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Monotone coercive cell-centered finite volume
schemes for anisotropic diffusion equations ∗

Clément Cancès† Mathieu Cathala‡ Christophe Le Potier§

10/11/2011

Abstract
We present a nonlinear technique to correct a general Finite Volume

scheme for anisotropic diffusion problems, which provides a discrete max-
imum principle. We point out general properties satisfied by many Finite
Volume schemes and prove the proposed corrections also preserve these
properties. We then study two specific corrections proving, under nu-
merical assumptions, that the corresponding solutions converge to the
continuous one as the size of the mesh tends to 0. Finally we present nu-
merical results showing these corrections suppress local minima produced
by the initial Finite Volume scheme.

Keywords. Finite Volume scheme, Diffusion equation, Anisotropy, Maximum
principle, Nonlinear corrections, Convergence.

1 Statement of the problem
Let Ω be an open bounded connected polygonal subset of Rd. We consider the
following elliptic problem:{

− div(D∇ū) = f in Ω,
ū = 0 on ∂Ω;

(1)

with:

• f ∈ L2 (Ω), the source term;

• ū the radioactive element concentration;
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• D : Ω → Md(R), the permeability, a bounded measurable function such
thatD(x) is symmetric for a.e. x ∈ Ω and that there exists λ > 0 satisfying
D(x)ξ · ξ ≥ λ |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rd.

The elliptic operator from this simple problem occurs in more complex mod-
els of flows in porous media for instance related to underground nuclear waste
repository or petroleum engineering. These particular applications require to
design robust approximation methods to solve (1), one criterion consisting in the
respect of the physical bounds. This is crucial, for example, for diffusion terms
in modeling two-phase flows in porous media [19] and for coupling transport
equation with a chemical model.

However, it is well known that classical linear methods discretizing diffusion
operators do not always satisfy maximum principle for distorted meshes or with
high anisotropy ratio [12]. That is the reason why the question of constructing
numerical methods for (1) ensuring the approximate solution satisfies a discrete
maximum principle has been investigated. In [6], a non-linear stabilization
term is introduced to design a Galerkin approximation of the Laplacian, but
heterogeneous anisotropic tensors are not considered. More recently, a few non-
linear finite volume schemes have been proposed to discretize elliptic problems
[8, 11, 13, 15, 18, 21, 20]. For theses methods, the authors obtained the desired
properties and accurate results which are generally second order in space. Un-
fortunately, none of these methods can ensure that they are coercive without
conditions on the geometry or on the anisotropy ratio.

Starting from any given cell-centered finite volume scheme, our goal, in the
present work, is to elaborate, in the spirit of methods described in [16], a gen-
eral approach to construct non-linear corrections providing a discrete maximum
principle while retaining some main properties of the scheme, in particular co-
ercivity and convergence toward the solution of (1) as the size of the mesh
tends to zero. To do so, we proceed step by step, beginning with a general
correction and then refining it by considering successively the required prop-
erties. The constructions we obtain give nonoscillating solutions and can be
applied, for example, to the cell-centered finite volume schemes developed in
[1, 4, 3, 2, 5, 7, 9, 14, 17]. Let us notice that these new corrections are quite
easy to implement because we can use the data structures already defined for
the linear scheme.

The paper is organized as follows. In section 2 we state the abstract frame-
work about numerical schemes focusing on both discrete maximum principle
and convergence of the solution to the scheme. Section 2.1 defines a particular
class of schemes, the monotone schemes, which satisfy a discrete version of the
maximum principle. Section 2.2 specifies some basic properties of a numeri-
cal scheme, namely conservation property, coercivity and consistency. Using
this abstract framework, we address in section 3 the problem of correcting a
generic convergent cell centered finite volume scheme so that to obtain a mono-
tone finite volume scheme which is still convergent. In section 3.1 we state
the main assumptions made on the generic initial scheme we want to correct.
Section 3.2 then establishes sufficient conditions for the corrections to bring

2



monotonicity while retaining conservation property and coercivity whereas sec-
tion 3.3 is devoted to the convergence of the corrected scheme. In section 3.4,
we detail two examples of non-linear corrections and make for both a theoretical
study of the corrected scheme. The proofs of convergence rely on numerical as-
sumptions on the solutions to these schemes. The numerical results we present
in section 4 confirm these assumptions seems to be actually satisfied even for
strongly anisotropic permeabilities.

2 Basics for numerical schemes
We first present the assumptions on the discretization of Ω.

Definition 2.1. An admissible mesh of Ω is given by D = (M, E) where:

• M is a family of non-empty open polygonal convex disjoint subsets of Ω
(the control volumes) such that Ω = ∪K∈MK;

• E is a finite family of disjoint subsets of Ω (the edges of the mesh) such
that, for all σ ∈ E, there exists an affine hyperplane E of Rd and K ∈M
verifying: : σ ⊂ ∂K ∩ E and σ is a non-empty open convex subset of E.
We assume that, for all K ∈ M, there exists a subset EK of E such that
∂K = ∪σ∈EK

σ. We also assume that, for all σ ∈ E, either σ ⊂ ∂Ω or
σ = K ∩ L for some (K,L) ∈M×M.

We use the following notations. The measure of a control volume K is
denoted by |K| and the (d − 1)-dimensional measure of an edge σ is denoted
by |σ|. In the case where σ ∈ E is such that σ = K ∩ L for (K,L) ∈ M×M,
we write σ = K|L. We define the set of interior (resp. boundary) edges as
Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For all K ∈ M, xK
is the barycentre ofK and, if σ ∈ EK , we denote by dK,σ the orthogonal distance
between xK and the hyperplane containing σ. For σ ∈ E , we set dσ = dK,σ+dL,σ
if σ = K|L ∈ Eint and dσ = dK,σ if σ ∈ EK ∩ Eext.

To study the convergence of the schemes, we will need the following two
quantities: the size of the mesh

size(D) = sup
K∈M

diam(K)

and the regularity of the mesh

regul(D) = sup
K∈M

{
max

(
diam(K)d

ρdK
,Card(EK)

)}
+ sup
K∈M
σ∈EK

{
diam(K)
dK,σ

}
+ sup

σ∈Eint
σ=K|L

{
dL,σ
dK,σ

}
,

where, for K ∈ M, ρK is the supremum of the radius of the balls contained in
K. The definition of regul(D) implies that, if ωd is the volume of the unit ball
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in Rd, for all K ∈M,

diam(K)d ≤ ρdK regul(D) ≤ regul(D)
ωd

|K| . (2)

A numerical scheme for (1) is a system of equations on some unknowns
(uK)K∈M intended to approximate the values (ū(xK))K∈M. More precisely it
is given by a function

SD : RCard(M) −→ RCard(M)

u 7−→ (SK(u))K∈M,

and consists in finding u = (uK)K∈M such that:

∀K ∈M, SK(u) = |K| fK , (3)

where fK denotes the mean value of f on the cell K.

2.1 Monotone schemes
The main problem we will address is to modify a scheme so that it preserves the
maximum-principle. More precisely we will focus on the following proposition.

Definition 2.2 (Monotonicity property). Let D be an admissible mesh of Ω.
A scheme SD for (1) is said to be monotone if it can be written

∀K ∈M, SK(u) =
∑
L∈M

τK,L(u)(uK − uL) +
∑

σ∈Eext

τK,σ(u)uK , (4)

with functions τK,L : RCard(M) → R+ (for K,L ∈ M) and τK,σ : RCard(M) →
R+ (for K ∈M and σ ∈ Eext) satisfying, for all u ∈ RCardM ,

∀(K,L) ∈M2 such that EK ∩ EL 6= ∅, τK,L(u) > 0, (5a)
∀K ∈M, ∀σ ∈ EK ∩ Eext, τK,σ(u) > 0. (5b)

The monotone schemes meet a discrete version of the maximum principle.

Proposition 2.1 (Discrete Maximum Principle). Assume that f ≥ 0 on Ω. If
u = (uK)K∈M is a solution to a monotone scheme, then minK∈M uK ≥ 0.

Proof. Let m = minK∈M uK and assume by contradiction that m < 0. Let K0
such that uK0 = m. According to (4) we have∑

K∈M
τK0,L(u)(m− uL) +

∑
σ∈Eext

τK0,σ(u)m ≥ 0,

which, with (5a), implies that uL = m as soon as EL ∩ EK 6= ∅. Since Ω is
connected we deduce that u is constant on Ω. Hence, considering (4) for K such
that EK ∩ Eext 6= ∅, condition (5b) proves that m cannot be negative.
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2.2 Convergent finite volume schemes
While correcting a scheme to provide it with monotonicity, we also want to pre-
serve its main properties namely, on the one hand the Finite Volume structure
and on the other hand the properties that lead to the convergence of its solution
to the solution of the PDE (1). These properties are described in the following
definitions.

2.2.1 Conservation property

Recall that a scheme for (1) is given, through (3), by a family SD = (SK)K∈M
of functions SK : RCard(M) → R in the sense that, for K ∈M, the equation on
the control volume K writes SK(u) = |K| fK . We will call conservative such a
scheme if these equations can be written as a balance of approximate fluxes of
the operator ū 7→ D∇ū in (1).

Definition 2.3 (Conservative scheme). Let D be an admissible mesh of Ω and
let SD define a scheme for (1). SD is said to be conservative if there exists a
family (FK,σ)K∈M,σ∈EK

of functions FK,σ : RCardM → R (the numerical fluxes)
such that:

∀K ∈M,∀σ = K|L ∈ Eint, FK,σ + FL,σ = 0, (6)

∀K ∈M, SK = −
∑
σ∈EK

FK,σ. (7)

2.2.2 Coercivity

In order to estimate the solution of a scheme in a discrete version of the H1
0

norm, it suffices for this scheme to fulfill some coercivity property, discrete ana-
logue of the classical coercivity of the bilinear form that defines the variational
formulation of (1).

To state this property we need to introduce some useful quantities. First we
will identify any element u = (uK)K∈M of RCardM with the function u defined
on Ω which is constant on each control volume ofM and takes the value uK on
the cell K ∈ M; we denote by HM the set of these functions. The space HM
is then equipped with the discrete H1

0 norm defined by:

∀u ∈ HM, ‖u‖2D =
∑
σ∈Eint

σ=K|L

|σ| |uK − uL|
2

dσ
+
∑

σ∈Eext

|σ| |uK |
2

dσ
.

Definition 2.4 (Coercivity). Let D be an admissible mesh of Ω. A scheme for
(1) is coercive if there exists ζ > 0 such that

∀u ∈ HM,
∑
K∈M

SK(u)uK ≥ ζ ‖u‖2D. (8)

The coercivity assumption allows to estimate a solution to a scheme in the
discrete H1

0 norm.
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Proposition 2.2 (a priori estimate). Let D be an admissible mesh of Ω and
let SD define a coercive scheme for (1) with constant ζ in (8). If θ ≥ regul(D),
then there exists C1 only depending on Ω, ζ and θ such that for any solution u
to the scheme SD:

‖u‖D ≤ C1 ‖f ‖L2(Ω). (9)

Proof. For all K ∈ M we have SK(u) = |K| fK . Multiplying this equality by
uK , summing over all the control volumes and using (8), we get:

ζ ‖u‖2D ≤
∫

Ω
fu. (10)

Discrete Poincaré inequality (which can be deduced for instance from Lemma
5.3 of [10]) states that there exists C2 only depending on Ω and θ such that

‖u‖L2(Ω) ≤ C2 ‖u‖D. (11)

Inequality (9) then follows from (10) with the help of Cauchy-Schwarz inequality.

2.2.3 Consistency

The discrete H1
0 estimate that comes with a coercive scheme usually confers

some compactness to its numerical solution, ensuring this solution converges to
an element of H1

0 (Ω). In order to prove the latter is a weak solution to the
problem (1), it then remains to ensure we can pass to the limit into the scheme.

Definition 2.5 (Consistency). Let (Dn)n≥1 be admissible meshes of Ω such
that size(Dn) → 0 as n → ∞. Let (Sn)n≥1 be such that, for all n ≥ 1, Sn =
(SnK)K∈Mn is a scheme for (1) associated with discretization Dn = (Mn, En).
The family of schemes (Sn)n≥1 is consistent with (1) if, for any family (un)n≥1
of discrete functions satisfying:

• For all n ≥ 1, un ∈ HMn ,

• there exists C3 > 0 such that, for all n ≥ 1, ‖un ‖Dn ≤ C3,

• there exists ū ∈ H1
0 (Ω) such that un → ū in L2 (Ω) as n→∞;

then
∀ϕ ∈ C∞c (Ω), lim

n→∞

∑
K∈Mn

SnK(un)ϕ(xK) =
∫

Ω
D∇ū · ∇ϕ. (12)

3 Non-linear corrections of a generic cell-centered
finite volume scheme

Starting from a conservative, coercive and consistent scheme, we describe in
this section how to construct a non-linear correction which gives a monotone
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scheme while paying attention not to lose the main properties of the initial
scheme. We first state the main assumptions on the initial scheme. Then we
detail some general guidelines about the construction of such corrections and
these guidelines are finally used to build concrete examples of corrections.

3.1 The initial scheme
Let us denote by A the continuous operator from problem (1) defined by A(ū) =
div(D∇ū).

In the following, we consider a generic discrete approximation AD : HM →
HM of the operator A. AD defines a scheme for (1) that writes:

−AD(u) = fD, (13)

where we let fD = (|K| fK)K∈M ∈ HM. We assume that AD : HM → HM is
linear and invertible so that the initial scheme (13) has a unique solution.

For the sake of clarity, it will be convenient to introduce, for any u ∈ HM,
additional (trivial) values (uσ)σ∈Eext which we all take equal to zero. We denote
by V (K) ⊂ M ∪ Eext the sets corresponding to the stencil of this scheme, the
discrete linear operator AD thus writes in the following form:

∀u ∈ HM,∀K ∈M, AK(u) =
∑

Z∈V (K)

αK,Z(uZ − uK), (14)

(where with the previous convention uZ = 0 if Z = σ ∈ Eext). If need be by
adding some null coefficients, we further suppose the stencil of the scheme is
symmetric that is:

∀(K,L) ∈M2, L ∈ V (K) =⇒ K ∈ V (L). (15)

In the following we will address the problem of correcting this initial scheme
in order to obtain a monotone scheme. Except from this property we want to
reach, we will assume our initial scheme satisfies all the properties previously
defined that is:
(A1) For any admissible mesh D, the scheme defined by AD is conservative.

We denote by FD = (FK,σ)K∈M,σ∈EK
the corresponding numerical fluxes

such that:
∀K ∈M, AK =

∑
σ∈EK

FK,σ.

(A2) There exists ζ > 0 such that for any admissible mesh D, the scheme
defined by AD is coercive with constant ζ :

∀u ∈ HM, −
∑
K∈M

AK(u)uK ≥ ζ ‖u‖2D

(A3) Let (Dn)n≥1 be a sequence of admissible meshes such that size(Dn)→ 0 as
n→∞. Assume that (regul(Dn))n≥1 and (maxK∈Mn Card V (K))n≥1 are
bounded. Then the family of schemes defined by (ADn)n≥1 is consistent
with problem (1).
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3.2 General construction of non-linear corrections
Driven by the structure of monotone schemes, we consider corrections having
the following form.

Definition 3.1 (Correction). Let D be an admissible mesh of Ω. A correction
for the scheme (13) defined by AD is a family βD = (βK,Z)K∈M,Z∈V (K) of
functions βK,Z : HM → R. Given a correction β:

• the corrected scheme SD (from (13)) is defined by

∀u ∈ HM,∀K ∈M, SK(u) = −AK(u) +
∑

Z∈V (K)

βK,Z(u)(uK − uZ),

(16)

• the corrective term is the function RD : HM → HM defined by

∀u ∈ HM,∀K ∈M, RK(u) =
∑

Z∈V (K)

βK,Z(u)(uK − uZ). (17)

3.2.1 Monotone corrections

The corrections defined above lead to a monotone structure in case they match
the following condition.

Proposition 3.1 (Monotone correction). Let D be an admissible mesh of Ω
and βD = (βK,Z)K∈M,Z∈V (K) be a correction for (13). Let (γK,Z)K∈M,Z∈V (K)
be a family of functions γK,Z : HM → R+ such that, for all u ∈ HM and all
K ∈M,

if
∑

Z∈V (K)

|uK − uZ | 6= 0 then
∑

Z∈V (K)

γK,Z(u) |uK − uZ | = 1. (18)

Assume that βD satisfies, for all u ∈ HM and all K ∈M,

∀Z ∈ V (K), βK,Z(u) ≥ γK,Z(u) |AK(u)| , (19a)
∀L ∈M such that EK ∩ EL 6= ∅, βK,L(u) > γK,L(u) |AK(u)| , (19b)

∀σ ∈ EK ∩ Eext, βK,σ(u) > γK,σ(u) |AK(u)| . (19c)

Then the corrected scheme is monotone.

Proof. Let u ∈ HM. Using condition (18), the coordinate K of the initial
scheme (13) can be written:

−AK(u) = −
∑

Z∈V (K)

γK,Z(u) |uK − uZ | AK(u)

that is

−AK(u) =
∑

Z∈V (K)

{γK,Z(u)sgn(uK − uZ)AK(u)} (uK − uZ). (20)
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Thus the coordinate K of the corrected scheme reads:

SK(u) =
∑

Z∈V (K)

{γK,Z(u)sgn(uK − uZ)AK(u) + βK,Z(u)} (uK − uZ). (21)

Letting, for K ∈M and Z ∈ V (K),

τK,Z(u) = γK,Z(u)sgn(uK − uZ)AK(u) + βK,Z(u),

the corrected scheme takes the form of (4) :

SK(u) =
∑

Z∈V (K)

τK,Z(u)(uK − uZ),

with τK,Z ≥ 0 according to (19a). Besides, assumptions (19b) and (19c) entail
that the functions τK,Z meet conditions (5) which thus guarantees the corrected
scheme is monotone.

Remark 3.1. Actually, the main condition we have to focus on when building a
correction is condition (19a). Indeed, assume a correction β̃D matches condition
(19a), then, following the calculus above, we can see that the corresponding
corrected scheme has the form of (4) with the non negative coefficients τK,Z
given by

τK,Z(u) = γK,Z(u)sgn(uK − uZ)AK(u) + β̃K,Z(u).
Now, from β̃D, define a new correction βD by setting, for u ∈ HM, K ∈M and
Z ∈ V (K) :

βK,Z(u) = β̃K,Z(u) + |K|Z| ,
where we have extended the notation K|Z to the elements Z ∈ V (K) by setting
K|Z = σ if Z = σ ∈ Eext and K|Z = ∅ if Z ∈ M is such that EK ∩ EZ = ∅.
Then the correction (βD) matches all the conditions of (19) so that the scheme
corrected with βD is monotone. Note that if we define a discrete Laplacian
operator ∆D : HM → HM by :

∀u ∈ HM,∀K ∈M, ∆K(u) =
∑
σ∈EK

|σ|
diam(K) (uL − uK), (22)

then using the correction βD amounts to adding some numerical diffusion to the
scheme corrected by β̃D. Indeed the scheme corrected with βD writes, in terms
of the correction β̃D, for u ∈ HM and K ∈M,

SK(u) = −AK(u) +
∑

Z∈V (K)

β̃K,Z(u)(uK − uZ)− diam(K)∆K(u). (23)

The condition (19) states that the terms βK,Z have to be large enough to
compensate the discrete maximum principle weakening contributions of −AD,
namely the coefficients in the right-hand side sum in (20) which correspond with
the elements Z ∈ V (K) such that AK(u)(uZ − uK) < 0.

There are various ways to choose functions γK,Z satisfying condition (18):
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i) Taking, for K ∈M and Z ∈ V (K),

γK,Z(u) = 1∑
Y ∈V (K) |uK − uY |

(24)

if
∑
Y ∈V (K) |uK − uY | 6= 0 and γK,Z(u) = 0 else; condition (19a) writes

βK,Z(u) ≥ |AK(u)|∑
Y ∈V (K) |uK − uY |

(25)

ii) For u ∈ HM, let us define the sets V (K)∗ = {Z ∈ V (K) ; uZ − uK 6= 0}.
Taking, for K ∈M and Z ∈ V (K),

γK,Z(u) = 1
CardV (K)∗ |uZ − uK |

(26)

if uZ − uK 6= 0 and γK,Z(u) = 0 else; condition (19a) writes

βK,Z(u) ≥ |AK(u)|
CardV (K)∗ |uZ − uK |

. (27)

3.2.2 Conservation preserving corrections

Even if the initial scheme is a Finite Volume scheme in the sense that it matches
conservativity assumption (A1), this is not automatically the case of the cor-
rected scheme. However a simple symmetry assumption on the correction en-
sures that the conservative structure is preserved.

The statement of this condition needs to introduce polygonal paths in the
mesh as in [16]. Given an admissible meshD of Ω we fix, for any pair (I, J) ∈M2

such that I ∈ V (J) (or equivalently J ∈ V (I)) a polygonal path IJ that does
not include any edge or vertex of the mesh. Then, assuming the control volumes
are sorted out, we denote by C the set C = {IJ ; I ≤ J} and we let, for any edge
σ ∈ E , ch(σ) be the set of the polygonal paths IJ with I ≤ J and such that
IJ crosses σ. Finally, given a path IJ ∈ ch(σ) with σ ∈ EK , we set εK,σ,IJ = 1
if, from I to J , the path IJ enters the cell K through σ and εK,σ,IJ = −1 if it
leaves K through σ.

Proposition 3.2 (Conservative corrections). Let D be an admissible mesh of
Ω and βD = (βK,Z)K∈M,Z∈V (K) be a correction for (13). If the family βD is
symmetric:

∀K ∈M,∀L ∈ V (K) ∩M, βK,L = βL,K , (28)

then the corrected scheme is conservative, with numerical fluxes F ′K,σ given, for
all u ∈ HM and all K ∈M, by

∀σ ∈ EK ∩ Eint, F ′K,σ(u) = FK,σ(u) +
∑

IJ∈ch(σ)

εK,σ,IJβI,J(u)(uJ − uI) (29a)

∀σ ∈ EK ∩ Eext, F ′K,σ(u) = FK,σ(u)− βK,σ(u)uK (29b)
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Remark 3.2. In case the correction βD is symmetric (in the sense of (28)) the
previous proposition states that correcting the initial scheme with βD amounts
to correct the initial fluxes FK,σ with the corrective fluxes RK,σ defined, for all
u ∈ HM, all K ∈M and all interior edge σ ∈ EK ∩ Eint by

RK,σ(u) =
∑

IJ∈ch(σ)

εK,σ,IJβI,J(u)(uJ − uI), (30)

and for all boundary edge σ ∈ EK ∩ Eext by

RK,σ(u) = −βK,σ(u)uK . (31)

Proof of Proposition 3.2. We proceed as in the proof of Proposition 4.1 from
[16]. Let us first remark that the corrective fluxes defined by (30) satisfy the
conservativity condition (6) (this follows from the fact that, by definition, the
quantity εK,σ,IJ itself is conservative). Consequently the fluxes F ′K,σ also satisfy
this condition.

It remains to check that the corrective term RK in (16) matches with the
balance −

∑
σ∈EK

RK,σ of the corrective fluxes. On that account note that, for
K ∈M and σ ∈ EK , if IJ ∈ ch(σ) is such that K 6∈ {I, J} (i.e. the path crosses
the cell K) and if IJ enters (resp. leaves) K across σ, then there exists σ′ ∈ EK
such that IJ leaves (resp. enters) K across, this means εK,σ,IJ = −εK,σ′,IJ .
Thus, in the sum below, the terms corresponding to σ and σ′ cancel so that we
can state:

∀u ∈ HM,∀K ∈M,
∑
σ∈EK

∑
IJ∈ch(σ)
K 6∈{I,J}

εK,σ,IJβI,J(u)(uI − uJ) = 0.

Consequently, for any u ∈ HM and any K ∈M, the balance reduces to:

−
∑

σ∈EK∩Eint

RK,σ(u) =
∑
σ∈EK

∑
IJ∈ch(σ)
K∈{I,J}

εK,σ,IJβI,J(u)(uI − uJ)

which writes, in view of the definition of ch(σ) and εK,σ,IJ ,

−
∑

σ∈EK∩Eint

RK,σ(u) =
∑

L∈V (K)∩M

βK,L(u)(uK − uL)

and then

−
∑
σ∈EK

RK,σ(u) =
∑

Z∈V (K)

βK,Z(u)(uK − uZ) = RK(u).

11



3.2.3 Coercivity preserving corrections

If the correction is symmetric (in the sense of Proposition 3.2) it further suffices
for the corrective functions to be non-negative to preserve the coercivity of the
initial scheme.

Proposition 3.3 (Coercivity preserving corrections). Let D be an admissible
mesh of Ω and βD = (βK,Z)K∈M,Z∈V (K) be a symmetric correction for (13).
Assume the family βD is non-negative:

∀K ∈M,∀Z ∈ V (K), βK,Z ≥ 0. (32)

Then the corrected scheme is coercive with constant ζ.

Proof. Let u ∈ HM. Since the initial scheme is coercive with constant ζ we
have: ∑

K∈M
SK(u)uK ≥ ζ ‖u‖2D +

∑
K∈M

uK
∑

Z∈V (K)

βK,Z(u)(uK − uZ).

Let us denote by T the last term of the inequality and remark that, provided
T ≥ 0, the coercivity of the initial scheme is preserved. Now gathering by
polygonal paths and using symmetry assumption (28) on βD and assumption
(15) on the stencil yield

T =
∑
IJ∈C

βI,J(u)(uI − uJ)2 +
∑
K∈M

∑
σ∈EK∩Eext

βK,σ(u)u2
K

which proves, with (32), that T ≥ 0.

Provided coefficients RK of the corrective term are continuous functions of
the unknown u, coercivity assumption also guaranties that there exists at least
one solution to the corrected scheme.

Proposition 3.4 (Existence of a solution). Let D be an admissible mesh of Ω
and let βD be a correction for for (13) satisfying (28) and (32).Assume that the
corrective term RD : HM → HM is continuous. Then there exists one solution
to the corrected scheme.

Proof. The proof relies on Brower’s topological degree. According to the hy-
pothesis made on RD, the application ht = −AD + tRD is continuous for all
t ∈ [0, 1]. Then it is sufficient to show that, for R large enough, any solution to
ht(u) = fD is bounded by R in HM to ensure that the degree of h1 = SD on the
ball of radius R at the point fD is the same as the degree of h0 = −AD which is
not zero (since AD is invertible), and consequently to prove the existence of one
solution to the corrected scheme SD(u) = fD. The expected a priori estimate
on the solution to ht(u) = fD is based on the coercivity of −AD and SD. Indeed
noting that ht = −(1−t)AD+tSD, assumption 2 and Proposition 3.3 guarantee
that the scheme defined by ht is coercive with constant ζ. From Proposition 2.2
and the discrete Poincaré inequality (11) that any solution to ht(u) = fD is
bounded by R = C1C2 ‖f ‖L2(Ω).

12



3.2.4 How to build monotone, conservative and coercive corrections

A simple way to construct corrections that match all the previous conditions
ensuring the corrected scheme is monotone and still conservative and coercive
is to take the following steps:

1. Choose a family γD such that (18) holds (for instance take γD as in (24)
or(26));

2. Define the correction bD by

∀K ∈M,∀Z ∈ V (K), bK,Z = γK,Z |AK | . (33)

This correction matches condition (19a)

3. (a) For K ∈M and σ ∈ EK ∩ Eext, define β̃K,σ = bK,σ,
(b) For (K,L) ∈ M2 such that L ∈ V (K), define β̃K,L as a symmetric

combination of bK,L and bL,K such that β̃K,L ≥ bK,L. For instance
one can takes β̃K,L = bK,L + bL,K or β̃K,L = max(bK,L, bL,K).

The correction β̃D is thus symmetric, non-negative and satisfies condition
(19a).

4. Augment β̃D to match conditions (19b) and (19c): for instance define (see
remark 3.1) βD by

∀K ∈M,∀Z ∈ V (K), βK,Z = β̃K,Z + |K|Z| .

The correction βD = (βK,Z)K∈M,Z∈V (K) we obtain from these guidelines is thus
symmetric, non-negative and gives a monotone corrected scheme.

As an example let us consider the following correction βD, similar to the
non-linear correction proposed in [16], and defined, for all u ∈ HM, all K ∈M
and all Z ∈ V (K), by:

• If Z = σ ∈ Eext, then

βK,σ(u) = |AK(u)|∑
Y ∈V (K) |uY − uK |

+ |σ| . (34)

• If Z = L ∈M, then

βK,L(u) = |AK(u)|∑
Y ∈V (K) |uY − uK |

+ |AL(u)|∑
Y ∈V (L) |uY − uL|

+ |K|L| . (35)

If one of the quantities
∑
Y ∈V (K) |uY − uK | or

∑
Y ∈V (L) |uY − uL| is zero, we

define βK,Z(u) in that case by dropping the corresponding term in (34) or (35).
In [16], it is proved that this correction gives a monotone, conservative and

coercive scheme. This can also be shown by verifying this correction can be
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built following the guidelines 1–4 above. First, we consider the family γD given
by (24) and then define, according to (33), correction bD by:

∀u ∈ HM,∀K ∈M,∀Z ∈ V (K), bK,Z(u) = |AK(u)|∑
Y ∈V (K) |uY − uK |

.

We then follow steps 2 and 3 taking β̃K,L = bK,L + bL,K in 3b and we augment
β̃D according to step 4. Equation (35) finally writes βK,L = β̃K,L + |K|L|.

Starting from a different choice for the family γD, namely the one previously
defined by (26), the steps 1–4 can lead to the correction defined, for all u ∈ HM,
all K ∈M and all Z ∈ V (K), by:

βK,Z(u) =
{

max
(
|AK(u)|

CardV (K)∗ ,
|AZ(u)|

CardV (Z)∗

)
+ |K|Z| dK|Z

}
1

|uK − uZ |
(36)

where we set |AZ(u)|
CardV (Z)∗ = 0 if Z = σ ∈ Eext. The corresponding monotone,

conservative and coercive corrected scheme SD writes, for all u ∈ HM and all
K ∈M:

SK(u) = −AK(u)

+
∑

Z∈V (K)∗

{
max

(
|AK(u)|

CardV (K)∗ ,
|AZ(u)|

CardV (Z)∗

)
+ |K|Z| dK|Z

}
sgn(uK − uZ).

(37)

Note that the use of the terms sgn(uK − uZ) in this last correction is reminis-
cent of the form of the non-linear stabilization term proposed in [6] to design a
Galerkin approximation of the Laplacian operator guaranteeing a discrete max-
imum principle on arbitrary meshes. The main drawback of the scheme (37) is
that the corrective term is not continuous so that the existence of solutions to
the non-linear system SD(u) = fD is not ensured. To obtain continuity we will
present in section 3.4.2 a regularized version of this scheme.

3.3 Convergence preserving corrections
From section 3.2, we know how to correct the initial scheme in order to obtain
a monotone scheme which is still conservative and coercive. Coercivity thus
ensures that the solution of such a corrected scheme still converges, up to a
subsequence, to a function ū ∈ H1

0 (Ω). Moreover, from the consistency of the
initial scheme with problem (1), the behavior of the initial part of the corrected
scheme is known. Therefore, a simple way to prove that the limit ū is a weak
solution to the problem (1) is to make sure the corrective term vanishes as the
size of the mesh tends to 0.

In addition to the geometrical regularity of the mesh, measured by the quan-
tity regul(D), we want to take into account its compatibility with the initial
discretized operator AD. To this end we first define the sets Ṽ (K) by adding
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to V (K) all the cells crossed by some polygonal path coming from K i.e. of the
form KL (L ∈ V (K)). The sets Ṽ (K) are then completed so that they are still
symmetric that is:

∀(K,L) ∈M2, L ∈ Ṽ (K) =⇒ K ∈ Ṽ (L).

Then we define the following quantity:

regA(D) = regul(D) + max
K∈M,L∈Ṽ (K)

diam(L)
diam(K) + max

K∈M
Card(Ṽ (K)).

Proposition 3.5 (Convergence of the corrected scheme). Let (Dn)n≥1 be a
sequence of admissible meshes of Ω such that, size(Dn) → 0 as n → ∞ and
(regA(Dn))n≥1 is bounded. Let (βn)n≥1 be a family of corrections associated
with (Dn)n≥1 such that for all n ≥ 1, βn is symmetric and non-negative. For
n ≥ 1 we denote by Sn the corresponding corrected scheme.

Assume that a family (un)n≥1 satisfies:

• For all n ≥ 1, un ∈ HM is a solution to Sn;

• As n→∞, ∑
K∈Mn

diam(K)
∑

Z∈V (K)

βnK,Z(un) |unK − unZ | → 0. (38)

Then, as n→∞, un converges in L2 (Ω) to the unique solution of (1).

Remark 3.3. In the case where V (K) ∩M reduces to cells L ∈ M such that
EK ∩ EL 6= ∅. The family of corrective fluxes R = (RK,σ)K∈M,σ∈EK

defined
through (30) and (31) simply writes, for σ = K|L ∈ E,

RK,σ(u) = βK,σ(u)(uL − uK).

Then, defining, for a family of fluxes F = (FK,σ)K∈M,σ∈EK
, discrete norms

Np,D(F ) by

Np,D(F )p =
∑
K∈M

∑
σ∈EK

|σ|diam(K)
∣∣∣∣FK,σ|σ|

∣∣∣∣p ,
condition (38) reads

N1,Dn(R(un))→ 0 as n→∞.

Notice that as a consequence of Cauchy-Schwarz inequality, the following
bound holds for any family of fluxes F :

N1,D(F ) ≤ (d |Ω| regul(D))1/2
N2,D(F ). (39)

Thus, as (regul(Dn))n≥1 is bounded, (38) holds if N2,Dn(R(un))→ 0 as n→∞.
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Remark 3.4. The additional numerical diffusion term diam(K)∆K(u) in (23)
is conservative: it writes, for all u ∈ HM and all K ∈M,

diam(K)∆K(u) =
∑
σ∈EK

rK,σ(u),

with rK,σ(u) = |σ|(uL − uK). Now remark that if θ ≥ regul(D) then we have

∀u ∈ HM, N2,D(r(u)) ≤ C4 size(D) ‖u‖D,

with constant C4 only depending on θ. Provided both (regul(Dn))n≥1 and (‖un ‖Dn)n≥1
are bounded, this entails that N2,Dn(r(un))→ 0 as n→∞.

Proof of Proposition 3.5. We proceed as mentioned above: we use first coerciv-
ity to extract a convergent subsequence of (un)n≥1, then the consistency of the
initial scheme together with assumption (38) allow to pass to the limit in the
corrected scheme.

Given n ≥ 1, Proposition 3.3 shows that Sn is coercive with constant ζ
and thus that the a priori estimate (9) holds for un. Since (regul(Dn))n≥1
is bounded and since ζ does not depend on n, this estimate proves that the
sequence (‖un ‖Dn)n≥1 is bounded. Thus, according to the discrete compactness
results for bounded families in the discrete H1

0 norm (see [10] lemmas 5.6 and 5.7
with p = 2), there exists ū ∈ H1

0 (Ω) such that, up to a subsequence, un → ū in
L2 (Ω). Since (1) has a unique solution, if we prove that ū is indeed this solution,
then we will get that the whole family (un)n≥1 converges to ū as n→∞.

To simplify the notations, we drop the index n and assume that u = un

converges to ū as size(D) → 0 and we show that ū is the weak solution to
(1). Given ϕ ∈ C∞c (Ω) we set ϕD = (ϕK)K∈M ∈ HM with ϕK = ϕ(xK).
Multiplying the equation on K (16) by ϕK and summing over K ∈M we get:

−
∑
K∈M

AK(u)ϕK +
∑
K∈M

RK(u)ϕK =
∫

Ω
fϕD. (40)

The right-hand side tends to
∫

Ω fϕ as size(D) → 0. Besides, since regA(D) is
bounded, assumption (A3) on the consistency of the initial scheme ensure that,
along the extracted subfamily, we have

−
∑
K∈M

AK(u)ϕK →
∫

Ω
D∇ū∇ϕ,

as size(D)→ 0.
Let us prove the corrected term in the left-hand side of (40) vanishes as

size(D)→ 0. Gathering by polygonal paths, we can write∑
K∈M

RK(u)ϕK =
∑
IJ∈C

βI,J(u)(uI − uJ)(ϕI − ϕJ)

+
∑
K∈M

∑
σ∈EK∩Eext

βK,σ(u)uKϕK .
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Hence∣∣∣∣∣ ∑
K∈M

RK(u)ϕK

∣∣∣∣∣ ≤ ∑
K∈M

∑
Z∈V (K)

βK,Z(u) |uK − uZ | |ϕK − ϕZ | . (41)

Now note that since ϕ is regular, compactly supported in Ω, and since regA(D)
is bounded, there exists C5 not depending on D such that

|ϕK − ϕZ | ≤ C5 diam(K)

for all K ∈ M and all Z ∈ V (K). Using this last inequality in (41) proves,
according to (38), that ∑

K∈M
RK(u)ϕK → 0

as size(D) goes to 0.
Sending size(D)→ 0 in (40) (along the extracted subfamily) we finally get,

for any ϕ ∈ C∞c (Ω), ∫
Ω
D∇ū∇ϕ =

∫
Ω
fϕ,

which proves, as announced, that ū is the weak solution to (1).

3.4 Examples of corrections
Using the tools from the previous section we study two actual examples of
corrections. For each one, we give numerical conditions ensuring the corrected
scheme converges.

3.4.1 A first correction

Given some parameter η > 0, we consider first the following correction βD

defined, for all u ∈ HM, all K ∈M and all Z ∈ V (K), by:

• If Z = σ ∈ Eext, then

βK,σ(u) = |AK(u)|∑
Y ∈V (K) |uY − uK |

+ ηmin
(
|σ| , |K|∑

Y ∈V (K) |uK − uY |

)
.

(42)

• If Z = L ∈M, then

βK,L(u) = |AK(u)|∑
Y ∈V (K) |uY − uK |

+ |AL(u)|∑
Y ∈V (L) |uY − uL|

+ ηmin
(
|K|L| , |K|∑

Y ∈V (K) |uY − uK |
+ |L|∑

Y ∈V (L) |uY − uL|

)
. (43)
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This correction is slightly different from the one previously defined by (34)-(35).
More precisely the difference lies in the last term that is in the augmentation
chosen in step 4 of the guidelines from section 3.2.4. The modified augmentation
chosen above still brings monotonicity and takes better care of the convergence
of the scheme.

Note that the function βK,Z : HM → R are continuous outside the set
{u ∈ HM ; uK − uZ 6= 0} and bounded on HM according to (14). Hence the
corrective term RD : HM → HM defined through (17) is continuous so that
Proposition 3.4 guarantees the corresponding corrected scheme SD(u) = fD has
at least one solution.

Proposition 3.6. Let η > 0 and let (Dn)n≥1 be a sequence of admissible meshes
of Ω such that size(Dn)→ 0 as n→∞ and (regA(Dn))n≥1 is bounded. For all
n ≥ 1 we denote by Sn : HMn → HMn the corrected scheme defined through
(42)–(43). Let (un)n≥1 be a sequence of discrete functions satisfying

• For all n ≥ 1, un ∈ HMn is a solution to Sn;

• As n→∞,

sup
K∈Mn

{∣∣∣ADn

K (un)
∣∣∣ diam(K)
|K|

}
→ 0. (44)

Then, as n→∞, un converges in L2 (Ω) to the unique solution of (1).

Proof. We show that the family of solutions (un)n≥1 matches condition (38).
For simplicity, we drop the index n. For all K ∈M and all Z ∈ V (K) we have:

βK,Z(u) |uK − uZ | ≤ |AK(u)|+ |AZ(u)|+ η |K|Z| |uK − uZ | .

Thus, regA(D) being bounded, there exists C6 independent of D such that∑
K∈M

diam(K)
∑

Z∈V (K)

βK,Z(u) |uK − uZ | ≤

C6
∑
K∈M

diam(K) |AK(u)|+ ηN1,D(r(u)), (45)

withN1,D(r(u)) =
∑
K∈M diam(K)

∑
σ∈EK

|σ| |uK − uL|. Remark 3.4, together
with inequality (39), yield

N1,D(r(u)) −−−−−−−→
size(D)→0

0. (46)

Besides, the first term of the right hand side in (45) can be bounded above as
follows: ∑

K∈M
diam(K) |AK(u)| ≤ |Ω| sup

K∈M

{
|AK(u)| diam(K)

|K|

}
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which, thanks to (44), implies∑
K∈M

diam(K) |AK(u)| −−−−−−−→
size(D)→0

0. (47)

Substituting estimates (46) and (47) into (45) proves that, as size(D)→ 0,∑
K∈M

diam(K)
∑

Z∈V (K)

βK,Z(u) |uK − uZ | → 0,

which, according to Proposition 3.5, gives the desired result.

3.4.2 A regularized correction

As we pointed out above, the main drawback of the correction defined by (36)
is that the resulting scheme is not a continuous function of u ∈ HM. Actually,
discontinuity mainly comes from the family γD given by (26) which has been
used to build the correction following the steps 1–4 from section 3.2.4. Given a
positive parameter ε, let us replace γD by a smoothed family γε which writes,
for u ∈ HM, K ∈M and Z ∈ V (K),

γεK,Z(u) = 1
CardεV (K)∗(|uK − uZ |+ ε) , (48)

in which the smoothed version CardεV (K)∗ of CardV (K)∗ is defined, for u ∈
HM and K ∈M, by:

CardεV (K)∗ =
∑

Z∈V (K)

|uK − uZ |
|uK − uZ |+ ε

.

Note that this smoothed version of γD still matches the condition (18) of Propos-
tion 3.1 so that, following the steps given in section 3.2.4, we can start from γε

to build a smoothed correction βε defined, for u ∈ HM, K ∈M and Z ∈ V (K),
by

βεK,Z(u) = max
(
|AK(u)|

CardεV (K)∗ ,
|AZ(u)|

CardεV (Z)∗

)
1

|uK − uZ |+ ε
+
|K|Z| dK|Z
|uK − uZ |+ ε

(49)
with the convention |AZ(u)|

CardεV (Z)∗ = 0 if Z = σ ∈ Eext.
The corresponding corrected scheme Sε thus writes, for all u ∈ HM and all

K ∈M,

SεK(u) = −AK(u)

+
∑

Z∈V (K)

max
(
|AK(u)|

CardεV (K)∗ ,
|AZ(u)|

CardεV (Z)∗

)
sgnε(uK − uZ) + δK(u), (50)
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where the real function sgnε : x ∈ R 7→ x/(|x|+ ε) regularizes the function sgn
and the function δK : HM → HM is defined, for u ∈ HM, by

δK(u) =
∑
σ∈EK

|σ| dσsgnε(uK − uL).

According to section 3.2.4, this scheme is monotone, conservative and coercive
and Proposition 3.4 ensures it admits at least one solution.

Remark 3.5. Considering a sequence (uε) of solutions to the regularized schemes
(50) and sending ε→ 0, one can expect to obtain a solution to the unregularized
scheme defined by (37). Indeed, thanks to the a priori estimate (9), the sequence
(uε) is bounded in the finite-dimensional space HM and then converges, up to
a subsequence, to a discrete function u ∈ HM. However, passing to the limit
in (50) does not prove that u satisfies (37). Actually, since the function sgn is
not continuous at the origin, we can only conclude that, up to a subsequence, as
ε→ 0

sgnε(uεK − uεZ)→
{

sgn(uK − uZ) if uZ 6= uK

σK,Z if uZ = uK ,

for some σK,Z ∈ [−1, 1]. Then, as ε→ 0, CardεV (K)∗ → Σ(K) with

Σ(K) = CardV (K)∗ +
∑

Z∈V (K)
uZ=uK

|σK,Z | .

Thus we can only conclude that u satisfies the limit scheme

−AK(u)+
∑

Z∈V (K)∗

{
max

(
|AK(u)|
Σ(K) ,

|AZ(u)|
Σ(Z)

)
+ |K|Z| dK|Z

}
sgn(uK−uZ)

+
∑

Z∈V (K)
uZ=uK

{
max

(
|AK(u)|
Σ(K) ,

|AZ(u)|
Σ(K)

)
+ |K|Z| dK|Z

}
σK,Z = |K| fK ,

which does not coincide with (37).

In order to address the question of convergence for the scheme Sε, the propo-
sition bellow gives an estimate on AD(u) if u is a solution to (50).

The statement of this proposition needs to introduce the sets V (K)+ and
V (K)− defined, given u ∈ HM, by:

V (K)+ = {Z ∈ V (K) ; AK(u)(uZ − uK) > 0} ,
V (K)− = {Z ∈ V (K) ; AK(u)(uZ − uK) < 0} .

Proposition 3.7. Let D be an admissible mesh of Ω and let θ ≥ regul(D) and
ε > 0. Let u be a solution to Sε and let K0 ∈M be such that

|AK0(u)|
CardεV (K0)∗ = max

K∈M

|AK(u)|
CardεV (K)∗ . (51)
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Assume that u satisfies:

there exists Z ∈ V (K0)+ such that |uK0 − uZ | ≥ ε. (52)

Then there exists C7 only depending on d and θ such that, for all K ∈M,
|AK(u)|

CardεV (K)∗ ≤ |K0| |fK0 |+ C7 |K0| . (53)

Proof. It is sufficient to prove estimate (53) forK = K0. Now theK0 component
of Sε(u) reduces to:

−AK0(u) +
∑

Z∈V (K0)

|AK0(u)|
CardεV (K0)∗ sgnε(uK0 − uZ) + δK0(u) = |K0| fK0 . (54)

Summing separately on V (K0)− and V (K0)+, we get :

−AK0(u) +
∑

Z∈V (K0)

|AK0(u)|
CardεV (K0)∗ sgnε(uK0 − uZ)

= −AK0(u)
(

1−
∑

Z∈V (K0)−

|sgnε(uK0 − uZ)|
CardεV (K0)∗ +

∑
Z∈V (K0)+

|sgnε(uK0 − uZ)|
CardεV (K0)∗

)
.

Since condition (18) for the family γε can be written:∑
Z∈V (K0)−

|sgnε(uK0 − uZ)|
CardεV (K0)∗ +

∑
Z∈V (K0)+

|sgnε(uK0 − uZ)|
CardεV (K0)∗ = 1,

we then have:

−AK0(u) +
∑

Z∈V (K0)

|AK0(u)|
CardεV (K0)∗ sgnε(uK0 − uZ)

= −2AK0(u)
CardεV (K0)∗

∑
Z∈V (K0)+

|sgnε(uK0 − uZ)|, (55)

Now since |sgnε(x)| ≥ 1/2 when |x| ≥ ε, assumption (52) ensures that∑
Z∈V (K0)+

|sgnε(uK0 − uZ)| ≥ 1/2

Substituting (55) in (54), applying triangular inequality and using this last
bound lead to:

|AK0(u)|
CardεV (K0)∗ ≤ |K0| |fK0 |+ |δK0(u)| . (56)

Finally, remark that, for all K ∈M,

|δK(u)| ≤
∑
σ∈EK

|σ| dσ ≤ d(1 + θ) |K| . (57)

Plugging this last inequality with K = K0 into (56) gives the desired estimates.
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Adding some regularity assumption on the mesh, the following result states
the convergence of the solution to the scheme Sε provided this solution fulfills
condition (52) above. In the following, for u ∈ HM, we will say that K ∈M is
a maximal cell for u if:

|AK(u)|
CardεV (K)∗ = max

L∈M

|AL(u)|
CardεV (L)∗ . (58)

Proposition 3.8. Assume f ∈ Ld(Ω). Let (Dn)n≥1 be a sequence of admissible
meshes of Ω such that size(Dn)→ 0 as n→∞ and (regA(Dn))n≥1 is bounded;
assume that exists C8 > 0 verifying,

∀n ≥ 1,∀K,L ∈Mn, |K| ≤ C8 |L| . (59)

Let (εn)n≥1 be a sequence of positive real numbers and let (un)n≥1 be a sequence
of discrete functions satisfying:
• For all n ≥ 1, un ∈ HMn is a solution to the scheme Sεn .

• For all n ≥ 1, there exists a maximal cell Kn
0 ∈Mn for un for which

there exists Z ∈ V (Kn
0 )+ such that

∣∣∣unKn
0
− unZ

∣∣∣ ≥ εn. (60)

Then, as n→∞, un converges in L2 (Ω) to the unique solution of (1).
Proof. We show that, thanks to assumption (60) made on (un)n≥1, condition
(38) of Proposition 3.5 is satisfied. For simplicity, we drop the index n. From
Proposition 3.7 and inequality (57), we know since regA(D) is bounded that
there exists a constant C9 independent of D and ε such that, for all K ∈M,∑

Z∈V (K)

βεK,Z(u) |uK − uZ | ≤ C9

∫
K0

(|f |+ 1) + C9 |K| .

From Hölder inequality and assumption (59), we get

∑
Z∈V (K)

βεK,Z(u) |uK − uZ | ≤ C10 |K|
d−1

d

(∫
K0

(|f |+ 1)d
) 1

d

+ C10 |K| , (61)

with C10 = max
(
C

d−1
d

8 C9, C9
)
. Next note that since regul(D) is bounded, we

get by (2),
∀K ∈M, diam(K) ≤ C11 |K|

1
d , (62)

where C11 is independent of D. Then, bounding diam(K) either by this last
inequality or size(D), we get C12 that does not depend on D or ε such that:∑
K∈M

diam(K)
∑

Z∈V (K)

βεK,Z(u) |uK − uZ | ≤ C12

(∫
K0

(|f |+ 1)d
) 1

d +C12 size(D),

Noting that, since |f |+ 1 ∈ Ld(Ω),
∫
K0

(|f |+ 1)d → 0 as size(D) tends to 0, this
last inequality guarantees we can apply Proposition 3.5 and therefore conclude
that u→ ū in L2 (Ω) as size(D)→ 0.
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4 Numerical results
To deal with the nonlinear terms, we perform an iterative algorithm. Let us
denote ui the value of the solution where i is a fixed point iteration. We fix
u = ui in βK,Z(u) in (16) and the iterative scheme can be written :

∀K ∈M, −AK(ui+1) +
∑

Z∈V (K)

βK,Z(ui)(ui+1
K − ui+1

Z ) = |K|fK

We stop the algorithm when the criterion ||u
i+1 − ui||
||ui||

≤ 10−4 is satisfied. More-

over, we use grids of squares of surface h2, h changing from 1
8 to 1

128 .
Some notations used to present the numerical results are given in Table 1.

h size of the discretization
L2 error L2 error of the computed solution with respect to the analytical solution
ratiol2 order of convergence, in L2 norm, of the method
nit number of iterations needed to compute the approximate solution of S
Min. Val. min uK,K ∈M
Max. Val. max uK,K ∈M
|uK0 − uZ∗ | maxZ∈V (K0)+ |uK0 − uZ |
|AK∗ |
|K∗| maxK ∈M, |AK |

|K|

Table 1: Notations.

4.1 Stationary analytical solution
In order to numerically estimate the convergence of the scheme, let us consider
the following elliptic problem:{

−div(D∇ū) = f in Ω =]0, 0.5[×]0, 0.5[
ū(x, y) = sin(πx) sin(πy) for (x, y) ∈ ∂Ω (63)

with
D = 1

(x2 + y2)

(
y2 + αx2 −(1− α)xy
−(1− α)xy x2 + αy2

)
and {

uana = sin(πx) sin(πy)
f = − divD∇uana

(64)

The parameter α is equal to 10−6 and the anisotropy ratio is equal to 106. We
check that f ≥ 0.
We show the results obtained in Table 2 with the scheme developped in [1] (S.
1), with the first correction (S. 2) and with the regularized correction (S. 3).
For the scheme 2, we choose η = 2. For the scheme 3, we choose ε = 4h2.

It is clear that the original scheme is at least second order in space but we
observe large oscillations. Concerning the scheme 2 and 3, they become first
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h 1
8

1
16

1
32

1
64

1
128

L2 error (S. 1) 5.21× 10−1 1.96× 10−1 7.14× 10−2 1.65× 10−2 2.14× 10−3

ratiol2 (S. 1) 1.41 1.46 2.11 2.95
Undershoots (S. 1) 12.5 % 10 % 5 % 2 % 1 %
Min. Val. (S. 1) −2.9× 10−1 −2.4× 10−1 −1.4× 10−1 −5.26× 10−2 −1.33× 10−2

L2 error (S. 2) 1.59× 10−1 8.98× 10−2 4.73× 10−2 2.47× 10−3 1.30× 10−2

ratiol2 (S. 2) 0.82 0.93 0.94 0.93
nit 7 11 13 13 13
|AK∗ |
|K∗| 13.26 15.80 16.60 17.25 18.09

L2 error (S. 3) 9.03× 10−2 4.27× 10−2 2.12× 10−2 1.00× 10−2 4.75× 10−3

ratiol2 (S. 3) 1.08 1.01 1.07 1.08
nit 15 17 18 18 15

|uK0 − uZ∗ | 1.43× 10−1 3.62× 10−2 9.10× 10−3 2.28× 10−3 5.70× 10−4

ε 6.25× 10−2 1.56× 10−2 3.90× 10−3 9.77× 10−4 2.44× 10−4

Table 2: Numerical results for (63) with the original scheme, the first correction
and the regularized correction as a function of the discretization step.

order in space but all oscillations disappear.
For the the scheme 2, looking at the terms |AK

∗ |
|K∗|

, we check the assumptions of

Proposition 3.6.
For the scheme 3, we also check the assumptions of Proposition 3.8. As we use
squares, the grids satisfy clearly the inequalities (59). Moreover, looking at the
terms |uK0 − uZ∗ |, the inequalities (60) are verified for all the grids.

4.2 Stationary non analytical solution
In order to evaluate the respect of the discrete maximum principle, we now
consider the problem:{

− div(D∇ū) = f in Ω =]0, 0.5[×]0, 0.5[
ū = 0 on ∂Ω (65)

and
f(x, y) =

{
10. if (x, y) ∈]0.25, 0.5[×]0.25, 0.5[

0. otherwise (66)

where D is as before (see (63)). We also choose η = 2 and ε = 4h2.
The Table 3 shows the minimum and the maximum values for the original
scheme, the first correction and the regularized correction. It is interesting to
observe that the oscillations can be quite large unless the grid is thin. Figure 2
shows that they can be numerous even on the thin grid. On the other hand, as
expected, no such oscillations appear with the modified schemes (Figure 1). For
the two corrected schemes, the number of iterations seems to be bounded as a
function of the discretization step when we refine the grid. Moreover, looking
at the terms |AK

∗ |
|K∗|

and |uK0 − uZ∗ |, the inequalities (44) and (60) are also

satisfied for all the grids.
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h 1
8

1
16

1
32

1
64

1
128

Undershoots (S. 1) 37 % 28% 21 % 19 % 20%
Min. Val. (S. 1) −4.62× 10−2 −3.91× 10−2 −1.08× 10−2 −1.09× 10−2 −4.71× 10−3

Max. Val. (S. 1) 2.97× 10−1 3.3× 10−1 3.5× 10−1 3.8× 10−1 4.1× 10−1

Min. Val. (S. 2) 2.38× 10−3 1.16× 10−4 8.75× 10−7 3.30× 10−10 1.82× 10−15

Max. Val. (S. 2) 9.41× 10−2 1.13× 10−1 1.16× 10−1 2.12× 10−1 2.62× 10−1

nit 8 11 13 19 20
|AK∗ |
|K∗| 7.06 11.81 14.43 16.94 17.81

Min. Val. (S. 3) 1.12× 10−3 5.90× 10−5 1.55× 10−6 3.53× 10−8 7.95× 10−10

Max. Val. (S. 3) 1.21× 10−1 1.41× 10−1 1.95× 10−1 2.48× 10−1 2.92× 10−1

nit 8 13 16 20 21
|uK0 − uZ∗ | 6.88× 10−2 2.17× 10−2 5.14× 10−3 1.25× 10−3 3.07× 10−4

ε 6.25× 10−2 1.56× 10−2 3.90× 10−3 9.77× 10−4 2.44× 10−4

Table 3: Numerical results for (65) with the original scheme, the first correction
and the regularized correction as a function of the discretization step.

Figure 1: Concentration on a grid made of 4096 squares for the first correc-
tion (maximum value 0.26, minimum value 1.82 × 10−15) and the regularized
correction (maximum value 0.29, minimum value 7.95× 10−10).
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