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Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number
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(Received 24 July 2009; published 17 December 2009)

We investigated the agitation induced in a liquid by quasimonodispersed spherical bubbles. For Re,, about 10
and for void fractions ranging from 0.002 to 0.1, the axial velocity fluctuation probability density functions

happen to be uniquely determined by the velocity variance. In addition, the variance experiences a rupture from
a nonlinear to a quasilinear increase with the volumic concentration. It is shown that the presence of a deficit
of neighbors in the wake of any test inclusion forces the screening of velocity disturbances at a finite distance
X—of order Re,/ a—and that the velocity variance does not depend on the system size when the later is large
compared with X. Finally, the bubble-induced agitation happens to be much stronger for quasimonodispersed
than for polydispersed size distributions because of the longer interaction duration between pairs in the former

case.

DOI: 10.1103/PhysRevE.80.065301

When inclusions (bubbles, droplets, and solid particles)
are left to rise or fall in an inert continuous phase velocity
fluctuations occur in both phases even if the base flow is
laminar. Such fluctuations are exploited in a number of ap-
plications to mix phases, temperature, chemical species,....
They also give rise to the so-called pseudoturbulence stress
tensor A=(X.w'w’), where (-) denotes the ensemble average
over all the possible positions and velocities of the inclu-
sions, w' is the continuous phase velocity fluctuation relative
to its unconditional average w, and X, is the continuous
phase indicator function. In Eulerian two-fluid models, the
tensor enters the unconditional momentum equation for the
continuous phase as a Reynolds stress: its key role is to uni-
formize the spatial distribution of inclusions [1].

Yet, the origin of these fluctuations is still poorly under-
stood. They do not reduce to streamlines distortions in a
random array [2]. According to statistical two-fluid models
[3,4], the agitation tensor A arises from the average pertur-
bations w*(x|x°) induced at a location x by a test particle
centered at x°. These disturbances are summed up over all
the positions x° of the test particle, each position x° being
weighted by the corresponding number density ¢:

Alx) = f H(x°)w W (x|x°)dx ° + O(a?). (1)

The average perturbed field w*=w(x|x°)—w(x) is the differ-
ence between the conditional continuous phase velocity
w(x|x°) at x evaluated over the subset of realizations such
that an inclusion is centered at x° and the unconditional con-
tinuous phase velocity w(x) at x. The famous Caflish and
Luke argument exploits the above relationship for Re,
=aU,/v.<1 (v, denotes the continuous phase kinematic vis-
cosity, U, denotes the inclusion relative velocity, and a de-
notes the inclusion radius). Assuming Stokes disturbances
that slowly decay, as 1/r, with the distance r to the test
inclusion and a random suspension with uniform probability
for the positions of inclusions, Caflish and Luke found that A
scales as anL/ a, where « is the volumic concentration
(=4/3ma’¢) and L is the extent of the integration domain
[5]. That result, which also holds for particles of finite size,
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implies that the agitation should linearly increase with the
vessel dimension, and thus it may go to infinity. Introducing
some inertia in the inclusion dynamics does not solve that
issue. Indeed, for Oseen wakes and uniform probability of
inclusion positions, A scales as an In(L/a), and the velocity
variance is still “diverging” with the vessel size [6]. Only
when potential disturbances are assumed, thus Eq. (1) leads
to a finite agitation proportional to an. This is because of
the stronger decay rate, as r~>, of the velocity perturbation
with the distance to the test inclusion [7,8]. The above results
indicate that the induced agitation may not be liable to a
local closure, in which case the resolution of two-fluid mod-
els would be drastically complexified. Yet, all these estimates
rely on two key assumptions, namely, that the spatial distri-
bution of inclusions is random (uniform probability for po-
sitions) and that the velocity disturbance is set by the dynam-
ics of an isolated particle.

The seminal paper by Koch and Shaqfeh [3] shows how
the existence of a microstructuration of the inclusions and
more precisely of a particle deficit in the wake of any test
inclusion can lead to the screening of the velocity distur-
bance at some finite distance X from the test particle. In such
circumstances, the induced agitation becomes finite and its
magnitude is a function of the correlation length X provided
that the later is smaller than the system size. For a vanishing
particle Reynolds number, they introduce three particles in-
teractions (in the creeping limit, the symmetrical two-body
interactions do not bring any departure from uniformity) and
predict a correlation length of the order of a/a that leads to
a velocity variance Ao U>(aX/a)=~4.7U?%. Although experi-
ments performed in suspensions do not confirm that scaling
because collective effects happen to drive the system behav-
ior [9,10], the proposal was nevertheless promising. It was
later applied to slightly inert, polydispersed inclusions by
Koch [6] who showed that the interaction of two such inclu-
sions leads to a pair density deficit in the wake of any test
inclusion the length of which X/a=P/(a Re,) increases with
the width P of the terminal velocity distribution (here P de-
notes the standard deviation normalized by the mean). In that
case, the agitation normalized by the square of the relative
velocity, A/ Ur?, was predicted to be proportional to a/ Re,,.
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FIG. 1. (Color online) Evolution of the axial
velocity variance in the liquid with the void frac-
tion. 8<<Re,<\12 (open symbols: variable gas
flow rate, closed symbols: variable tube height
above the free surface). Insert: probability density
functions of axial velocity fluctuations scaled by
the standard deviation for various concentrations.
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That proposal was compared with experiments performed
in bubbly flows at Re, in the range 1-50 [11]. The results
were contrasted. In all the cases investigated, the velocity
disturbances were screened and the induced agitation was
found to be insensitive to the vessel dimension. Yet, for Re,
close to unity, the velocity variance was found to be propor-
tional to a/Re,—as predicted by Koch—but no microstruc-
ture was detected (at least for distances to the test inclusion
above 2.5-3a). At 20<Re, <40 and for very dilute condi-
tions, a neat pair density deficit was indeed observed in the
wake of test bubbles, but the agitation experienced a nonlin-
ear increase with the void fraction. Moreover, in all these
conditions, the magnitude of the velocity variance was typi-
cally ten times higher than Koch’s predictions (Figs. 9 and
24 in [11]).

To clarify these issues, new experiments were undertaken
at a fixed particle Reynolds number, close to 10+ 2, and for
void fractions ranging from 0.002 to 0.1. Bubbles were in-
jected at the bottom of a long (>1 m) vertical cylindrical
tube (internal diameter 40 mm) through 289 injectors (inter-
nal diameter 90 wm and length 20 mm). In that gas-lift sys-
tem, the liquid recirculation was external to that tube and
took place in a large squared tank (width 350 mm). The
viscosity of the water-glycerine mixture was 6-8
X 107® m?%/s so that bubbles remain spherical, with clean
interfaces. The size distribution was nearly monodispersed
(its standard deviation was 0.055 times the mean bubble
size). The void fraction was varied by way of the gas flow
rate, but this technique implies a change in the bubble diam-
eter, in U,, and thus in Re,. To reach high void fractions at a
fixed Re,, bubbles were forced to accumulate by locating the
tube exit above the free interface position at a given gas flow
rate. In the center of the tube, the mean phasic flows proved
to be homogeneous at a scale larger than at least 40 bubble
radii. In addition, no hindering effect was noticed.

The axial velocity variance wz'2 scaled by the square of
the relative velocity is reported Fig. 1 versus the void frac-
tion. For a above 10%, large scale instabilities are triggered
in the bubbly flow, and the corresponding data (not shown)
no longer correspond to uniform mean flows at large scale.
For void fractions in the range 0.0018-0.1, the conditions
were stable. In that range, a neat transition occurs from a
nonlinear to a linear increase in the agitation with the void
fraction. For Re, about 10 that boundary is close to
a.~1%.

0.1

Such a transition, here demonstrated, explains the appar-
ent incoherencies between previous results. In particular,
former data series gathered for Re, close to 10 exhibited
either linear or nonlinear growth rates with the concentra-
tion: this is because they were not collected over the same
range of void fractions. Such a transition is expected to exist
for others particle Reynolds numbers provided that the
bubble dynamics involves inertia and laminar wakes. Indeed
and although not identified by the authors, a close examina-
tion of the data of Martinez-Mercado et al. [12] indicates that
a change in the scaling occurs for at least one of their data
series (see experiment “w-g 15%” Fig. 16 in [12]). That tran-
sition does not appear on velocity fluctuations probability
density functions (PDFs) since, whatever the regime, the
later collapse when normalized by the standard deviation
(Fig. 1 insert). These one parameter PDFs are strongly asym-
metrical because of gravity (here, positive velocities are di-
rected upward).

In accordance with the Koch and Shaqfeh proposal, the
existence of a microstructure has been sought by measuring
the pair density probability ¢*(x,x°). In practice, the struc-
ture function S=¢*(x,x°)/ d(x)p(x°) was derived from op-
tical probe measurements using a technique described else-
where [11]. To ensure the convergence of S, at least 100.000
bubbles were detected, the corresponding acquisition dura-
tions being comprised between 15 and 40 h depending on
flow conditions. A Taylor-like hypothesis based on the mean
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FIG. 2. (Color online) Evolution of the structure function S
along a vertical behind a test bubble for various void fractions.
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FIG. 3. (Color online) Decay of the axial component of the
mean perturbed liquid velocity behind a test bubble for three void
fractions.

absolute bubble velocity was used to transform time into
space. Figure 2 provides the structure function along a ver-
tical behind a test bubble. As expected, a decorrelation be-
tween bubble positions arises at large distance. At short
range, S is less than unity, indicating a neat deficit in the pair
probability. Thus, the near wake region is almost free of
neighbor inclusions. This deficit decreases with the void
fraction both in magnitude and in extent. A clear microstruc-
ture is still present at a void fraction as high as 8%.

To check for a possible screening of velocity disturbances,
the axial component w: of the average disturbed velocity has
been scrutinized along a vertical behind the test bubble using
conditional Laser Doppler velocimetry (LDV) (Fig. 3). The
Taylor hypothesis employed for S was again applied to trans-
form time into space. From the boundary condition at the
interface, w; equals U, for z=a. Then, w] continuously de-
cays with z, first as a power law followed by a very sharp
drop. The disappearance of any velocity perturbation beyond
some finite distance downstream the test inclusion is the
clear manifestation of a screening effect. As the concentra-
tion increases the screening occurs at shorter range: this be-
havior is consistent with the strengthening of the right-hand
side (rhs) terms in Eq. (2) presented thereafter.

In addition, the decay rate of w;‘ with z in the power-law
region does not coincide with the decay rate for an isolated
inclusion at the same Re,. More, the decay rate increases
with the void fraction. Such deviations of the average veloc-
ity disturbance from the one due to an isolated inclusion,
already reported for Re, about 30 [11], are confirmed here
for a smaller Re,,. Therefore the two key hypothesis used to
estimate the magnitude of the agitation and made on the
velocity disturbance and on the particle spatial distribution
respectively are invalidated by the present observations.

The axial extend of the deficit/screening zone has been
quantified using a threshold on S or on w;/U,. The results
are weakly sensitive to the threshold (Fig. 4). They are also
quite consistent with each over, meaning that the pair density
deficit is closely linked with the extinction of velocity distur-
bances. The axial dimension X of the deficit region is a de-
creasing function of a. It experiences a transition between
a'® and a! behaviors (Fig. 4): the limit between these
regimes corresponds to a= 1.5%. which is close to the criti-
cal void fraction identified in Fig. 1. Thus, the change in the
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FIG. 4. (Color online) Evolution with the concentration of the
vertical extension of the deficit region measured on S and on w;/ U,
for different thresholds.

scaling of the agitation with the concentration coincides with
a modification in the scaling of the microstructure character-
istic dimension with the concentration. It is worth noting that
for all the conditions considered, X remains less than the
extent of the flow where mean variables are spatially homo-
geneous. This is consistent with an agitation independent of
the vessel size.

Some of the above features can be recovered by consid-
ering the equations governing w*(x|x°). In the dilute limit,
w"* is solenoidal and obeys the following momentum bal-
ance:

p AW 19t + (W* = U,) - aw*/9x} + Ip™/Ix — pu VA (W") = p(x)
X{[1 = S(x.x°)JF"(x) = S(x,x°)F " (x|x°)}, )

where p, (respectively, u,) is the density (respectively the
dynamic viscosity) of the continuous phase (here the liquid)
and where U, is the mean inclusion relative velocity. The
source term in the right-hand side, which is zero for an iso-
lated inclusion, is composed of two contributions. The first
one is the interfacial momentum source ¢F* that enters the
unconditional flow momentum balance, where F* is the re-
sisting (drag) force acting on the test inclusion. The second
one arises from the interfacial momentum source
PS(F*+F*") that appears in the momentum balance govern-
ing the conditional flow w(x|x°). Here, F** is the extra force
experienced by the test inclusion due to the presence of an-
other one at x°. If S=1, only the F** term, although small
compared with F*, is significant. Wherever §=0, ¢F* is the
leading forcing term in Eq. (2). Let us introduce an idealized
microstructure consisting of an axisymmetric cigarlike cell
where S=0 while S=1 everywhere else (Fig. 5). Neglecting
F**, the force density ¢F : distributed in that cell counteracts
the axial momentum flux in the wake of the test inclusion.
Therefore the forcing progressively extinguishes the per-
turbed velocity field: the later disappears after some distance
X and no momentum escapes the cell.

The scaling for X can be deduced from the balance
governing the axial liquid momentum in a frame attached
to the inclusion (vi=w.-U,), averaged over a cross
section perpendicular to gravity. The later writes
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FIG. 5. (Color online) Schematic of the idealized microstruc-
ture. The force density is active within the entire cell volume.

d/dz(Rv})*= ¢F.R*/ p, and its integration for a Stokes drag
F.=kmp.aU, leads to

zla
v (2)/Ur = (3k/4)(a/Rep)f R%d(z/a)/R*(z).
1

Provided that the radial extension of the deficit zone R(z)
keeps the same functional form, and since the perturbed ve-
locity drops to O for z=X, then X/axRe,/ a (with a prefactor
about 0.015 according to the present data). Such a depen-
dency in « agrees with the experiments in the domain
a> a, (Fig. 4). The proportionality with Re,, is also consis-
tent with the available results. Let us recall that no clear
microstructure was detected at Re,, close to unity while X/a
was about 50 for Re,*30-50 [11].

The above mechanism is similar to the buoyancy screen-
ing of Koch. In that two-body interaction, the trailing particle
is ejected from the wake thanks to the entrainment by the
perturbed velocity field w* and to the transverse component
of the force F**. That force arises from the interaction of the
trailing particle with the perturbed field: it leads to a relative
velocity u; between that particle and the field w*. Therefore,
the ejection depends on the relative velocity w*+u’ between
the two inclusions. In monodispersed conditions, the velocity
is governed by hydrodynamic interactions and not, as in
Koch’s model, by a difference in size or density that alters
the terminal velocity. Consequently and contrary to Koch
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proposal, X does not depend on the extent of the size distri-
bution, and its dependence with Re, is inversed. Monodis-
persed conditions imply longer pair interaction times and
longer region of deficit. Since the near wake contributes the
most to the induced agitation, the later happens to be much
stronger in monodispersed than in polydispersed conditions.
The present experiments lead indeed to wz’z/ U3=96a/ Re,
(for @> a,) while Koch’s predicted prefactor is O(10). This
large difference in magnitude can be exploited to intensify
mixing processes in chemical engineering.

In the above reasoning, which applies to the domain
a.< a, the test-inclusion trajectory remains unaffected. We
suspect that in the nonlinear region, i.e., for a<«,, the lat-
eral displacement Ay of the test inclusion during its interac-
tion with a rear particle becomes significant compared with
the bubble size. If so, following an argument proposed by
Brenner [13] for suspensions, one expects the wake to spread
faster than under the action of the fluid viscosity alone. To
compare Ay~ (Dt)"? with a, the particle diffusivity D is
estimated as the particle velocity variance Au® (which is
close to that of the fluid [11]) multiplied by the interaction
time =X/ U, (the scale of w* is U,). Thus, using the above
scales, (Ay/a)zzRep/a. At low Rep/a, one recovers an un-
disturbed test-particle trajectory and a linear growth of A
with a. At large Re,,/ a, the lateral displacement is so signifi-
cant that the pair density behaves as a~!? like in a random
array (Fig. 4). The nonlinearity of A with « certainly follows,
but such a scaling cannot be deduced without a detailed
knowledge of the disturbed velocity field. Since the later is
coupled with a continuity equation governing S, a simulation
approach is required to solve that issue. Available experi-
ments [11,12] including the present series do show that the
linearity of A with @ holds for @/Re,>0.001-0.002 and is
lost otherwise. This behavior is fully consistent with the cri-
terion developed here above, showing that the scaling tran-
sition we have demonstrated is controlled by the magnitude
of the particle diffusity. Although extra experiments would
be welcome to better define that frontier, the local closures
we identified for the induced agitation at moderate particle
Reynolds numbers will be quite useful to improve two-fluid
models.
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