K03

ffiffiffiffiffi

M
p þ K02

M
þ K02 ¼ 0

We solve this equation for temporal solutions and find

X
0 ¼ ðK0=2ÞðK0 þ 2=M6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K02 � 4
p

Þ. An unstable solution

will appear for K0 < 2. The most unstable solution when K0 is
varied is found for K0 ¼

ffiffiffi

2
p

, corresponding to

X
0 ¼ ð1þ

ffiffiffiffiffiffiffiffiffi

2=M
p

þ iÞ. The most unstable mode dimensional

wavenumber, growth rate, frequency, phase velocity vu, and

group velocity vg are therefore characterized by:

• k ¼
ffiffiffi

2
p ffiffi

r
p

dg

• xi ¼ r
Ug

dg
and xr ¼ r

Ug

dg
1þ

ffiffiffi

2
p

M�1=2

 �

• v/ ¼
ffiffi

2
p

2

ffiffi

r
p

Ug þ Ul and vg ¼
ffiffiffi

2
p

ffiffi

r
p

Ug þ Ul

These expressions agree extremely well with the results

found when the complete dispersion relation is solved

numerically. They are also consistent with the coefficients

found numerically in previous studies (Eq. (1)). The phase

velocity is slightly smaller than the convective velocity of

Eq. (2). A new and interesting result is the correction in M to

the frequency of the most unstable mode: it analytically pre-

dicts how the liquid velocity will affect this mode.

We now apply the same method to the case of Fig. 1(c),

when there is a velocity deficit at the interface. The same

assumptions are made on the magnitude of the liquid

FIG. 4. (a) Variations of the dimensionless frequency and (b) growth rate of

the most unstable mode as a function of the liquid to gas velocity ratio al.

Solid curve: velocity deficit at the interface; dotted curve: no velocity deficit.

The vorticity thickness ratio n¼ dg=dl is fixed at n¼ 1, and the density ratio

at r¼ 10�3.

FIG. 5. (a) Dimensionless wavenumber kr and (b) growth rate ki as a func-

tion of dimensionless frequency xdg=Ug, for gas to liquid vorticity thickness

ratio n¼ dg=dl¼ 0.15, 0.2, 0.5, 1, and 10 (from left to right). The liquid to

gas velocity ratio is fixed al¼ 10�2 and the density ratio r¼ 10�3.

FIG. 6. Frequency of the most unstable mode found when the full dispersion

relation is solved numerically for spatial solutions (solid line), and predicted

by the asymptotic expansion xr ¼ r
Ug

dg
1þ 5

2

ffiffiffi

2
p

M�1=2

 �

(dotted line), when

the velocity ratio al is varied. The base velocity profile is taken to have a full

velocity deficit at the interface (ai¼ 0).
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velocity, and on the dimensional frequency and wavenum-

ber. In addition, the liquid vorticity thickness has to be such

that K=n � 1, which is equivalent to kdl � 1: the liquid vor-

ticity thickness has to be small compared with the wave-

length of the instability. These approximations lead to the

following simplified dispersion relation:

X
03 þ 2K0

ffiffiffiffiffi

M
p þ K02
� �

X
02 þ 2K03

ffiffiffiffiffi

M
p þ K02

M
þ K02

� �

X
0 þ K04

M
¼ 0

We solve it for temporal solutions in the limit of large M and

find:

• k ¼ ð
ffiffiffi

2
p

þ 3
2
M�1=2Þ

ffiffi

r
p

dg

• xi ¼ r
Ug

dg
ð1þ

ffiffiffi

2
p

M�1=2Þ and xr ¼ r
Ug

dg
1þ 5

2

ffiffiffi

2
p

M�1=2

 �

• v/ ¼
ffiffi

2
p

2

ffiffi

r
p

Ug þ 7
4
Ul and vg ¼

ffiffiffi

2
p

ffiffi

r
p

Ug þ 5
2
Ul

These expressions agree very well with the numerical

solutions given when the full dispersion relation is solved,

including for spatial solutions. Note that the M�1=2 behav-

iour is equivalent to a linear dependence on al, which is what

was evidenced on Fig. 4. More precisely, Fig. 6 shows how

the analytical expression for the frequency compares to the

solution to the full dispersion relation, when the liquid to gas

velocity ratio al is varied in the range 10�3� 10�1. The solid

line is the same curve shown on Fig. 4, and the dotted line

corresponds to the expression derived above. It can be seen

that the agreement is rather good as long as al< 0.04. This

limit corresponds to M> 1, which is precisely the condition

on the liquid velocity needed to derive the analytical

expression.

The expressions given in this section correspond to a

temporal instability: it would be tempting to deduce from

them a similar asymptotic expression for the spatial growth

rate ki, from the temporal growth rate xi and the group ve-

locity based on the Gaster’s relation18: ki¼xi=vg. However,
the expression found for ki by this method turns out to be

quite different from the expression numerically deduced

from the dispersion relation. This is because Gaster’s crite-

rion for this equivalence, namely xi � xr, is not met here:

it is incompatible with the hypothesis that M is larger than

one.

C. Effect of a finite gas thickness

We now modify the base flow (see Fig. 7) in order to

take into account the finite thickness Hg of the gas stream.

FIG. 7. Velocity profile used for the analysis: the gas jet has a finite thick-

ness Hg.

FIG. 8. Growth rate as a function of frequency, for different thicknesses of

the gas stream Hg: solid line Hg=dg¼ 125; dotted line Hg=dg¼ 25; dashed line

Hg=dg¼ 10; dash-dotted line Hg=dg¼ 2.5; other parameters are r¼ 10�3,

al¼ ai¼ 10�2, and n¼ 1.

FIG. 9. Variation of the (a) real part and (b)

imaginary part of the wavenumber of the most

unstable mode as a function of Hg=dg, for differ-
ent density ratio r; h: r¼ 10�4; �: r¼ 3.10�4;

o: r¼ 10�3; *: r¼ 5.10�3; þ: r¼ 10�2. Other

parameters are al¼ ai¼ 10�2 and n¼ 1.
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We introduce dge, the thickness of the outer vorticity layer.

The linear stability analysis is then carried out similarly as

before: solutions are found in the liquid, inner vorticity layer,

gas stream, outer vorticity layer, and outer region (where

there is no gas flow). These solutions are matched at the

boundaries, and the resulting dispersion relation is solved for

spatial solutions. It can be seen on Fig. 8 that when Hg is

decreased, the growth rate is increased, and the frequency is

increased. The effect of the finite thickness appears below a

threshold value: on the results of Fig. 8, which were obtained

for a density ratio r¼ 10�3 the influence of Hg becomes rele-

vant for Hg=dg< 10. In order to investigate if Hg=dg is the

correct dimensionless parameter controlling this effect, we

have varied the density ratio r in the range 10�4� 10�2: this

allows to vary the wavelength of the instability independent

of the vorticity thickness. Figure 9 shows that for different

ratios r, the threshold ratio Hg=dg below which the instability

is affected is not constant: the threshold ranges from

Hg=dg� 50 for r¼ 10�4, to Hg=dg� 5 for r¼ 10�2. Our hy-

pothesis is that the relevant lengthscale is the wavelength of

the instability k, which also controls the extension of the ve-

locity perturbation in the gas phase (since the velocity pertur-

bation is of the form w� e�kz). We show on Fig. 10 that the

ratios ki=kiðHg!1Þ and kr=krðHg!1Þ, respectively, collapse on

a single curve when plotted as a function of Hg=k. The val-

ues k
i Hg!1ð Þ and k

r Hg!1ð Þ are, respectively the imaginary

and real part of the wavenumber in the limit Hg !1. Figure

10 shows that the thickness of the gas stream Hg starts to

affect the wavelength and growth rate of the most unstable

mode when Hg=k< 0.1: seen the other way round, if the

wavelength is larger than 10 Hg then the wavenumber and

growth rate will be larger than they would be for a gas

stream of infinite thickness. The same behaviour is observed

for the frequency of the most unstable mode: it increases

when Hg is decreased below 0.1 k, though the values for dif-

ferent density ratios are less collapsed than for the wavenum-

ber (see Fig. 11(a). All these results were obtained for the

velocity profile of Fig. 7, i.e., without a velocity deficit. If

the velocity deficit introduced in Sec. II A is taken into

account (ai¼ 0), the same collapse of the data are observed,

and the same curves are obtained for the wavenumber and

frequency. Only the growth rate displays a slightly different

behaviour, with a larger ki=kiðHg!1Þ at small Hg=k (compare

Figs. 10(b) and 11(b)): the influence of the finite thickness

on the growth rate is stronger when a velocity deficit is pres-

ent. All these results were obtained for an external vorticity

thickness dge equal to the inner vorticity thickness dg. If dge
is varied, the same frequencies and growth rates are

obtained: this parameter has no influence on the unstable

modes.

In our experimental case Hg was kept constant equal to

1 cm, which is also the typical order of magnitude of the

FIG. 10. Variation of the (a) real part and (b)

imaginary part of the wavenumber of the most

unstable mode as a function of Hg=k, for differ-
ent density ratio r; h: r¼ 10�4; �: r¼ 3.10�4;

o: r¼ 10�3; *: r¼ 5.10�3; þ: r¼ 10�2. Other

parameters are al¼ ai¼ 10�2 and n¼ 1.

FIG. 11. (a) Variation of the frequency of the

most unstable mode with Hg=k, for different

density ratio r; h: r¼ 10�4; �: r¼ 3.10�4; o:

r¼ 10�3; *: r¼ 5.10�3; þ: r¼ 10�2. Other pa-

rameters are al¼ ai¼ 10�2 and n¼ 1. (b) Varia-

tion of the growth rate with Hg=k, same

parameters except ai¼ 0.
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wavelength: Hg is therefore not expected to modify the fre-

quency. In the coaxial set-up of Marmottant and Viller-

maux,8 where Hg¼ 1.7 mm which is smaller than the typical

k (of the order of a centimeter), it should on the contrary

affect the value predicted by the linear stability analysis.

This effect might explain why their experimental growth

rates were significantly larger than the ones observed on pla-

nar experiments. We will not address this coaxial geometry

here, but will do so in a future study including also the effect

of the cylindrical geometry on the instability.

Ben Rayana9,13 carried out frequency measurements on

the same planar set-up used for this study (this set-up will be

described in Sec. III, see Fig. 13) for different values of Hg,

the corresponding data are shown on Fig. 12. It can be seen

that the data for the three different Hg investigated are col-

lapsed on the same curve when plotted as a function of Uc=dg
(Fig. 12(b). This indicates that Hg does not modify the fre-

quency of the unstable mode, other than via the vorticity

thickness dg. For the data of Fig. 12, k varies in the range

1.2 cm–2.5 cm (Ben Rayana), and three values of Hg were

investigated: Hg¼ 5 mm, Hg¼ 10 mm, and Hg¼ 20 mm.

This makes for a ratio Hg=k in the range 0.2–1.7, i.e.,

above the threshold Hg=k¼ 0.1 identified in the analysis of

Sec. II C.

III. EXPERIMENTAL RESULTS

Our experimental set-up is a mixing layer experiment: a

liquid sheet of water (width 10 cm, thickness Hl¼ 1 cm) is

destabilized by a parallel gas flow of air (width 10 cm, thick-

ness Hg¼ 1 cm). For the conditions considered here, gas ve-

locity is in the range Ug¼ 10–30 m=s and liquid velocity

Ul¼ 0.1–1 m=s. In order to ensure a steady liquid flow, liq-

uid is injected from an overflowing reservoir located above

the experiment, with gravity driven flow. The air flow goes

through a honeycomb, a porous plate and a convergent, and

the liquid flow through two honeycomb plates and a symmet-

ric convergent, all aimed at reducing velocity perturbations

in each flow (see Fig. 13). The gas vorticity thickness

dg ¼ DU=dU
dz

�

�

max
has been measured with a hot-wire ane-

mometer, and was found to vary as dg¼ 6HgRe
�1=2 for the

conditions of our experiment12,13, where Re¼UgHg=� with

� the kinematic gas viscosity. A small amount of fluores-

ceine is added in the liquid phase, we make a longitudinal

laser sheet (Argon laser) of the liquid flow, and a fast camera

(Phantom v12) records the section of the jet. Hence, the loca-

tion of the interface can be obtained by image processing as

a function of the downstream position, and of time. The

height of the interface at a given downstream position is then

Fourier transformed using the Welch’s method with MATLAB.

If the number of images is large enough (typically several

hundred periods), a peak is observed to dominate the noise

in the spectrum. Its maximum is then identified as the fre-

quency of the instability. Figure 14(a) shows two typical

spectra obtained by this method: depending on the gas=liquid
velocities the aspect ratio of the maximum peak can vary.

For given flow conditions, this spectrum can be made at dif-

ferent downstream locations: Fig. 14(b) shows spectra com-

puted every 2dg, up to a downstream position x¼ 65dg (x is

counted from the injector). The amplitude of the maximum

of the spectrum increases with downstream location. This is

due to the increasing amplitude of the waves, as the liquid

interface goes from undergoing a slight oscillation to being

atomized. Note that though the value of the maximum peak

is modified, the corresponding frequency remains

unchanged. Beyond x¼ 65dg the location of the highest am-

plitude spectrum shown of Fig. 14(b), the amplitude

decreases, but again the frequency of the maximum remainsFIG. 13. (Color online) Sketch of the experimental set-up.

FIG. 12. Measurements of Ben

Rayana9: (a) frequency of the Kelvin-

Helmholtz instability as a function of the

gas velocity, for different thicknesses

Hg. (b) Same data plotted as a function

of Ug=dg: the series are collapsed.
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the same. This is different from the behaviour observed by

Fuster et al.19 on their numerical simulation of a similar

liquid-gas configuration, where the frequency decreases with

the downstream distance.

This frequency is measured for various liquid and gas

velocities. Below the smallest gas velocity investigated

(Ug¼ 12 m s�1) the amplitude of the perturbation is too small

given our optical resolution. Beyond Ug¼ 30 m s�1, measure-

ment is made difficult by the break-up of the waves; in addi-

tion, we took care to measure the growth rate of the instability

conjointly with the frequency for each set of conditions (the

method will be detailed below), and for Ug> 30 m s�1

the rapid saturation of the waves impairs the measurement of

the growth rate. Figure 15 shows that the frequency increases

with both the gas velocity and the liquid velocity.

The analysis of Sec. II has predicted a dimensionless

frequency varying with M�1=2, if M is not small. We there-

fore plot on Fig. 16 the variations of fdg=Ug as a function of

M�1=2: the data of Fig. 15 collapse on a single curve. The

dotted line shows the prediction derived forM> 1 for the ve-

locity profile of Fig. 1(b), while the solid line represents the

prediction when a full velocity deficit is taken into account

(ai¼ 0). It can be seen that the agreement with the velocity

deficit prediction is very good. We now compare on Fig. 17

our experimental results to the experimental results of Ray-

nal et al.7 (crosses) and Ben Rayana9,13 (squares). As men-

tioned in the introduction, these frequencies are both larger

than the classical inviscid prediction without a velocity defi-

cit, shown as a dotted line. Our prediction derived from the

analysis with a velocity deficit (solid line) is in a rather good

agreement with Raynal data, except for large values of M.

This could be due to the change in topology when M

becomes large: due to the strong atomization the length L of

the intact liquid core shortens: L � 6Hg=
ffiffiffiffiffi

M
p

, as proposed by

Raynal.12 Hence the interface becomes steeper and the quasi

parallel flow assumption is no longer valid. Ben Rayana data

(obtained for a fixed M¼ 16) is also closer to our prediction

than to the classical one, but it is still at about twice the pre-

dicted value. Ben Rayana data (all for M¼ 16) were

obtained by visualization, through counting of the number of

waves over a given duration, while both Raynal and our

method are the spectral methods, which identify the maxi-

mum of a spectrum derived from the interface location.

FIG. 14. (Color online) (a) Example of

a spectrum of the position of the inter-

face, for Ug¼ 22 m s�1: solid line

Ul¼ 0.26 m s�1, dashed line

Ul¼ 0.5 m s�1. The insert, on a larger

scale, shows harmonics for Ug¼ 12m s�1

and Ul¼ 0.26 m s�1; (b) Downstream

variation of the spectrum of the amplitude

of the instability: Ug¼ 12 m s�1,

Ul¼ 0.26 m s�1. The spectrum is com-

puted every 2dg, up to x¼ 65dg: the am-

plitude of the maximum increases with

downstream distance.

FIG. 15. (Color online) Experimental frequency as a function of the liquid

velocity Ul, for different Ug: *: Ug¼ 12 m s�1; h: Ug¼ 17 m s�1; �:

Ug¼ 22 m s�1; �: Ug¼ 27 m s�1.

FIG. 16. (Color online) Dimensionless frequency as a function ofM�1=2. The

dotted line is f ¼ ðr=2pÞð1þ
ffiffiffi

2
p

M�1=2Þ (asymptotic prediction for profile of

Fig. 1(b) and the solid line is f ¼ ðr=2pÞð1þ 5
2

ffiffiffi

2
p

M�1=2Þ (asymptotic predic-

tion for profile of Fig. 1(c). Symbols correspond to different values of Ug, *:

Ug¼ 12 m s�1;h: Ug¼ 17 m s�1; �: Ug¼ 22 m s�1; �: Ug¼ 27 m s�1
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Spectra for large M are usually quite noisy and display

strong harmonics: this may explain why the frequency meas-

ured by Ben Rayana et al.9 as an average frequency is signif-

icantly larger than the maximum frequency retained by

spectral methods.

In order to be more precise on the comparison of the lin-

ear stability analysis frequency and the experimental fre-

quency, we plot on Fig. 18(a) the ratio of the experimental to

predicted frequencies, as a function of M. The predicted fre-

quency is here the solution of the spatial inviscid stability

analysis, taking into account a full velocity deficit in the liq-

uid phase, as well as gravity and surface tension. Though

this ratio is in average close to one (which is not the case if

the velocity deficit is not taken into account, as evidenced by

Fig. 16), the points are quite scattered: the ratio varies

between 0.8 and 1.2 for the conditions of our present experi-

ment. Note that for low M the theory tends to overestimate

the experimental frequency (ratio fexp=fth as low as 0.8), a

behaviour not observed on Fig. 16 where the experimental

frequency was compared to the asymptotic prediction: this

difference is expected since the asymptotic law of section B

departs from the full solution precisely for low M, i.e. large

al (Fig. 6), but what is unexpected is that the experimental

points end up closer to the asymptotic law than to the exact

numerical solution of the dispersion relation. Figure 18(b)

next shows the same ratio fexp=fth computed for the experi-

mental points of Raynal et al.7 and Ben Rayana.9 The data

points of Raynal et al. (crosses) lie along a curve going from

a ratio fexp=fth¼ 0.7 to a ratio 2, across the several orders of

magnitude of M spanned by their data. Though for a given

value of M there is a strong dispersion in the frequency ratio,

this global trend suggests that M has a strong influence on

the departure to the prediction of the linear stability analysis.

As mentioned in the discussion of Fig. 17, this could be due

to the parallel flow assumption not being valid at large M, in

particular when the liquid intact length L becomes shorter

than the wavelength. The same ratio fexp=fth is shown for the

data of Ben Rayana, all for a fixed M¼ 16: the ratio of fre-

quencies is larger for these measurements than for other data

sets, in line with the difference observed on Fig. 17. As men-

tioned in the preceding paragraph, this could be due to a bias

introduced by the counting method used by Ben Rayana.

We also carried out measurements of the spatial growth

rate ki of the instability, using the following method: we

superpose each captured interface; for a given downstream

location, we make a histogram of the interface positions

(typically over several hundred periods of the instability),

and exclude the lowest and highest 1% events: this procedure

aims at removing single events (a much larger isolated wave

for example) which might occur over the course of the mea-

surement. The remaining width of the histogram is then

taken to be the amplitude A of the waves. Figure 19(a) illus-

trates this procedure: the solid line shows the position of the

interface for a given time t; the histograms below were made

at the locations shown by the three dot dashed lines; the

dashed lines on the histograms show the limit value retained

for the amplitude after the exclusion of the lowest and high-

est 1%; the dashed line wrapping the interface corresponds

to this same limits once reported on the mixing layer. The

amplitude is plotted as a function of downstream position,

for a fixed Ul¼ 0.37 m s�1 and for the different Ug investi-

gated, see Fig. 19(b). It can be seen that there is a region of

exponential growth (enhanced by the dashed line on the

graph), whose extent decreases when Ug is increased: after a

limit position, the growth becomes slower, indicating a

FIG. 17. Comparison of data sets for the dimensionless frequency as a func-

tion of M�1=2: x results of Raynal7,12; h results of Ben Rayana9,13; � results

of the present study. The dotted line is f ¼ ðr=2pÞð1þ
ffiffiffi

2
p

M�1=2Þ (asymp-

totic prediction for profile of Fig. 1(b) and the solid line is

f ¼ ðr=2pÞð1þ 5
2

ffiffiffi

2
p

M�1=2Þ (asymptotic prediction for profile of Fig. 1(c).

FIG. 18. (Color online) (a) Ratio of the experi-

mental frequency and the predicted frequency,

as a function of M. Symbols correspond to dif-

ferent values of Ug, *: Ug¼ 12 m s�1;

h: Ug¼ 17 m s�1; �: Ug¼ 22 m s�1; *:

Ug¼ 27 m s�1. (b) Same plot with the data of

Raynal (crosses) and Ben Rayana (diamonds).
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possible saturation. It is interesting to note that the region of

exponential growth is preceded by another region where the

growth rate steadily decreases: the extent of this latter region

decreases when Ug is increased. For each gas velocity, the

region of exponential growth appears to be reached when the

amplitude of the waves reaches a threshold value of approxi-

mately 0.7dg. The nature of this first region remains unclear:

our guess is that it could be due to a wake caused by the

splitter plate, and at any rate be caused by the finite thickness

of this plate (e¼ 150 lm at its end).

We now present on Fig. 20 the values of the dimension-

less spatial growth rate of the instability measured in the

zone of exponential growth, as a function of the gas velocity

Ug and as a function of M. It can be seen that ki increases

steadily with Ug, (Fig. 20(b)) while it is extremely scattered

when plotted as a function of M (Fig. 20(a)). This indicates

that while M controls the variations of the dimensionless fre-

quency, it does not control the variations of the dimension-

less spatial growth rate. The latter increases roughly as U2
g .

This experimental growth rate can be compared to the spatial

growth rate kith deduced from the spatial stability analysis

(numerical resolution of the dispersion relation, with a full

velocity deficit, gravity perpendicular to the interface and

surface tension included). Figure 21 shows the variations of

the ratio kiexp=kith as a function of the gas velocity. It can be

seen that this ratio is around two for the lowest gas velocity

investigated, but when Ug is increased it increases up to a ra-

tio eight between the experimental and predicted growth

rate. These variations are quite similar to the variations of

the experimental ki shown on Fig. 20(b): this is because the

gas velocity has very little influence on the spatial growth

rate predicted by the stability analysis. Figure 21 shows that

the measured growth rate is much larger than the predicted

one: while it manages to capture the frequency of the insta-

bility, the inviscid stability analysis strongly underestimates

its growth rate. This could be due to the strong spatial varia-

tions induced by the instability: PIV measurements of the

gas velocity field carried out on an analogous but axisym-

metric coaxial jet set-up showed that when the amplitude of

FIG. 19. (Color online) (a) Illustration of the growth rate measurement (Ug ¼12 m=s, Ul¼ 0.37 m=s): a histogram of the interface positions at a given down-

stream position is made; the amplitude of the instability is deduced from the width of the histogram (dashed line); (b)Variation of the dimensionless amplitude

A=dg of the waves, as a function of downstream distance. From right to left, Ug¼ 12, 17, 22, and 27 m s�1. The region of exponential growth (enhanced by the

dashed line) is drastically reduced as Ug is increased.

FIG. 20. (Color online) (a) Dimensionless measured growth rate as a func-

tion of M, 8: Ug¼ 12 m s�1; h: Ug¼ 17 m s�1; x: Ug¼ 22 m s�1; �:
Ug¼ 27 m s�1; (b) Dimensionless measured growth rate as a function of

Ug; *: Ul¼ 0.26 m s�1; ^: Ul¼ 0.31 m s�1; !: Ul¼ 0.37 m s�1; ~:

Ul¼ 0.50 m s�1; /: Ul¼ 0.76 m s�1; .: Ul¼ 0.95 m s�1.

FIG. 21. (Color online) Ratio of the experimental and predicted spatial

growth rate, as a function of Ug. Symbols correspond to different values of

Ul, *: Ul¼ 0.26 m s�1; ^: Ul¼ 0.31 m s�1; !: Ul¼ 0.37 m s�1; ~:

Ul¼ 0.50 m s�1; /: Ul¼ 0.76 m s�1; .: Ul¼ 0.95 m s�1.
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the waves exceeds dg, the vorticity thickness becomes signif-

icantly reduced at the crest of the waves: downstream the

crest the gas jet then detaches from the liquid, creating low

velocity recirculations in the following trough of the wave.

A typical velocity field obtained on this coaxial set-up is

shown on Fig. 22. The variations of the amplitude of the

waves shown on Fig. 19(b) show that the distance after

which the amplitude reaches dg varies from x� 10dg for

Ug¼ 12 m s�1, to x �dg for Ug¼ 27 m s�1: the typical pic-

ture of Fig. 22 is therefore expected to occur well before the

end of the first wavelength, even for relatively low gas veloc-

ities. These strong spatial variations in the experiment are

likely to play a part in the departure from the predictions of

the stability analysis.

Following the idea that the departure from the growth

rate predicted by the linear stability analysis is caused by the

large amplitude of the waves, we plot on Fig. 23 the ratio of

the measured to predicted frequency, as a function of the ex-

perimental spatial growth rate. The predicted frequency, as

in Fig. 18, is the numerical solution of the dispersion relation

including surface tension, gravity and a full velocity deficit

(ai¼ 0). It can be seen that the data points of Fig. 18(a) are

now significantly less scattered: this is because among a se-

ries corresponding to a given Ug (given symbol), an increas-

ing ki corresponds in average to an increasing fexp=fth. The
fact that for low growth rates the ratio fexp=fth is smaller than

one (as low as 0.8) could be due to an overestimation of the

velocity deficit: a zero velocity at the interface has been

assumed in the stability results presented here. When the ex-

perimental growth rate of the instability becomes larger it

causes steeper spatial variations, accelerating the failure of

the stability analysis: the ratio fexp=fth increases, and the ex-

perimental growth rate strongly departs from its prediction.

IV. CONCLUSION

We have extended the inviscid stability analysis of a liq-

uid stream destabilized by a parallel gas stream, in order to

take into account key features of the velocity profile: namely

the liquid velocity deficit caused by the splitter plate at the

liquid-gas interface, and the finite thickness of the gas

stream. We find that the velocity deficit leads to a significant

increase in the predicted frequency of the most unstable

mode. It also predicts a stronger influence of the liquid ve-

locity on this frequency, and it removes the inviscid liquid

mode (scaling with dl) not observed in the experiments but

predicted by previous analyses.3 The effect of a finite gas

stream Hg is also to increase the frequency of the instability:

this effect becomes relevant for Hg< 0.1 k. Note however

that the scaling of the most unstable mode remains essen-

tially controlled by the vorticity thickness of the fast gas

phase.

We have carried out experimental measurements of the

frequency and of the growth rate of the instability. The

results show a good agreement of the measured frequency

with the frequency predicted by the inviscid stability analy-

sis, provided that the liquid velocity deficit at the interface is

taken into account. The experimental growth rate is on the

contrary significantly larger than the predicted growth rate.

We attribute this to the strong spatial variations observed in

the experiment, and in particular to the impact of the large

amplitude of the waves on the gas flow.

The present analysis is inviscid: recent studies including

viscosity in the stability analysis of a similar two phase mix-

ing layer (Boeck and Zaleski,15 Fuster et al.19), but starting

from a smooth version of the base flow of Fig. 1(a), predict a

different most unstable mode for our experimental condi-

tions, not scaling with dg as is observed in the experiment. It

would be interesting to extend these viscous analyses to a

smooth version of the velocity profile of Fig. 1(c), to deter-

mine how the interface velocity affects the viscous mode,

FIG. 22. (Color online) PIV visualiza-

tion of the gas flow around a wave, for

an annular gas flow (Hg¼ 1.5 mm)

around a liquid jet (radius R¼ 4 mm),

Ul¼ 0.5 m s�1, Ug¼ 20 m s�1. The

white dashed line enhances the limit of

the liquid jet downstream the wave: the

gas jet is detached from the liquid.

FIG. 23. (Color online) Ratio of the experimental and predicted frequency

as a function of the experimental growth rate.
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and to see in particular if the most unstable modes in both

the viscous and inviscid cases turn out to be similar when the

deficit is included.

In most industrial applications of coaxial injectors the

geometry of the flow is axisymmetric, and not planar. The

same inviscid mode, driven by the gas vorticity thickness,

has been observed on experiments carried out in this geome-

try by Marmottant and Villermaux8, but with discrepancies

between the predicted frequency and the experimental fre-

quency. We believe that the inclusion of the finite thickness

Hg of the gas stream and of the cylindrical geometry in the

theory could significantly affect the results of the predictions

for this geometry.
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